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Abstract: The 3D genome organization and its dynamic modulate genome function, playing a pivotal
role in cell differentiation and development. CTCF and cohesin, acting as the core architectural
components involved in chromatin looping and genome folding, can also recruit other protein or
RNA partners to fine-tune genome structure during development. Moreover, systematic screening
for partners of CTCF has been performed through high-throughput approaches. In particular, several
novel protein and RNA partners, such as BHLHE40, WIZ, MAZ, Aire, MyoD, YY1, ZNF143, and Jpx,
have been identified, and these partners are mostly implicated in transcriptional regulation and chro-
matin remodeling, offering a unique opportunity for dissecting their roles in higher-order chromatin
organization by collaborating with CTCF and cohesin. Here, we review the latest advancements with
an emphasis on features of CTCF partners and also discuss the specific functions of CTCF-associated
complexes in chromatin structure modulation, which may extend our understanding of the functions
of higher-order chromatin architecture in developmental processes.

Keywords: CTCF; 3D genome; development; protein partners; RNA partners; post-translational mod-
ifications

1. Introduction

The genome stores the complete genetic information of living organisms, and the 3D
genome is commonly regarded as genomic DNA sequence folding in three dimensions
or higher-order chromatin organization inside a cell’s nucleus. Importantly, the dynamic
of three-dimensional (3D) structure of the genome is closely associated with modulation
of gene expression and genome function [1], which play critical roles in maintaining the
normal developmental process [2]. Of note, the occurrence of many genetic diseases and
even cancers, such as congenital limb malformations, autoimmune diseases, and breast
cancer, have been found to be related to the variation of the 3D genome structure [3].

Hierarchically, the topological structures of 3D genome are organized at four levels,
comprising chromosome territories, A/B compartments, topologically associating domains
(TAD), and chromatin loops (e.g., enhancer-promoter interactions) (Figure 1A). Currently,
there are two main techniques for investigating 3D genome folding, including imaging-
based fluorescence in situ hybridization of DNA (DNA-FISH) and high-throughput chro-
mosome conformation capture (Hi-C) [4,5]. DNA-FISH, which is the most commonly used
technique for detection and validation of DNA sequence-specific contacts, can not only pro-
vide single-cell information but can visualize the spatial organization of chromosomes and
genes in the nucleus. Unlike DNA-FISH, Hi-C is developed on the basis of high-throughput
sequencing technology, which offers a high-resolution strategy for genome-wide DNA
contact discovery. The computational analysis of Hi-C data can resolve the structure of
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the 3D genome in two spatial compartments between the entire genome, which are de-
fined as compartment A and compartment B. The A compartment, associated with open
chromatin and activation of gene expression, is usually located inside the nucleus. The
B compartment, associated with closed chromatin and repression of gene expression, is
often distributed at the periphery of the nucleus. Furthermore, a TAD refers to a specific
genomic region, within which DNA sequences contact each other more frequently than
with sequences outside the TAD. Chromatin loops, formed by long-range DNA sequence
interactions, represent the basic structural unit of chromatin organization. Importantly,
multiple variations of Hi-C and new techniques have been recently developed to extend
the utility or resolution of the Hi-C method. Among them, non-enrichment methods, such
as micrococcal nuclease chromosome conformation assay (Micro-C), split-pool recogni-
tion of interactions by tag extension (SPRITE), and genome architecture mapping (GAM),
can also simultaneously capture chromatin conformation across the genome. Moreover,
enrichment-based approaches, consisting of capture Hi-C (cHi-C), chromatin interaction
analysis with paired-end tag (ChIA-PET), and DNA adenine methyltransferase identifi-
cation (DamID), have been developed to investigate either specific regions of interest, or
interactions mediated by specific protein [5].
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Figure 1. Three-dimensional genome organization and loop extrusion model. (A) The topological
structures of the 3D genome are organized at four levels, comprising chromosome territories, A/B
compartments, TAD, and chromatin loops. (B) DNA loop extrusion model. Cohesin binds to DNA
and begins to extrude symmetrically until it encounters a convergent-oriented CTCF to form a
chromatin loop.

CCCTC-binding factor (CTCF), serving as the central organizer, plays a key role in 3D
genome organization. CTCF is highly conserved across vertebrate species but absent in
plants, C. elegans, and yeast [6]. CTCF has a DNA-binding domain that binds to numerous
target sites in the genome [7], and nearly 80% of CTCF binding sites share a specific 20 mer
motif that is highly conserved in vertebrates [8]. Intriguingly, CTCF mainly binds at the
TAD borders. In this regard, CTCF shapes 3D chromatin organization by determining the
TAD boundaries [9]. Furthermore, the chromosome structure maintenance protein complex
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cohesin, another key player in regulating genome folding, has been shown to organize the
3D chromatin structure of mammalian genomes in cooperation with CTCF. Notably, the
loop extrusion model, which depends on interaction and cooperation between cohesin and
CTCF, has been built, and it clearly explains the formation of a subset of chromatin loops.

