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ABSTRACT

The eukaryotic cell cycle is robustly designed, with interacting molecules organized within a definite topology that ensures
temporal precision of its phase transitions. Its underlying dynamics are regulated by molecular switches, for which
remarkable insights have been provided by genetic and molecular biology efforts. In a number of cases, this information
has been made predictive, through computational models. These models have allowed for the identification of novel
molecular mechanisms, later validated experimentally. Logical modeling represents one of the youngest approaches to
address cell cycle regulation. We summarize the advances that this type of modeling has achieved to reproduce and predict
cell cycle dynamics. Furthermore, we present the challenge that this type of modeling is now ready to tackle: its integration
with intracellular networks, and its formalisms, to understand crosstalks underlying systems level properties, ultimate aim
of multi-scale models. Specifically, we discuss and illustrate how such an integration may be realized, by integrating a
minimal logical model of the cell cycle with a metabolic network.
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INTRODUCTION

High-throughput screenings and technologies that allow the de-
tailed investigation of single cells are providing biologist with
an enormous amount of data. Understanding this repertoire
is challenging the biological community to move towards a
systems level perspective and to confront the difficulties of
incorporating information across scales that differ by orders
of magnitude. From the gene, to the cell, to the organism,
systems biology aims to provide theoretical frameworks for un-
derstanding how observable biological properties arise from

complex systems. Linking computation to experimentation has
proved to be a challenge, and has led to the development of theo-
ries and computational techniques able to answer fundamental
biological questions.

The cell cycle is a complex system, conserved across evo-
lution from yeast to human, with many properties that have
made it attractive to investigate with mathematical modeling.
A variety of modeling techniques have been employed to in-
vestigate the genetic regulatory network governing the cell cy-
cle, in particular for themodel organism Saccharomyces cerevisiae.
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Without a doubt, themost successfulmodels use ordinary differ-
ential equations (ODEs) to model the concentrations of molec-
ular players in time across the cell cycle. Modeling approaches
have proved helpful to unravel the dynamics of cell proliferation
by modeling a complete cell cycle (Chen et al. 2000, 2004; Bar-
beris et al. 2012; Kraikivski et al. 2015) or its crucial phase transi-
tions (Queralt et al. 2006; Barberis et al. 2007; Manzoni et al. 2010;
Vinod et al. 2011; Adames et al. 2015; Palumbo et al. 2016). A ba-
sic challenge for models based on differential equations is the
need to estimatemany unknown kinetic constants that describe
the reactions among the model’s species. To avoid estimating
these parameters, one may endeavor to produce a qualitative
description of the cell cycle from much simpler information.
Logical models, also referred to as discrete models or Boolean
models, are a type of dynamic modeling regime that does not
rely on the biochemical minutia and attempts to produce real-
istic dynamics based on the colloquial language of biologist, e.g.
X activates Y or Y inhibits Z. It may seem unrealistic that log-
ical models, with their highly abstracted version of reality, can
provide insights into the physiology of systems of variable com-
plexity (Naldi et al. 2015; Abou-Jaoudé et al. 2016). However, their
power does not lie in their ability to present a complete and de-
tailed picture of systems behavior, but in their falsifiability. That
is, a model generated based on a set of assumptions is tested
for some basic verisimilitude, and the consequences of those
assumptions as properties of the model are observed. Proper-
ties of the model then become predictions whose verification
or falsification renders a verdict on the veracity of the under-
lying assumptions (Gunawardena 2014). Much of the literature
on logical modeling of the cell cycle of budding yeast does not
complete this set of steps. A few experiments have been moti-
vated by the predictions of a logical model, leaving the major-
ity of modeling efforts in the first stages: identifying modeling
assumptions and checking the basic representation of reality
given by such a model. If logical modeling is to inform our un-
derstanding of the budding yeast cell cycle, more attentionmust
be paid to formulating verifiable questions that arise frommodel
assumptions.

Several foundational logical models that have been devel-
oped represent the budding yeast cell cycle with surprising
accuracy, the results of which, together with inquiries into the
sensitivity of underlying modeling assumptions, are presented
below. Although most of the cell cycle models presented in this
review feature inputs from signaling, regulatory systems or cel-
lular phenomena, only a few efforts have been pursued to in-
tegrate explicitly these functions. The molecular switches that
characterize progression throughout the cell cycle are triggered
by changes of environmental cues or intracellular signals that
may impinge on the functionality of the cell. Thus, crosstalk
among intracellular pathways is of interest in order to under-
stand how systems properties, e.g. cell growth, genome du-
plication and cell division, are achieved. Furthermore, this in-
tegration is at the basis of the endeavor to create a whole-
cell model and attain systems level understanding of biological
complexity.

