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In 1970, Durrer et al. recorded the total excitation of the human heart 

with 870 electrodes and confirmed the first 10 ms of left ventricular (LV) 

activation as trifascicular in nature.1 The rapid and synchronous 

activation of the LV through the specialised His–Purkinje network is 

highly intricate and efficient, preserving normal physiological coupling 

between electrical excitation and mechanical contraction. When 

normal transit through the His–Purkinje system is disrupted, stereotypic 

conduction block patterns are manifested on the 12-lead surface ECG 

(e.g. fascicular blocks or bundle branch blocks). These abnormal 

electrical activation patterns, particularly the left bundle branch block 

(LBBB) pattern, are associated with the presence, development or 

worsening of cardiomyopathy, and leads to increased risk of subsequent 

morbidity and mortality.

Cardiac resynchronisation therapy (CRT) via biventricular pacing has 

been established as the mainstay electrical pacing modality to reverse 

the deleterious effects of electromechanical dyssynchrony, with 

significant reductions in mortality and heart failure (HF) hospitalisation 

for patients with wide QRS, as shown in multiple randomised 

controlled trials.2–7 However, despite these significant benefits, up to 

one-third of patients do not improve after biventricular pacing, and 

the overall rate of response from traditional biventricular pacing has 

remained stagnant despite technical improvements in lead delivery 

and site selection.8–10 During the past decade, we have gained a 

deeper mechanistic understanding of the benefits of biventricular 

pacing. Research has shown that patients with 

LBBB are the most likely to benefit from CRT, and that patients without 

significant LV conduction delay, particularly those with right bundle 

branch (RBBB) or non-specific intraventricular conduction delay 

(IVCD), derive little to no benefit from biventricular pacing.11–14 Non-

response is not necessarily a failure of biventricular pacing, but rather 

a failure in appropriate patient selection. The physiology of conduction 

system disease is highly individualised and requires therapy directed 

at the patient’s underlying pathophysiology; traditional LV lead 

placement into an available tributary of the coronary sinus might not 

meet the needs of an individual patient. Indeed, the goal of CRT more 

broadly should be complete physiological resynchronisation utilising 

the His–Purkinje system, if possible. Identifying patients who might 

achieve physiological resynchronisation, however, can be challenging. 

In this review, we discuss the need to return to the ‘renaissance’ of 

electrophysiology (EP) when His bundle and electrical conduction 

system recordings were the focus of invasive study.15 In CRT, a precise 
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diagnosis of the level and extent of conduction system pathology 

could improve technology selection, lead delivery and outcomes of 

physiological pacing.

Recruitment of the Conduction 
System: His Bundle Pacing
Biventricular pacing achieves resynchronisation via non-physiological 

fusion of a right ventricular apical-paced wavefront and an epicardial 

wavefront from the basal lateral LV (and some newer techniques 

attempt left-sided fusion with native right-sided His-Purkinje activation). 