In addition to cohesin, extensive studies have revealed numerous partners, which work
in close collaboration with CTCF in shaping the chromatin structures. Most of these partners
are transcription factors that are involved in cell-type-specific transcriptional regulation
and chromatin remodeling processes. CTCF is developmentally regulated, and interaction
between the CTCF and these lineage-specific protein partners confers various functions
during cell development and differentiation, ranging from embryonic stem cells (ESCs) to
immune and muscle cells. Furthermore, recent studies emphasized that RNA can also interact
with CTCF, and these interactions are essential for facilitating CTCF-mediated genome
organization. The interplay between CTCF and its RNA partners has also been found to be
involved in specific biological processes such as X chromosome inactivation. Here, we review
recent advances in the discovery of CTCF partners and also discuss the specific functions of
CTCF–partner complexes in the regulation of chromatin structure (Table 1), which should
help to uncover epigenetic mechanisms of relevant developmental processes.

Table 1. The protein partners of CTCF in the 3D genome.

Functional
Classification Partners Cells Experimental

Evidence Functional Description Ref.

Loop extrusion

Cohesion ES cells,
Jurkat cells Co-IP, Chip binding to DNA and extruding loops [10–13]

WAPL - - releasing cohesin from DNA templates [14,15]

NIPBL - - stimulating the ATPase activity
of cohesin [16]

Transcription RNA
polymerase II

HeLa cells,
K562 cells Co-IP, Chip regulating transcription and

alternative splicing [17,18]

ES cell
development

Oct4 ES cells Co-IP, Chip regulating XCI by triggering X
chromosome pairing and counting [19]

Wdr5 ES cells Co-IP, Chip
acting as a downstream target of CTCF,
and maintaining ES cell pluripotency

and somatic reprogramming
[20]

WIZ ES cells Co-IP, Chip

acting as a structural regulator of DNA
loops, and maintaining ES cell
pluripotency and embryonic

development

[21–23]

TAF3 ES cells Co-IP, Chip
mediating long-range chromatin
regulation, supporting ES cells

differentiate into endoderm
[24]

Immune cell
development

Oct-1 Naive T cells Co-IP, Chip

regulating naive T-cell differentiation to
the Th17 lineage by mediating the
contacts of the Th2 locus with the

IL-17 locus

[25]

TCF-1 T cells Chip

regulating early T-cell development by
modulating the TAD boundary

formation and long-range chromatin
interactions

[26,27]

Arie

Medullary
thymic

epithelial
cells

Co-IP, Chip
controlling immunological tolerance by

promoting superenhancer–promoter
loop formation

[28]
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Table 1. Cont.

Functional
Classification Partners Cells Experimental

Evidence Functional Description Ref.

ZNF143

Hematopoietic
stem and

progenitor
cells

Co-IP, Chip

maintaining the integrity of mouse
hematopoietic stem and progenitor

cells by regulating CTCF-bound
promoter–enhancer loops

[29–32]

LDB1 MEL cells Co-IP, Chip mediating erythroid lineage-specific
long-range enhancer interactions [33]

Muscle cell
development MyoD Muscle cells Chip

forming distinct chromatin loops with
CTCF, and building the unique 3D
genome structure of muscle cells

[34–38]

Multiple
developmental

processes

YY1
ES cells, B
cells, NPC

cells
Co-IP, Chip

acting as a structural protein of the 3D
genome, and mediating long-range

DNA contacts
[39–47]

YB-1 Hela cells, Co-IP, Chip
inhibiting c-myc transcription, and
regulating the 5-HTT polymorphic

intron 2 enhancer
[48,49]

SUZ12 Schwann
cells Co-IP, Chip suppressing the differentiation

inhibitory-pathway in Schwann cells [50]

Potential roles in
development

MAZ K562, HepG2,
HeLa Co-IP, Chip

acting as a structural proteins of the 3D
genome, and stabilizing CTCF binding

to DNA
[51]

BHLHE40 HeLa cells Co-IP, Chip
regulating CTCF genome-wide

distribution and long-range chromatin
interactions

[52]

Kaiso HeLa cells, Co-IP, Chip regulating CTCF insulator activity [53]

RFX Raji cells Co-IP regulating HLA-DRB1 and HLA-DQA1
gene transcription [54,55]

CIITA Raji cells Co-IP regulating HLA-DRB1 and HLA-DQA1
gene transcription [54,55]

Chromatin
remodeling

process

H2A.Z ES cells Chip modulating nucleosome unwrapping
and CTCF binding sites [56]

CDH8 HeLa cells GST, Chip regulating CTCF insulator function [57]

BPTF ES cells Co-IP, Chip
participating in chromatin remodeling,

and regulating Klf4 binding near
CTCF sites

[58,59]

BRG1 WiT49, HeLa Co-IP, Chip mediating long-range chromatin
interactions [60,61]

SIN3A HeLa cells GST, Chip modulating the histone deacetylase
activity of CTCF [62]

Nuclear receptor
VDR THP-1 Chip inducing 3D chromatin changes upon

activation by 1,25(OH)2D3 [63]

ER MCF-7 Chip inducing 3D chromatin changes upon
estrogen activation [64,65]

Liquid–liquid
phase separation RYBP ES cells Co-IP, Chip

mediating long-distance interactions
between A compartment by phase

separation, and regulating the
pluripotency of ES cells

[66]

Abbreviations: Co-IP, co-immunoprecipitation; GST, glutathione-S-transferase pull down assay; Chip, chromatin
immunoprecipitation; CHART-seq, RNA target sequencing.
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2. Cohesin: The Key Partner of CTCF

Regarding the formation of the basic three-dimensional structural loops, the “loop
extrusion model” has been proposed by several groups (Figure 1B) [67–69]. According to
the hypothesis, cohesin extrudes chromatin loops bidirectionally, and these chromatin loops
will initially be small and increase over time until they are blocked by CTCF boundaries.
Moreover, depending on the loop extrusion model, several modified models, including
the walking model, pumping model, and scrunching model, have been proposed for the
explanation of the loop extrusion process in eukaryotic mitosis cells, which improves our
understanding of chromatin loop formation [70].