Here we review the current advances of logical models
for the budding yeast cell cycle, and present methodolo-
gies/formalisms that may be employed to integrate these mod-
els with other biological networks. We discuss and illustrate
how such an integration may be realized, by integrating a
minimal logical model of the cell cycle with a metabolic net-
work. With these computational efforts, we aim at elucidating
assumptions, posing questions and hopefully inspiring novel
experiment.

LOGICAL MODELING OF THE BUDDING YEAST
CELL CYCLE

Underlying all computational models of the budding yeast cell
cycle is the work of Paul Nurse, which allows to associate for
each phase of the cell cycle a particular cyclin/CKI profile (Hayles
et al. 1994; Correa-Bordes and Nurse 1995). A cyclin is the regu-
latory subunit that activates its partner Cdk kinase, and CKI is
a stoichiometric inhibitor of the cyclin/Cdk1 activity that phos-
phorylates substrates in the course of cell cycle progression.
Each model originates with a description of the cell cycle in
terms of these cyclins and how they shall be interpreted. The
G1 phase is associated with active (or activating) Cln3 and ac-
tive CKIs; the S phase is associated with the activation of Cln1,
Cln2 and Clb5 along with the inactivation of CKIs; the G2 phase
is associated with the inactivation of the S phase cyclins and the
activation of the primary mitotic cyclin Clb2; M phase is associ-
ated with the inactivation of Clb2 and the re-activation of CKIs.
Furthermore, models may provide an interpretation of dynamic
events, such as cell size dynamics and activation of checkpoints,
the surveillance mechanisms that the cell activates when un-
favorable conditions or cellular damage occur. Each model has
its idiosyncrasies reflecting the specific assumptions, such as
representing several cyclins as a single node or other simplifi-
cations. In the following, we summarize the logical modeling
efforts to represent cell cycle dynamics, together with the de-
scription of their underlying features.

The Li model

Themodel presented by Tang and colleagues stands as the back-
drop against which most other models are constructed (Li et al.
2004). The authors construct a logical network consisting of 11
nodes each representing cyclins, inhibitors of cyclin/Cdk1 com-
plexes (CKI, degraders, competitors) or transcription factor se-
lected to represent the progression through the cell cycle. The
wiring diagram—a graphwhose vertices correspond the nodes—
is shown in Fig. 1, where lines with arrowheads represent acti-
vators with weight 1 and lines with barbs represent inhibitors
with weight –1. Though not depicted in Fig. 1, the nodes Cell
Size, Clb5,6, Mcm1/SFF, Swi5, Cdc20,Cdc14 and Clb1,2 have a
self-inhibition ofweight –1. This type of update function is called
a threshold function, as a node will be (1) active in the next step of
a trajectory if there is more activation than inhibition; (2) inac-
tive if there is more inhibition than activation; and (3) will stay
the same if the activation and inhibition are in balance. In this
model, the checkpoints are assumed to stop cell cycle progres-
sion if a problem is detected.

The state space—the set of all possible states of the system—
of this network has seven fixed points, one of which is con-
sistent with the G1 phase of the cell cycle: the cyclin/Cdk1 in-
hibitors Sic1 and Cdh1 are active while all other nodes are in-
active. This definite state space is referred to as an attractor,
a collection of states which is closed with respect to the tra-
jectory, and where each state is visited infinitely often (see
Supporting Information for details about the basics of logi-
cal modeling). The trajectory that has as its initial condition
the G1 fixed point—with the exception of the node Cell Size,
which is the only checkpoint always active, indicating that
the critical cell size has been reached—models the activity
profile of the cell cycle and converges to the G1 fixed point.
This trajectory, given in Table 1, verifies that some basic as-
pects of the cell cycle are representable in a model by using
the simplest possible assumptions. Of the seven fixed points,
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Figure 1. The wiring diagram for the Li threshold model. The network includes

cyclins (the G1 cyclins Cln3 and Cln1,2, and the S/M cyclins Clb5,6 and Clb1,2,
which all form binary complexes with the kinase Cdk1), the inhibitors of the cy-
clin/Cdk1 complexes (Sic1, Cdh1, Cdc20, Cdc14), the transcription factors (SBF,
MBF, Swi5 and Mcm1,SFF), and the checkpoint Cell Size. Lines with arrowheads

represent activators, whereas lines with barbs represent inhibitors. When a
yeast cell grows, Cell Size is active (the cell responds to nutrients), leading to
the activation of the cyclin Cln3 (G1 phase), which in turn activates by phos-
phorylation the transcription factors SBF and MBF that activate transcription

of the genes of cyclins Cln1,2 and Clb5,6, respectively. Clb5,6 (S phase) activate
by phosphorylation the transcription factors Mcm1,SFF that activate transcrip-
tion of Clb1,2, which continue to promote by phosphorylation the activation of
Mcm1,SFF and the inactivation of SBF. Mcm1, SFF also activates transcription of