His bundle pacing (HBP) is a promising method to achieve 

electromechanical resynchronisation, as pacing utilising this strategy 

recruits the intrinsic specialised conduction system.16,17 Relative to 

traditional dual-chamber or biventricular pacing, HBP has been shown 

to preserve intrinsic activation in patients with narrow QRS,18 as well as 

restore a narrow QRS in patients with LBBB and RBBB patterns.19–21

Until recently, the underlying mechanism of how HBP (delivered 

proximally in the conduction system) corrects LBBB patterns (a distal 

defect) had not been well understood. Based on fine anatomic 

dissection studies of human and animal hearts in the 1960s and early 

1970s, James and Sherf proposed a concept of sinoventricular 

conduction, in which impulses originating in the sinus node were 

predestined to specific locations in the ventricle.22 They also identified 

longitudinal separation of Purkinje strands with collagen within the His 

bundle, and introduced the concept that proximal lesions might impact 

more distal conduction.23

In the late 1970s, Narula demonstrated normalisation of LBBB patterns 

with stimulation of the distal His bundle, and based on James and Sherf’s 

work, interpreted these findings to prove the existence of longitudinally 

dissociated fibres with asynchronous conduction due to a discrete lesion 

or altered refractoriness within the His bundle.24 At the same time, El-

Sherif et al. provided further experimental and clinical observations of 

the normalisation of wide QRS (both RBBB and LBBB) with distal HBP, 

which was also interpreted as evidence of functional longitudinal 

dissociation of conduction from a pathological His bundle resulting in 

distal asynchronous conduction.25 However, these seminal observations 

and studies did not investigate the left-sided conduction system distal to 

the His bundle. It is important to emphasise that, according to this 

40-year-old theory of functional longitudinal dissociation of the His 

bundle, conduction through the left bundle branch was theoretically 

proposed as remaining intact without actual conduction block, as the 

lesion within the His itself is sufficient to create sufficient conduction 

delay to create a bundle branch block pattern.

Variability in LBBB Pattern Definitions
Historically, wide (≥120 ms) QRS patterns with dominant S-waves in 

lead V1 have been aggregated into the broad categorisation of LBBB 

pattern. However, not all conduction block patterns seen on the surface 

ECG are indicative of the same pathology. As such, LBBB patterns 

include both subtypes of those without discrete conduction block and 

those with ‘true’ or complete conduction block into or within the left 

bundle. In this regard, ‘block’ is a semantic error, as many patients 

might have intact activation of the Purkinje system.

A prevailing definition of the LBBB pattern was developed by the 

American Heart Association Electrocardiography and Arrhythmias 

Committee, Council on Clinical Cardiology/American College of 

Cardiology Foundation/Heart Rhythm Society (AHA/ACCF/HRS) in 2009. 

The LBBB pattern required a QRS ≥120 ms with a broad notched or 

slurred R-wave in leads I, aVL, V5 and V6.26 The cut-off of 120 ms was 

primarily historical and was revisited by Strauss and colleagues in 2011, 

who proposed a cut-off of ≥140 ms in men and ≥130 ms in women, 

along with the requirements of a QS or RS in leads V1–V2, and mid-QRS 

notching or slurring in two or more of leads V1, V2, V5, V6, I and aVL.27 

The outcomes of CRT via biventricular pacing have been shown to vary 

based on how left LBBB is defined,28–30 which illustrates the need to 

optimise the phenotyping of patients with wide QRS eligible for CRT. 

Multiple ECG criteria have been assessed, but without a ‘gold standard’ 

of determination of whether or not block was present. The interpretation 

of notching and slurring within the QRS is also highly subjective.

Direct Recordings of Activation Patterns 
During LBBB: A New Gold Standard?
To further investigate the theory of longitudinal dissociation in the His 

bundle, we commenced EP testing to delineate the activation patterns of 

the proximal left conduction system with multielectrode catheters in 

patients presenting for cardiac resynchronisation or substrate mapping for 

ventricular tachycardia ablation.31 Prior mapping studies performed to 

characterise LBBB patterns focused on myocardial breakout locations.32–34 

We hypothesised that lesions within the His bundle could be more evident 

with bilateral His recordings, where the left-sided His might have discrepant 

or delayed timing relative to the right-sided His bundle activation 

(presenting as a ‘split-His’ with observable interhisian delay).

To our surprise, we did not observe any differences in the His bundle 

activation recorded from the right and left side, and split His 

electrograms were rarely observed in patients with LBBB pattern. 

Rather, these findings were only present in patients who served as 

narrow QRS complex controls. Importantly, we observed complete 

disruption and absence of conduction in the left bundle with detailed 

contact mapping with multielectrode catheters. Of note, the conduction 

block site was frequently proximal to the left bundle, as the last 

recorded pre-potential was consistent with block within the left-sided 

His, and timing coincided with right-sided His activation with a local 

atrial component (Figure 1). To the best of our knowledge, this was the 

first observation of the focal ‘left intrahisian’ conduction block, where 

the central pathology exposed was a conduction defect into the left 

bundle, rather than within the left bundle.

In contrast, in patients with either narrow QRS or RBBB pattern, intact 

Purkinje activation (IPA) was noted on the left side of the septum. In our 

study, 11 patients with narrow QRS and five patients with RBBB served 

as controls for patients with LBBB pattern at baseline. The absolute 

difference between the earliest and latest recorded ventricular 

maximum peak electrogram on our left septal recording catheter (ΔLV 

time) and transseptal conduction time for patients with narrow QRS or 

RBBB was similar to that of patients with IVCD, and in marked contrast 

to patients with complete conduction block and ‘true’ LBBB.