Cohesin, a circular protein complex, was originally identified in eukaryotic mitosis for
its function in sister chromatids cohesion [71]. Moreover, cohesin also plays crucial roles
in regulation of DNA loops formation and 3D genome dynamics. The cohesin complex
typically contains four subunits: the ring-forming subunits SMC1, SMC3, and SCC1, and
one HEAT repeat proteins associated with kleisins (HAWK) protein (STAG1 or STAG2) [72].
Cohesin binds genomic sequences in a cis manner and extrudes DNA bidirectionally to
form chromatin loops until encountering the boundaries that are preferentially bound by
CTCF [73]. Degradation of cohesin resulted in the elimination of nearly all loop domains,
showing that cohesin is the key factor responsible for loop formation [74]. Indeed, several
pieces of evidence have indicated that CTCF works together with cohesin in modulating
chromatin structure. In particular, almost 90% of the cohesin ChIP-Seq peaks co-localized
with CTCF binding sites [10,11] and ChIP-seq as well as Hi-C experiments found that
cohesin and CTCF are enriched at the TAD boundary region, which support their coordi-
nating function in TAD and loop establishment [12,13]. The orientations of CTCF motifs
are divided into three categories: convergent orientations, same orientations, and divergent
orientations. Most loop- or TAD-bound CTCF motif pairs appear in mutually convergent
orientations and are critical for loop formation (Figure 1B). A single reversal of the ori-
entation of the CTCF motif is sufficient to make the loop disappear and alter the DNA
folding [75]. To visualize the dynamics of CTCF- and cohesin-mediated cycling, Hu et al.
selected a relatively simple 505-kb TAD in mouse embryonic stem cells containing only
one gene, Fbn2, as a model for study. Interestingly, direct observation of dynamic Fbn2
TAD chromatin loops via super-resolution live-cell imaging revealed that cohesin extrusion
loops within TADs fail to bridge two CTCF boundaries approximately 92% of the time,
suggesting that a single CTCF boundary can also create functional interactions [76].

Recently, several other factors, such as WAPL and NIPBL-MAU2, have been identified
to participate in mediating loop formation or expansion. WAPL promotes the release of
cohesin from DNA template, which restrains loop formation. Depletion of WAPL, in turn,
increases the residence time of cohesin on chromatin, where cohesin bypasses CTCF binding
sites and generates larger loops [14,15]. On the contrary, NIPBL forms a heterodimer with
MAU2, and this complex works by loading cohesin onto DNA, which is required for loop
extrusion. After removing NIPBL-MAU2, cohesin is barely detectable on chromatin in cells,
showing that NIPBL-MAU2 functions as a key partner of cohesin. Moreover, NIPBL-MAU2
can stimulate the ATPase activity of cohesin, which is required for cohesin loading onto
chromosomes [16].

3. Protein Partners of CTCF
3.1. Systemic Discovery of CTCF Partners

Recently, several studies have performed systematic investigation of CTCF’s part-
ners. Hu et al. took advantage of 1306 ChIP-seq data for 431 human protein factors and
characterized the genome-wide DNA-binding patterns of these factors, including transcrip-
tion factors, histone variants, and histone-modifying enzymes, as well as CTCF, in 23 cell
lines [52]. All factors with ChIP-seq data were screened by co-binding or co-localization
analysis with human hyperconserved CTCF binding sites using computational methods.
In addition to previously reported co-factors such as cohesin subunits (RAD21, SMC3),
histone demethylase KDM5B, and transcription factors YY1 and ZNF143, a number of novel
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co-binding factors overlapping with CTCF-binding sites were identified. For example,
RCOR1 and TEAD4 showed up to 40% overlapping with CTCF binding sites. These novel
factors may be important candidate partners that are essential for the establishment of
CTCF-mediated chromatin looping.

Furthermore, Marino et al. applied affinity purification coupled with high-resolution
LC–MS/MS analysis for large-scale identification of CTCF-specific binding partners [60].
In the WiT49 cell line overexpressing CTCF, affinity purification using coimmunoprecip-
itation (co-IP) was first performed, and LC–MS/MS analysis of the pull-down products
identified 90 high-confidence proteins putatively belonging to the CTCF interactome. These
90 proteins constitute a protein–protein interaction (PPI) network with specific functions
enriched in chromatin binding, promoter-specific chromatin binding, and transcriptional
regulation. Remarkably, proteins associated with ATP-dependent helicase activity have also
been found, such as BRG1, which is the main ATPase subunit of the SWI/SNF chromatin
remodeling complex. Likewise, Lehman et al. investigated CTCF’s interacting partners
in MCF10A cells using LC–MS/MS, and their findings revealed that RNA-binding- and
RNA-splicing-associated proteins (including snRNP, hnRNP, and serine-arginine rich pro-
teins) were detected as the most prevalent CTCF binding partners, mainly localized in the
interchromatin serine/arginine-rich splicing factor (SC-35) nuclear speckles [77].