Swi5, which in turns activates transcription of Sic1 that binds to, and inhibits
the activity of, the cyclins Clb5,6 and Clb1,2. Cln1,2 and all Clb cyclins phospho-
rylate and inactivate Sic1, and Clb1,2 (entry into M phase) phosphorylate Swi5
to prevent its entry into the nucleus and inactivate Sic1 transcription. Clb1,2

phosphorylate and activate Cdc20,Cdh1 and Cdh1, which in turn degrades and
inactivate Clb1,2 itself (exit fromM phase), thus promoting activation of Sic1 (G1
phase). For modeling purposes, the kinase Cdk1, partner of both Cln and Clb cy-

clins, is not indicated in the network because its activity is driven by the cyclins.
Adapted from Li et al. (2004).

or attractors, only the G1 attractor represents an observable
biological state. The others are deemed spurious. However, the
basin of attraction—the collection of initial conditions whose tra-
jectories arrive at the attractor—of the G1 attractor is by far the
largest. Of the 2048 states in the state space, the basin of attrac-

tion for the G1 attractor consists of 1764 states, while the next
largest one consists of 151 states (Li et al. 2004). This indicates
that, for the vastmajority of initial conditions, the trajectory will
converge to the G1 attractor. Furthermore, it is argued that there
is a large overlap between trajectories in this basin of attraction
and, thus, there is a ‘convergence of trajectories’.

To understand the origins of these features, Li et al. compared
the structural properties of their model to random threshold
networks with the same number of nodes and edges as well as
to networks found by structurally perturbing the cell cycle net-
work. Having a fixed point, or attractor, within such a large basin
of attraction, and having many overlapping trajectories is spe-
cific to the cell cycle network as compared to random networks
with a similar structure. Furthermore, these features are fairly
well preserved when making small perturbations to the struc-
ture of the cell cycle network, e.g. deleting or adding an edge, or
switching an edge between an activator and an inhibitor. This
later stability, however, appears to be common to all threshold
networks of sufficient size. Li et al. (2004) concluded that this cell
cycle logical network is robustly designed. Analysis aside, it is
most provocative that a qualitative representation of the cell cy-
clemay be discovered in such a simplisticmodel. It suggests that
the correct ordering of cell cycle events may be determined by
an overall logical structure as opposed to the details andmecha-
nisms of specific interactions. Thus, the challenge is to find the
appropriate balance between abstraction and specificity, in or-
der to allow construction of computer models that are useful to
biologists.

The Fauré and Irons models

The models presented by Thieffry and colleagues (Fauré et al.
2009) and Irons (Irons 2009) are intended to be a more realistic
representation of the yeast cell cycle. Both models have more
nodes and abandon the threshold logic. The update functions
for each node are built by summarizing the literature of inter-
actions involving a given node into its update function. Both
models incorporate phenomenological nodes, such as a node to
indicate whether a cell has initiated budding or has entered cy-
tokinesis. These nodes are also used to incorporate checkpoints.
For example, in the Irons model, the DNA damage checkpoint is
modeled by fixing the node S/MBF to zero, as Rad53—kinase re-
quired for cell cycle arrest upon DNA damage—has phosphory-
lated the transcription factor Swi6 and prevented the formation
of SBF (indicating the Swi4/Swi6 complex) and MBF (indicating

Table 1. The trajectory leading to the G1 attractor in the logical cell cycle models.