The findings of complete conduction block at the level of the left-sided His 

fibres or the proximal LBBB are consistent with the theory of longitudinal 

dissociation, in that the inferred site of pathology is a proximal lesion 

within the branching His bundle, but differs significantly from this 

proposed theory because left bundle activation was not asynchronous 

relative to the right bundle, but completely blocked (Figure 2).

Importantly, we observed presystolic recruitment of latent Purkinje 

potentials in patients with complete conduction block in the left bundle 
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during His corrective pacing (Figure 3). These findings provide direct 

evidence of the mechanism of QRS narrowing with HBP, where complete 

conduction block is circumvented by a pacing stimulus that sufficiently 

captures the conduction system distal to the site of discrete block. 

Similar to the controls or RBBB patients noted earlier, patients without 

complete conduction block were observed to have IPA, and these 

patients uniformly failed attempts at His corrective pacing (Figure 4).

Lessons from the His-SYNC Trial
The His-SYNC pilot trial was the first multicentre randomised trial to 

evaluate corrective HBP in direct comparison with biventricular pacing.35 

At the time of study conception, it was not known if IVCD would fare 

better or worse with HBP, and therefore, a broad definition of LBBB 

pattern (according to the 2009 AHA/ACCF/HRS consensus criteria) was 

used for inclusion. With a large crossover rate (48% from His CRT to 

biventricular pacing), the intention-to-treat outcomes were comparable 

between the two groups with regard to echocardiographic response, 

and His corrective pacing failed to reach statistical superiority, defined 

as a difference of 10% in ejection fraction.

In a post-hoc analysis, 50% of patients (n=5) who crossed over to 

biventricular pacing from His pacing had IVCD patterns that could 

not be corrected by HBP.36 Perhaps the most important lesson learned 

from the His-SYNC pilot trial was that patients with IVCD should be 

excluded from enrolment in future HBP and conduction system pacing 

studies for CRT. Indeed, these patients appear to be best suited to 

traditional biventricular devices, although outcomes for patients with 

IVCD are known to be less favourable than those of patients with LBBB. 

Confirmation of intact Purkinje activation with left-sided conduction 

system mapping would potentially assist in patient selection to exclude 

patients with IVCD and apparent LBBB pattern on surface ECG. In 

addition, contact mapping can also afford assessment of His corrective 

thresholds prior to lead deployment. Indeed, even for patients with 

complete conduction block beyond the left-sided His fibres and in the 

proximal left bundle branch, higher outputs are generally required to 

achieve QRS correction. We found that patients with complete 

conduction block within the left bundle had lower rates of QRS 

correction compared to those with left intrahisian block (62% versus 

94%, respectively; Figure 5).

Routine Left-sided Electrophysiological 
Testing for CRT
The most rigorous and physiological method to evaluate corrective HBP 

prospectively would be to invasively confirm disease within the left-sided 

Figure 1: Left Intrahisian Left Bundle Branch Block
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Figure 2: Comparing Theory of Longitudinal 
Dissociation with Finding of Conduction Block
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His fibres or proximal LBBB with EP prior to randomisation. The attendant 

risk of a retrograde transaortic approach needs to be carefully assessed 

prior to implementing routine left-sided EP. Although this risk is unlikely 

to be higher than a routine diagnostic left heart catheterisation with 

coronary angiography (stroke <1%), there could be greater risk in patients 

with extensive aortic arch atheromatous calcification or disease.37

The diagnostic duodecapolar catheter that we use (Livewire, 2-2-2; 