3.2. Transcriptional Regulatory Protein Partners Related to Embryonic Stem Cell Development

CTCF has been reported to interact with RNA polymerase II both in vivo and in vitro [17],
which is involved in the regulation of alternative splicing and transcription initiation pro-
cesses [18]. In addition, a great number of recent studies indicated that CTCF also interacts
with various transcription factors to regulate transcription and the three-dimensional
genome structure, which is essential for embryonic stem (ES) cell self-renewal and dif-
ferentiation. The pluripotency factor OCT4, acting as a key regulator at the top of the
X chromosome inactivation (XCI) hierarchy, can interact with CTCF to regulate XCI by
triggering X chromosome pairing and counting, which is indispensable to ES cell differenti-
ation [19]. Moreover, CTCF, in addition to acting as an upstream transcription regulator
of WD repeat domain 5 (Wdr5), can also physically bind to Wdr5, which plays important
roles in maintaining ES cell pluripotency and somatic reprogramming [20]. WIZ, a zinc
finger-containing protein, is also a structural regulator for the maintenance of stem cell
properties and embryonic development [21,22]. Homozygous mutations in WIZ gene
result in embryonic lethality, and heterozygous deletions increase anxiety-like behaviors
in mice [22,23]. WIZ can form complexes with CTCF and cohesin at multiple sites in the
genome, including enhancers, promoters, insulators, and anchors on DNA loops, which
play major roles in negatively regulating cohesin occupancy on chromatin and DNA loop
structures. Importantly, WIZ functions by direct interaction with CTCF rather than DNA
or RNA dependence. However, WIZ knockout did not have a major effect on the A/B
compartments switch and TAD reorganizing but increased the number of DNA loops
and reduced its size, suggesting that WIZ should be a structural regulator of chromatin
loops [21]. In addition, TAF3, a TBP-associated core promoter factor, is required for ES
cell differentiation towards the endoderm lineage, preventing the premature formation
of neuroectoderm and mesoderm. Liu et al. demonstrated that CTCF directly recruited
TAF3 to promoter-distal sites in ES cells to mediate long-range chromatin contacts, thereby
supporting a finely balanced transcriptional program of pluripotency (Figure 2) [24].
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3.3. Transcriptional Regulatory Protein Partners Regulating Immune Cell Development

T and B cells comprise the main forces of adaptive immunity of the immune system,
and T cells play a major role in the body’s anti-infection, anti-tumor, and autoimmune
diseases. Naïve T cells can differentiate into Th1, Th2, and Th17 cells expressing IFN-γ, IL-4,
and IL-17, respectively. Kim et al. showed that Th17 lineage differentiation is restrained by
the Th2 locus, and the regulation is attributed to the interaction between Oct-1 and CTCF,
which mediates the interchromosomal contacts between the locus control region (LCR)
of the Th2 cytokine locus on chromosome 11 and the IL-17 locus on chromosome 1 [25].
The high mobility group (HMG) transcription factor TCF-1 functions at the early thymic
progenitor (ETP) stage by regulating Gata3 and Bcl11b expression and remains highly
expressed until maturation, which is essential for early T-cell development [26]. Wang et al.
demonstrated that TCF-1 and CTCF co-occupy recombined TAD boundaries during T-cell
development, weakening the insulation between adjacent neighbors and enhancing the
interaction between regulatory elements and target genes located on previously insulating
domains. The promotion of chromatin interactions mediated by TCF-1 is associated with
the deposition of the active enhancer marker H3K27ac and the recruitment of NIPBL [27].
What is more, Bansal et al. indicated that in medullary thymic epithelial cells (mTECs), the
transcription factor Aire controls immune tolerance by driving abundant gene expression
and has broad effects on the organization of 3D chromatin structure [28]. Aire preferentially
localizes to superenhancers and promotes the formation of superenhancer-promoter loops
to regulate chromatin structure. On the one hand, Aire supports the chromatin transcrib-
ability by promoting the accumulation of cohesin and mediators in superenhancers to
facilitate the transition from the inactive B chromatin state to the active A state; on the other
hand, it counteracts structural loops by expelling CTCFs at TAD or CD boundaries [28].
Zinc finger protein ZNF143 is a sequence-specific transcriptional activator of Pol II and
Pol III and is associated with T lymphocytic leukemia (TLL) [29,30]. In addition, ZNF143
is also identified as a novel chromatin loop regulator, which has the capacities to link
promoters to anchors for chromatin interactions of distal regulatory elements [31]. Zhou
et al. demonstrated that ZNF143 is a key regulator of CTCF-binding promoter–enhancer
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loops that are essential for maintaining the mouse hematopoietic stem and progenitor cell
integrity. Interestingly, the specific spacing between most ZNF143 and CTCF binding sites
is 37 bp in the murine genome, implying that ZNF143 may act as a regulator of CTCF by
mediating its DNA binding ability [32]. Moreover, Lee et al. reported that interaction of
the transcriptional cofactor LDB1 complex with CTCF underlies erythroid lineage-specific
long-range enhancer interactions. Significantly, LDB1 and CTCF mediate the activation of
Car2 in erythrocytes by binding to the enhancer and promoter upstream of the Car2 gene,
respectively [33].