Time Cell Size Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc20,14 Clb5,6 Sic1 Clb1,2 Mcm1,SFF Phase

0 1 0 0 0 0 1 0 0 0 1 0 0 Critical Size
1 0 1 0 0 0 1 0 0 0 1 0 0 Start
2 0 0 1 1 0 1 0 0 0 1 0 0 G1
3 0 0 1 1 1 1 0 0 0 1 0 0 G1
4 0 0 1 1 1 0 0 0 0 0 0 0 G1
5 0 0 1 1 1 0 0 0 1 0 0 0 S
6 0 0 1 1 1 0 0 0 1 0 1 1 G2
7 0 0 0 0 1 0 0 1 1 0 1 1 M
8 0 0 0 0 0 0 1 1 0 0 1 1 M
9 0 0 0 0 0 0 1 1 0 1 1 1 M
10 0 0 0 0 0 0 1 1 0 1 0 1 M
11 0 0 0 0 0 1 1 1 0 1 0 0 M
12 0 0 0 0 0 1 1 0 0 1 0 0 G1
13 0 0 0 0 0 1 0 0 0 1 0 0 Fixed G1
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the Mbp1/Swi6 complex). For this network, the main attractor,
a fixed point, corresponds to a state where Cln3, CKI and Cdh1
are active and all other nodes are inactive. This is the profile of a
cell that has been arrested in the G1 phase, consistent with the
main attractor found by Li et al.

In order to verify the verisimilitude of these models with the
Limodel, both authors investigate severalmutant phenotypes. It
is generally assumed that a knockoutmay bemodeled by setting
the corresponding node to zero and changing its update func-
tion so that it remains inactive. The models of Fauré and Irons
find a qualitative agreement between many model mutants and
the corresponding experimental phenotypes. For example, the
double mutant swi4�swi6� is known to arrest in the G1 phase
(Nasmyth and Dirick 1991). The Irons model incorporates these
two proteins into a single node S/MBF whose activity indicates
formation of the transcriptional complexes SBF and MBF. Thus,
this double mutant is modeled by fixing the node S/MBF to zero.
Themodel finds an attractor with a G1 profile whose basin of at-
traction consists of 64% of the state space, thus indicating that
the model arrests in this cell cycle phase (Irons 2009). Notice
that, within the model, there is no difference between this mu-
tant behavior and that of the DNA damage checkpoint. Similar
analysis has been performed by Thieffry and colleagues for a
vast collection of mutants (Fauré et al. 2009). The difference be-
tween the twomodels can be underlined in light of how they im-
plement thresholds into the network logic. The Irons model ad-
dresses the variety of time scales among the network reactions
by using dummy nodes—empty templates to build new nodes
later—to allow for delayed activation or deactivation. These de-
lays can be interpreted in several ways, such as a requirement
of an input to reach a threshold or to enforce a sustained activa-
tion. With a similar idea, in the Fauré model some nodes follow
the binary, Boolean logic, while a range of values are assigned
to others. Furthermore, the Fauré model employs a semisyn-
chronous updating scheme referred to as priority classes. That
is, most nodes in the network are updated at the same time, or
synchronously, however, several of the phenomenological nodes
are given priority. For example, if the state of the network is such
that the node CYTOKINESIS is active, then this occurs before the
update of other nodes (Fauré et al. 2009). While both models are
built from modules governing individual cell cycle phases, the
update function receives more attention in the Fauré model.

The question remains, are these models an improvement
of the Li model, and do they provide insights that may inspire
further experimentation? In Irons’ study, both the wild type and
all viable model mutants are represented by a single attractor.
Assuming that the spurious attractors in the Li model do not
represent unknown cell types, this is an improvement. In
addition, the Irons model shows that the existence of a single
attractor is preserved in the absence of the delays that are
incorporated into the model. As accurate results derive from (i)
a more realistic logic and (ii) a more realistic interpretation of
checkpoints, both the Fauré an and Irons models represent an
advancement of the Li model. Furthermore, they show that the
general order of cell cycle events is well represented by using the
synchronous updating scheme. The analysis of mutants in both
models does however lead to interesting questions. For example,
the swi4�swi6� mutant modeled by Irons has more than one
attractor. It seems unlikely that the new attractor represents a
real cell type; however, understanding how the network shall be
modified to ensure that for this mutant only the G1 attractor is
found may lead to new insights. It should be noted that Fauré’s
mutant analysis is compared to the outcome of the differential
equation model for the cell cycle developed by Chen et al.