Abbott) is routinely employed for substrate mapping during ventricular 

tachycardia ablation, and should theoretically carry less risk for 

thromboembolism than catheters used for diagnostic angiography, as 

there is no lumen. Systemic heparinisation should be considered in 

patients with extended LV dwell time, and could also be associated with 

increased risk of pocket haematoma during implantation. Emerging 

data suggest that patients could safely undergo device implantation 

during uninterrupted anticoagulation, including warfarin or non-vitamin 

K antagonists (e.g. apixaban, rivaroxaban or dabigatran), and single-

dose heparin to facilitate EP could be beneficial.38,39

With regard to non-invasive evaluation, there is a need to develop novel 

criteria to determine the presence of complete conduction block into 

the left bundle, as these patients are more likely to benefit from 

resynchronisation strategies (either biventricular pacing or HBP). The 

Strauss criteria has widely been recognised to be associated with 

better outcome prognostication after biventricular pacing. However, we 

found that 39% of patients with intact Purkinje activation demonstrated 

by left septal mapping met the Strauss criteria.40 The most helpful 

surface ECG criterion identified was the presence of mid-QRS notching, 

which had an excellent negative prediction value of 100%. It is worth 

noting that the observation of notching could be associated with a 

degree of subjectivity. Indeed, the literature often uses the terms 

‘slurring’ and ‘notching’ interchangeably, when these likely reflect 

distinct underlying EP phenomena. Also not explicitly mentioned in the 

guidelines are patients demonstrating a ‘plateau’ within the QRS 

complex or whether this is a comparable observation to notching or 

slurring. Future work should be directed towards analysing the specific 

features of the QRS complex, which are most likely to be associated 

with underlying complete conduction block, and contemporary 

articulation of the guidelines should incorporate direction on how to 

classify based on these features more explicitly.

There are recent reports that have successfully utilised artificial 

intelligence to detect subtle patterns in digitally acquired ECG data.41 

While these techniques appear quite promising, approaches, such as 

convolutional neural networks, require large datasets (ideally in the 

hundreds of thousands) for algorithm training and robustness, and 

availability of this gold standard set of patients remains limited.

Indeed, surface ECG recordings might always have limitations that will 

yield a diagnostic accuracy that falls short of direct recordings, as 

broadly applied criteria might not account for variability in chamber 

size, wall thickness, anatomic rotation and scar location. More recently, 

the development of high-density surface ECG assessment utilising 

either a vest or a belt has been proposed as a means to overcome 

some of the conventional limitations of the 12 lead.42,43 Septal activation, 

however, cannot be directly assessed with either technique, as both 

approaches predominantly utilise epicardial voltage assessment to 

construct activation maps. Theoretically, patients with significant left-

sided IVCD could be miscategorised as having LBBB. These patients 

might still benefit from biventricular pacing, but would be unlikely to 

respond to HBP for resynchronisation. With the proposed His-SYNC II 

trial, patients with IVCD will be specifically excluded, and the role of 

left-sided His recordings and invasive diagnostic EP testing remains to 

be determined in the planned protocol. Echocardiography-based 

measures of electromechanical delay, including apical rocking, systolic 

stretch index or septal flash, might also be beneficial. The integration of 

echocardiography with ECG measures in future studies is of ongoing 

interest and debate.

Figure 4: Failure to Correct QRS in Patient with Intact  
Purkinje Activation During Right or Left-sided His  
Bundle Pacing

I
II
III

aVR
aVL
aVF
V1
V2
V3
V4
V5
V6

R His p
R His d

LV 19,20
LV 17,18
LV 15,16
LV 13,14
LV 11,12
LV 9,10
LV 7,8
LV 5,6
LV 3,4
LV 1,2

QRS 135ms
Right-sided His pacing

Intact Purkinje
Activation

Left-sided His pacing

Selective SelectiveNon-selective Non-selective

No QRS correction
Inability to correct wide QRS in a patient with LBBB with intact Purkinje activation with pacing 
from both right- and left-side His bundle recording sites. Selective and non-selective 
stimulation of the His bundle fails to narrow the QRS width of 135 ms. LV = left ventricular. 
Source: Upadhyay et al. 2019.31 Reproduced with permission from Wolters Kluwer Health. The 
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Figure 3: Complete Conduction Block with Recruitment of  
Latent Purkinje Potentials During His Bundle Pacing with  
QRS Correction

I
QRS 180ms

NS 121ms

V1

L His
A H V

PP

PP

PP

PP

PP

basal

apical

Complete conduction block at the level of the left-sided His without any left bundle 
recordings suggestive of block proximal to the left bundle. The PP are retrograde and passive 
after ventricular activation. With His bundle stimulation, QRS narrowing from 180 to 121 ms is 
observed. Non-selective His bundle capture is demonstrated by presystolic recruitment of the 
latent PP immediately after the pacing impulse. Normal physiological activation of the local 
ventricular electrograms is restored from apical to basal. NS = non-selective; PP = Purkinje 
potentials.