3.4. Transcriptional Regulatory Protein Partners Associated with Muscle Cell Development

MyoD and Myf5, acting as fundamental helix-loop-helix transcription factors, are
required for myogenic initiation during early embryogenesis and functionally complement
each other [34]. MyoD inactivation in mice had no apparent effect on muscle develop-
ment [35] but resulted in severely deficient muscle regeneration [36] and reduced differenti-
ation potential [37]. Wang et al. have shown that MyoD cooperated with CTCF, thus driving
the formation of different types of chromatin loops in muscle cells. Notably, four types of
chromatin loops, namely, MyoD-MyoD (noCTCF), MyoD-MyoD (CTCF), MyoD-CTCF, and
CTCF-CTCF, have been resolved. The MyoD-binding loop was significantly shorter than
the CTCF-CTCF loop, with the MyoD-MyoD (noCTCF) loop being the shortest, and MyoD
inactivation significantly reduced loop strength in all four types of chromatin loops. Taken
together, MyoD functionally contributes to the formation of MyoD-bound and CTCF-bound
chromatin loops. Of note, MyoD regulates chromatin loops independently of H3K27ac
levels, suggesting that MyoD should be a key organizer in establishing the unique 3D
genomic architecture of muscle cells [38].

3.5. Transcriptional Regulatory Protein Partners Involved in Multiple Developmental Processes

The zinc finger transcription factor Yin Yang 1 (YY1) is essential for both early embryo-
genesis and adult tissue development [39], and biallelic loss of function variants in YY1
cause embryonic lethality in mice [40]. In embryonic stem cells, YY1 activates transcription
by targeting promoters and super-enhancers through the BAF complex [41]. YY1 is also
a master regulator to coordinate multidimensional epigenetic crosstalk associated with
expanded pluripotency, and depletion of YY1 disrupts specific enhancer–promoter interac-
tions in expanded pluripotent stem cells (EPSC) [42]. Further, YY1 directly interacts with
CTCF and they work together to regulate X chromosome binary switch [43]. Moreover, YY1
deletion in EPSCs reduces DNA methylation, promotes CTCF binding to hypomethylated
DNA regions, and promotes gene expression. In B cells, YY1 mediated long-range DNA
contacts [44] and is necessary for the formation of specific 3D interactions [45]. Further-
more, YY1 is also a key regulator of neuron differentiation of neural progenitor cells (NPC)
to myelinated oligodendrocytes [46]. YY1 can function as a structural protein, linking
NPC-specific genes and enhancers, and is implicated in regulation of 3D interactions. More
importantly, as a CTCF’s partner, the interactions mediated by YY1 between regulatory
elements are often in CTCF-anchored constituent loops [47].

The Y-box DNA/RNA binding factor (YB-1) is a multifunctional protein involved
in transcription, replication, and RNA processing, and several studies have identified
it as a CTCF partner. Chernukhin et al. demonstrated that YB-1 can physically and
functionally interact with CTCF to repress the transcription of c-myc [48]. In addition,
Klenova et al. found that YB-1 cooperated with CTCF to modulate the 5-HTT polymorphic
intron 2 enhancer associated with nervous system development [49]. In addition, Wang et al.
demonstrated that CTCF is essential for peripheral nerve remyelination and Schwann cell
myelination. On one hand, CTCF establishes chromatin loops that promote the expression
of the key pro-myelinating factor EGR2. On the other hand, CTCF interacts with SUZ12,
a component of polycomb-repressive-complex 2 (PRC2), to suppress the differentiation
inhibitory pathway of Schwann cells [50].
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3.6. Transcriptional Regulatory Protein Partners Showing Potential Roles in 3D Genome
Organization and Transcriptional Regulation

Xiao et al. have shown that Myc-associated zinc finger protein (MAZ) is a physically
interacting partner of CTCF, and it can function as a genome architecture protein, one that
participates in genome organization. Remarkably, MAZ shares core properties with CTCF,
including insulation activity and interaction with cohesin subunit Rad21, supporting the
fact that MAZ and CTCF have complementary roles in organizing genome structure [51].
In addition, ChIP-seq and co-IP experiments showed that most of the basic helix-loop-helix
family member e40 (BHLHE40) binding sites are also occupied by CTCF, and BHLHE40
can physically interact with CTCF, indicating that BHLHE40 should be a CTCF partner [52].
Furthermore, loss of BHLHE40 results in a reduced number of CTCF binding sites, de-
creased CTCF loop strength, and disruption of CTCF-mediated long-range chromatin
interactions, demonstrating that BHLHE40 acts as a partner to regulate CTCF-mediated
chromatin interactome.

In addition, several other protein partners of CTCF have been identified; nevertheless,
the detailed mechanisms underlying the roles of CTCF/partner complex in regulation of
3D genome structure still require further information. For example, Kaiso is a bimodal
transcription factor that recognizes methylated CpG dinucleotides or conserved unmethy-
lated sequences (TNGCAGGA, Kaiso binding site). The Kaiso binding sites exist adjacent
to CTCF binding sites, and the Kaiso–CTCF interaction negatively regulates CTCF insula-
tor activity [53]. Additionally, CTCF directly interacts with transcription factor RFX and
transcription coactivator CIITA to form a trimeric complex to regulate HLA-DRB1 and
HLA-DQA1 gene transcription [54,55].