Figure 2. The wiring diagram for the model of Barberis and colleagues. The

network includes the S cyclins Clb5,6 and the G2/M cyclins Clb3,4 and Clb1,2,
which all form binary complexes with the kinase Cdk1, and the inhibitors of the
Clb/Cdk1 complexes Sic1. Lines with arrowheads represent activators, whereas
lines with barbs represent inhibitors. In G1 phase, all Clb cyclins are inhibited

by Sic1. When Sic1 is degraded and inactivated at the G1/S transition, Clb5,6 (S
phase) promote the transcription of CLB3 and CLB2 genes, thus activating both
Clb3,4 (G2 phase) and Clb1,2 (M phase) through phosphorylation of the transcrip-

tion factor Fkh2. Clb3,4 also promotes the transcription of CLB2 gene through
Fkh2 phosphorylation. All Clb cyclins phosphorylate and inactivate Sic1. Fur-
thermore, the cyclins that are activated later inhibit the ones activated earlier:
(1) Clb1,2 phosphorylate and activate Cdc20 and Cdh1, which in turn degrades

and inactivate Clb5,6 and Clb3,4, and (2) Clb3,4 inactivate Clb1,2, thus promoting
activation of Sic1 (G1 phase). For modeling purposes, the kinase Cdk1, partner of
Clb cyclins, is not indicated in the network because its activity is driven by the
cyclins. Adapted from Linke et al. (2017).

(2004). For example, the latter model shows that the quadruple
mutant cln1�cln2�cln3�cdh1� arrests in telophase while in the
Fauré model it maintains the appropriate order of cell cycle
events. Interestingly, the behavior of this mutant is inferred
by Chen et al. by assuming that its behavior is similar to yet
another mutant (see mutant documentation at http://mpf.biol.
vt.edu/research/budding yeast model/pp/tyson.php#). While
inferring behavior of mutants is a common practice, for the
most effective use of mathematical models modelers and
the experimenters shall be working together to address yet
unknown phenotypes. An example is given by the work of
Chasapi et al., where the back and forth between models and
experiments lead to a prediction of a counterintuitive mutant
phenotype in the fission yeast Schizosaccharomyces pombe which
was then validated experimentally (Chasapi et al. 2015).

The Barberis model: from a kinetic model
to the binary logic

Differently from the aforementioned modeling efforts, the
model presented by Barberis and colleagues aims to capture
cell cycle dynamics with a minimal set of components. Specif-
ically, the model derives from a previous work of the authors,
where a kinetic model was used to predict a novel role for
the CKI Sic1, inhibitor of the Clb/Cdk1 complexes active from
S-through-M phase (Barberis 2012), in coordinating the timely
oscillations of waves of Clb cyclins throughout cell cycle pro-
gression (Barberis et al. 2012). This model was converted to a
Boolean logic, where a prior knowledge network (PKN) with
four nodes—comprehending the cyclins Clb5, Clb3 and Clb2,
and the CKI Sic1—was generated (Linke et al. 2017) incorpo-
rating the novel interactions found experimentally (Barberis
et al. 2012). The wiring diagram is shown in Fig. 2. The au-
thors generated different versions, of variable complexity, of
the network where all possible interactions (edges) among the
nodes were tested for reproducing qualitatively the oscilla-
tory behavior observed for both Clb cyclins and Sic1 (Zachariae
and Nasmyth 1999). The interactions considered (either posi-
tive or negative) include one, two, three or four nodes that may

http://mpf.biol.vt.edu/research/budding_yeast_model/pp/tyson.php
http://mpf.biol.vt.edu/research/budding_yeast_model/pp/tyson.php
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influence the activation/inhibition of other nodes. Starting from
all possible edges (640), 36 minimal models were generated
that were able to reproduce the Clbs/Sic1 oscillatory behavior
of a wild-type cell as well as definite Sic1 mutants. Specifi-
cally, an attractor was found with the four nodes oscillating
in wild type and SIC1 overexpression, and a steady state with
all Clb cyclins active in a sic1� strain, as experimentally ob-
served (Barberis et al. 2012). After simulating the 36 models
with SQUAD, a tool that converts logical attractors to ODEs
(Di Cara et al. 2007), six of them reproduced the Clbs/Sic1 timely
oscillations, with sic1� loosing Clb oscillations, and SIC1 overex-
pression delaying the formation of Clb waves. Among these six
models, only two were able to match the experimental profile of
CLB2 overexpression (Linke et al. 2017). Intriguingly, regardless of
the number of interactions within these twomodels, a common,
novel regulatory design is identified that connects the three Clb
cyclins, which allows for their timely occurrence in a wave-like
fashion. That is, all Clb/Cdk1 complexes phosphorylate the tran-
scription factor Fkh2 by a linear regulation, where Fkh2 in turn
transcribes for both CLB3 and CLB2 genes, thus coordinating the
timely appearance of waves of Clb cyclins (Linke et al. 2017).