31

mailto:permissions@lww.com


Defining LBBB Patterns in CRT

ARRHYTHMIA & ELECTROPHYSIOLOGY REVIEW

Cardiac Pacing

Predictions and Future Studies
The evolution and re-emergence of HBP provides more options for CRT 

and marks a return to much needed emphasis on the physiology and 

pathophysiology of the conduction system. Much remains to be 

learned about the complex nature of the highly specialised His–Purkinje 

network. In patients with RBBB who traditionally do not benefit from 

biventricular pacing, we believe that HBP might emerge as a first-line 

therapy. Preliminary data are promising and prospective studies are 

necessary to confirm these findings.20 In patients with IVCD, it is our 

opinion that HBP and conduction system pacing for resynchronisation 

should not be considered as a monotherapeutic option, and diagnostic 

EP could be helpful to quickly exclude a patient’s candidacy, thereby 

minimising crossovers in future trials.

Importantly, HBP and conduction system pacing for resynchronisation are 

currently used in the case of failed biventricular pacing or in the setting of 

a clinical study, as traditional biventricular pacing has been clearly shown 

to have improved survival, which has not yet been demonstrated in 

randomised controlled trials of HBP.19 Intraseptal or LV septal fixation 

techniques could have the potential to correct distal conduction block in 

the left bundle or in cases where HBP for resynchronisation is associated 

with high pacing output.44–46 Presently, more data are available on patients 

with narrow QRS utilising these approaches, and consensus in definitions 

of intraseptal pacing with and without left conduction system capture is 

needed.47–51 In addition, invasive EP diagnostic recordings to delineate left 

septal activation during intraseptal pacing are likely to provide deeper 

physiological insights into these and other emergent strategies for 

conduction system pacing. 

Figure 5: Sites of Conduction Block in Patients with Left Bundle Branch Block Pattern with Rate of Response to  
Corrective His Bundle Pacing
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(dashed) to represent the location of the right-sided His fibres as they penetrate the central fibrous body, which then give rise to the left-sided His fibers (distal portion and branching bundle). In patients 
with complete conduction block (CCB), block was localised to the left-sided His fibres most commonly, and this location was most amenable to corrective His bundle pacing. Less commonly, CCB was 
found distal to the His recording site, at locations in which an atrial electrogram was not recorded. These locations were less amenable to corrective His bundle pacing and were anatomically consistent 
with block in the distal branching bundle or proximal left bundle-branch. The remainder of the patients with LBBB pattern did not demonstrate CCB. Assessment of local ventricular electrograms 
showed intact Purkinje activation, and the QRS was wide, most likely because of conduction slowing more distally. AVN = atrioventricular node; LBBB = left bundle branch block; LPF = left posterior 
fascicle; RBBB = right bundle branch block. Photograph courtesy of the University of California, Los Angeles, Cardiac Arrhythmia Center, Wallace A McAlpine, MD, collection; reproduced with permission 
from K Shivkumar, MD, PhD. Source: Upadhyay et al. 2019.31 Reproduced with permission from Wolters Kluwer Health. The Creative Commons license does not apply to this content. Use of the material 
in any format is prohibited without written permission from the publisher, Wolters Kluwer Health. Please contact permissions@lww.com for further information.

Clinical Perspective
• Left bundle branch (LBBB) is well recognised to be associated 

with favorable outcome after CRT.

• The mechanism of benefit for LBBB with CRT is through 

addressing lateral left ventricular delay by biventricular pacing, 

or through corrective His bundle pacing which engages latent 

His–Purkinje fibres and restores physiologic activation.

• LBBB is usually identified through use of surface 12-lead ECG, 

which lacks specificity in identifying patients with complete 

conduction block.

• Invasive electrophysiology (EP) study can quickly ascertain the 

presence of conduction block through evaluation of left 

ventricular septal activation patterns.

• There may be utility in pursuing left-sided EP study to better 

differentiate conduction patterns in order to tailor therapy 

selection.
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