3.7. Chromatin Remodeling Associated Protein Partners

The nucleosome is the basic unit of chromatin, consisting of histone octamers (two
copies of H2A, H2B, H3, and H4) and 146 base pairs (bp) of DNA. In addition to these
classic histone variants, many other variants have been found, such as H2A.X, H2A.Z,
H3.5, and H4.G [78]. Moreover, a great number of proteins, which have the capacities of
modifying the chromatin architecture, have been identified, and these proteins are defined
as chromatin-remodeling-associated proteins [79,80]. Until now, studies have identified
several CTCF’s partners that are related to chromatin remodeling. H2A.Z is a histone
variant that shows specific properties in regulating higher-order chromatin structures [81].
In vitro studies have shown that the structure of nucleosomes is not static but undergoes
spontaneous structural transitions, including DNA respiration (spontaneous opening of
DNA ends on nucleosomes) and open states (opening of interfaces between histone sub-
complexes), and this dynamic change of nucleosomes is called nucleosome unwrapping.
By employing micrococcal nuclease (MNase) digestion of crosslinked chromatin, chromatin
immunoprecipitation, and the paired-end sequencing (MNase-X-ChIP-seq) approach, Wen
et al. investigated the genome-wide unwrapping state of H2A.Z nucleosomes in mouse em-
bryonic stem cells. Interestingly, compared with canonical nucleosomes, H2A.Z is enriched
with nucleosome unwrapping, indicating that H2A.Z is essential to nucleosome unfolding,
and H2A.Z may affect CTCF binding regulation and gene expression by modulating the
unwrapping states of nucleosomes [56]. What is more, Ishihara et al. demonstrated that
the SNF2-like chromatin domain helicase protein (CHD8), containing two chromatin orga-
nization modifier domains, interacts with CTCF and then regulates the insulator activity
of CTCF, which is associated with epigenetic regulation and chromatin organization re-
modeling [57]. Likewise, Qiu et al. reported that bromodomain PHD finger transcription
factor (BPTF), a member of the nucleosome–remodeling factor (NURF) complex, was also
found to interact with CTCF [58]. NURF, regarded as a nucleosome remodeling enzyme, is
involved in regulating the higher-order structure of chromatin [59]. Therefore, the interplay
between CTCF and BPTF may play specific roles in 3D genome shaping. Moreover, Marino
et al. reported that BRG1, the major ATPase subunit of the chromatin remodeling complex
SWI/SNF, interacts with CTCF [60]. BRG1 is enriched at TAD boundaries, and its inacti-
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vation significantly reduces TAD boundary strength and alters the long-range genomic
interactions [61], suggesting that disrupted interaction between CTCF and BRG1 impairs
chromatin organization at the TAD boundary. Furthermore, Lutz et al. reported that CTCF
retained histone deacetylase activity by directly interacting with a chromatin remodeling
factor, such as SIN3A [62].

3.8. Interplay between Nuclear Receptor and CTCF

The nuclear receptor superfamily is a family of ligand-activated transcription fac-
tors that regulate cell growth and differentiation by establishing links between signaling
molecules and transcriptional responses [82]. Warwick et al. demonstrated that activation
of the vitamin D receptor (VDR) and its high-affinity ligand 1,25(OH)2D3 induced cellular
3D chromatin changes. Interestingly, their results indicated that more than 3000 CTCF inter-
actions were altered, and VDR binding sites and vitamin D target genes are preferentially
located at loop anchors, implying the potential interaction between CTCF and VDR [63].
Furthermore, upon estrogen stimulation in breast cancer cells, CTCF binds to enhancer
regions and prevents the formation of estrogen receptor (ER)-mediated chromatin loops to
regulate ER target transcription [64]. During chromatin remodeling, switching between
active A and inactive B compartments in endocrine-resistant breast cancer is associated
with reduced ER binding and aberrant ER-mediated enhancer–promoter interactions [65].
Therefore, VDR and ER may be partners of CTCF, and their interactions may play important
roles in regulating the organization of the 3D genome.

4. RNA Partners of CTCF

In addition to binding to DNA, several recent studies confirmed that CTCF also has
the ability to bind to RNA. Moreover, CTCF targets thousands of transcripts throughout
the genome and has a higher binding affinity for RNA than DNA [83]. ZF1 and ZF10
domains, but not the major DNA binding domains (ZF3-7 domains), are responsible for
the RNA-binding property of CTCF [84]. Hansen et al. reports that CTCF’s RNA-binding
region (RBR) plays crucial roles in CTCF clustering in vivo and is associated with chromatin
loop formation. More importantly, RBR suppression in mESCs causes disruption in about
half of the chromatin loops, called RBRi-dependent loops [85].

Currently, high-throughput-sequencing-based methods, such as UV-crosslinking im-
munoprecipitation and deep sequencing (CLIP-seq), have been developed to identify
CTCF-bound transcripts systemically [83]. Additionally, Kuang et al. discovered a novel
RNA-binding motif (AGAUNGGA) of CTCF and identified 4925 candidate CTCF-binding
lncRNAs by a deep learning model DeepLncCTCF, extending our understandings of CTCF
in 3D genome organization [86]. Furthermore, to measure higher-order RNA and DNA
contacts within 3D structures, the RNA and DNA split-pool via label-extended recognition
interaction (RD-SPRITE) method was developed. Depending on this method, hundreds
of noncoding RNAs (ncRNAs) were found to form regions of high concentration within
the nucleus, and these higher-order RNA-chromatin structures are related to regulation of
long-range DNA contacts, heterochromatin assembly, and gene expression [87].

Until now, several CTCF’s RNA partners have been identified, and their regulatory
roles in chromatin structure provide novel insights into 3D genome organization. X-
chromosome inactivation (XCI) is a classical epigenetic reprogramming process that is
essential for mammalian development [88]. Studies indicated that CTCF is implicated in
the XCI process, which is largely driven by Tsix, Xite, and Xist RNAs, and CTCF directly
interacts with these RNAs in the X inactivation center during XCI, thereby mediating long-
range chromosomal interactions [83,89,90]. Jpx RNA, another CTCF partner, also plays
roles in regulating the initiation of X chromosome inactivation (XCI) by expelling CTCF
from the Xist promoter [89]. Notably, a recent study demonstrated that Jpx/CTCF complex
modulates the chromatin structure on a genome-wide manner, not limited to XCI. Impor-
tantly, Jpx can act as a CTCF release factor and determine the anchoring selectivity of CTCF.
Specifically, Jpx selectively binds to low-affinity CTCF motifs and expels CTCF through
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competitive inhibition (Figure 3). Thus, knockdown of Jpx RNA results in substantial
changes in chromosomal loops, most likely due to the ectopic CTCF binding [90].
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In addition, interactions between CTCF and multiple ncRNAs, such as the steroid
receptor RNA activator (SRA), Wrap53, HOTTIP, and GATA6-AS1, have been identified,
playing potential roles in shaping 3D genome structure. For example, Yao et al. revealed
that CTCF/SRA/p68 (DEAD-box RNA helicase) complex can stabilize the interaction
between CTCF and cohesin [91]. CTCF regulates p53 expression by physically interacting
with Wrap53 RNA, which is the natural antisense transcript of p53. Deletion of CTCF
not only resulted in a decrease in p53 mRNA levels, but also in Wrap53 levels [92]. The
HOXA transcript at the distal tip (HOTTIP) was previously identified as a lncRNA located
at the 5′ end of the HOXA locus [93]. Luo et al. found that overexpression of HOTTIP
restores CTCF-mediated HOXA TAD and causes leukemogenesis, but the mechanism by
which HOTTIP regulates the CTCF boundary activity is unclear [94]. In addition, the
lncRNA GATA6-AS1 triplex-forming sites were recently found to be enriched at the TAD
boundary during cardiac differentiation, implying the interaction between GATA6-AS1
and CTCF [95]. Furthermore, Miyata et al. reported that ncRNAs can change the genomic
distribution of CTCF, interfering with the expression of inflammatory genes in aging and
cancer [96].

5. Post-Translational Modifications of CTCF

Protein post-translational modifications (PTMs), functioning as a key mechanism for
increasing proteome diversity, play critical roles in nearly all biological processes. Indeed,
many studies indicate that PTM enzymes, such as PARP, SUMO, CK2, PLK1, and LATS,
are also CTCF’s protein partners. In fact, CTCF is regulated by serving as a substrate for
these PTM enzymes. PTMs of CTCF are associated with dynamic regulation of the stability
and function of CTCF in response to an external or internal stimulus (Figure 4A,B).
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Poly(ADP-ribosyl) ation (PARylation) is mediated by poly(ADP-ribose) polymerase
(PARP) [97], and an increasing number of studies suggest that PARylation is involved
in CTCF function regulation. The N-terminal domain of CTCF is a preferred target for
PARylation in vitro [98], and CTCF/PARP1 complex can function through a dynamic
reversible PARylation modification model to regulate CTCF function [99], and is associated
with the contacts between clock-controlled genes and lamina-associated chromatin [100].
Intriguingly, the PARylated CTCF isoform (180 kDa) preferentially located at nucleolus and
PARylation of CTCF represses nucleolar transcription [101]. Furthermore, CTCF PARylation
affects the binding of CTCF to chromatin, and the decrease in CTCF PARylation has been
reported to be linked to breast tumorigenesis and cell proliferation [102,103].

CTCF protein can be modified by small ubiquitin-like proteins, including SUMO 1,
2, and 3. Currently, two major SUMOylation sites of CTCF, located in the COOH and
NH2 terminal domains, separately, have been resolved. SUMOylation of CTCF commonly
contributes to its repressive functions, such as repression of the cMYC P2 promoter activ-
ity [104]. Specially, a 107-amino-acid domain was identified in the N-terminal region of
CTCF that activates transcription and depolymerizes chromatin, and complete sumoyla-
tion of this domain abolishes the transcriptional activity of CTCF and prevents chromatin
opening [105]. Furthermore, stress-induced hypoxic desumoylation of lysines 74 and 689 in
CTCF proteins regulated both the activity of CTCF and its downstream target genes [106].

Moreover, it is widely accepted that phosphorylation is a functional determinant of
transcription factors and appears to be one of the most studied forms of PTM. The phos-
phorylation profile of CTCF is dynamic during development and cell differentiation [107].
CK2-mediated phosphorylation at several functional phosphorylation sites within CTCF
C-terminal region can convert CTCF inhibitory function to activating function [108]. In
addition, amino acid residues (Thr289, Thr317, Thr346, Thr374, Ser402, Ser461, and Thr518)
of the CTCF linker domain are phosphorylated during mitosis to regulate its DNA-binding
activity [109]. In addition, another Polo-like kinase 1 (PLK1)-mediated phosphorylation of



Genes 2022, 13, 1383 13 of 19

CTCF at serine 224 (Ser224-P) is enriched in the G2/M phase of the cell cycle, especially
at pericentric regions. Of note, the CTCF phospho-depletion mutant S224E resulted in
dysregulation of hundreds of target genes, including p53 and p21 [110]. CTCF was found
to be a substrate for LATS kinase, and cellular-stress-induced activity of LATS directly
phosphorylates CTCF’s zinc finger (ZF) linker and selectively dissociates CTCF from a
small fraction of its genomic binding sites, impairing its DNA-binding activity [111]. There-
fore, external signals may modulate 3D genome structure through the phosphorylation of
CTCF’s ZF linker.

6. Conclusions and Perspectives

The orderly folding of the genome in the three-dimensional space of the nucleus is
critical for developmental processes, and the 3D genome folding is dynamic at different
developmental stages. Significantly, the loop extrusion model explains the basic features of
loop formation and genome folding, opening a new window into chromatin organization
and genome architecture. According to this model, two key players CTCF and cohesin work
together to regulate genome folding into TADs and loops. Indeed, a large number of studies
demonstrated that protein factors and RNAs are implicated in chromatin structure regulation
by interacting with CTCF. These partners act to shape nuclear structure in a general or a
specific manner, and these new findings provide crucial information for decoding the 3D
genome structure and its dynamics, as well as elucidating a causal relationship between
dysregulated high-order chromatin structure and developmental processes.

At present, a large number of protein and RNA partners of CTCF have been identified
through systemic screening approaches, including ChIP-seq, LC–MS techniques, and
the DeepLncCTCF model [52,60,77,86]. Nonetheless, how these partners positively or
negatively regulate CTCF-mediated functions and the specific mechanisms underlying
their regulatory roles in 3D genome organization remain to be uncovered in the future. In
addition, partners, who function in a cell/tissue specific or a developmental stage specific
manner, have attracted more attention in recent years. MyoD and Aire, for instance, mainly
function in muscle and immune cells, respectively. These studies, revealing the partners’
specific roles in CTCF function regulation, extend our knowledge about the roles of 3D
genome organization in development, cell differentiation, and pathogenesis. Moreover,
these findings help to address the question of how variability of the high-order chromatin
is structured among different cell types.

Compared to protein partners, findings related to RNA partners of CTCF are relatively
limited. However, a growing amount of evidence indicates that ncRNAs also play crucial
roles in shaping the 3D genome. Early in 1989, Nickerson et al. made the concept that
RNA may function as a structural component, and participate in organizing the higher-
order structure of chromatin [112]. Recently, Saldaña-Meyer et al. performed a systemic
investigation of function of a CTCF–RNA complex in 3D genome organization, and they
suggested that most RNA molecules may show structural and stabilizing roles, and also
have the abilities to modulate protein–protein interactions [84]. Specially, Bouwman et al.
reviews and highlights the relationship between nuclear RNAs (nucRNAs) and 3D genome
shaping. NucRNAs play roles in the 3D genome shaping in various manners, either acting
locally on a specific region, or globally on the genome. Intriguingly, recent studies suggest
that the formation of global and local nucRNAs gradients might be responsible for the
3D genome shaping [113]. However, more evidence is required to confirm the hypothesis
and investigate the potential roles of CTCF–nucRNA interaction in higher-order chromatin
structure modulation.

Liquid–liquid phase separation (LLPS) is a process that separates a homogeneous liq-
uid solution of macromolecules, such as proteins or nucleic acids, into two distinct phases:
dense and dilute [114]. Numerous studies show that many important biological processes,
such as DNA replication, DNA damage repair, transcription, and RNA processing, occur
in biomolecular condensates formed by LLPS. Through LLPS, transcription machinery
assembles into transcriptional condensates at super-enhancers and drives the expression of
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downstream target genes [115,116]. Recent studies have found that CTCF-mediated chro-
matin looping may be a key prerequisite for the assembly of phase-separated transcriptional
condensates [117], and its protein partner harboring LLPS property might modulate phase
separation of CTCF. Wei et al. showed that CTCF can mediate long-distance interactions
between A compartment through RYBP-dependent phase separation. Furthermore, Wei
et al. demonstrated that CTCF-mediated phase separation can regulate the pluripotency of
embryonic stem cells [66]. In addition, Wang et al. found that Oct4 can regulate TAD recom-
bination and promote somatic reprogramming via a phase-separation mechanism [118].
Given that Oct4 was previously found to interact with CTCF [19], Oct4 may also be a
CTCF’s partner to regulate the 3D genome in ES cells through the phase separation process.
Therefore, we point out that discovery of partners that can promote LLPS of CTCF would
be a new research direction.

Taken together, the function of the CTCF–protein and CTCF–RNA interactions in the
genome organization has become an important research focus, and recent findings advance
our understanding of CTCF/partner function in shaping 3D genome structure. Furthermore,
experimental and computational techniques are improving rapidly. Thus, more partners,
functioning as structural components of the nucleus, are expected to be explored.
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