Altogether, the logical structure of the cell represented by the
models described above is sufficient to provide a blueprint for
ordering the rise and fall of cyclins and CKIs—or, wider, of cy-
clin/Cdk1 competitors—throughout the cell cycle. These mod-
els may then be used to make falsifiable predictions, which will
help to evaluate the validity of model assumptions, although
they represent a simplistic view of the cell cycle processes.

ROBUSTNESS OF THE CELL CYCLE STRUCTURE

Tan and colleagues already suggested that the size of the basin
of attraction in the state space graph is a measure of robustness
(Li et al. 2004); that is, biological systems have to be robust to per-
turbations to adapt to stress, environmental changes, etc. How-
ever, other notions of robustness have been explored. Horowitz
and colleagues sought to find out how robust the Li model’s cell
cycle trajectory and the G1 attractor are to deviations froma syn-
chronous update (Mangla, Dill and Horowitz 2010). They inves-
tigated every path in the asynchronous state space graph that
starts at the excited G1 state (time 0 in Table 1) in order to de-
termine if each of them ends at the G1 attractor, by using the
model checker software NuSMV (Cimatti et al. 2000). Mangla et al.
referred to a non-biological (non-realistic) update in the trajec-
tory as a hazard; by diagnosing each such hazard, the authors
propose changes to the logic of the network in order to elimi-
nate all of them. For example, in the Li model, there is a path
where the degrader Cdc20 is deactivated before the activation of
the degrader Cdh1, leading the cell cycle to halt. Mangla et al.
revised the model so that Cdc20 negative self-regulation was
replaced by a Cdh1-mediated negative regulation. Also, Clb2 is
expanded beyond a Boolean variable to take on values 0, 1 or
2, and the logic was appropriately changed. Furthermore, Cln3
negative self-regulation was replaced with the inhibition by SBF
and MBF. By introducing these modifications, the authors gen-
erate a logical network where every path in the asynchronous
state space graph starting at the excited G1 state ends at the G1
attractor (Mangla, Dill and Horowitz 2010). A number of these
changes also appear in other models. For example, the model of
Ding and Wang (2011) includes Cdh1 as a negative regulator of
Cdc20. These examples show how the analysis of logical mod-
els can be used to elucidate new regulatory interactions between
species in a genetic network.

Shin and colleagues brought this analysis further, investigat-
ing whether each path in the asynchronous state space graph
starting at the G1 excited state ended at the G1 attractor was bi-
ologically relevant (Hong et al. 2012). In particular, the authors
identify in the Li model and Mangla’s amended model trajec-
tories where Cdc20 is activated before the activation of Clb2.
Therefore, the models were revised by adjusting the weights in
several of the logical functions (all of these networks use thresh-
old functions): assigning to a number of nodes variable activity
levels (for example, Swi5 = 0, 1 or 2), and adding new interac-
tions (for example, a positive feedback between Clb2 andMcm1).
The result is a logical threshold network where the evolution
from the excited G1 states to the G1 attractor actually models
the evolution of the cell cycle, regardless of the order used to
update the nodes (Hong et al. 2012). Furthermore, the authors
perform a similar attractor analysis as in the work of Li et al.
and find similar results: a G1 attractor with a very large basin of
attraction.

Instead of a synchronous update, Goles, Montalva and Ruz
(2013) define an update schedule, that is, the order in which
the nodes are updated. With a given schedule, the network is
updated deterministically. The authors develop tools specific to
threshold logical networks that account for a vast number of up-
date schedules to consider—even for a small network such as
the one of Li et al.—and conclude that the G1 attractor of the Li
model is a fixed point for every update schedule, and has the
largest basin of attraction (Goles, Montalva and Ruz 2013).

Braunewell and Bornholdt (2007) develop a more elaborated
analysis on the Li model, as the logical network is converted to
a system of differential equations, and show that it is robust
to small stochastic variations in the update order. As noted by
Mangla, Dill andHorowitz (2010), the cell cycle itself is not robust
such that any order of activations is permissible; thus, a fully
asynchronous network to model the cell cycle may be as ques-
tionable as using a fully synchronous network. How this relates
to the actual biology of the cell cycle is unclear. It is true that in
general the difference between synchronous and asynchronous
can be quite dramatic. Strikingly, the fact that the yeast cell cycle
logic seems to constrain these differences may result from evo-
lutionary pressures; evolvability may in fact select robust and
flexible processes that can adapt to changes in environmental
cues (Kirschner and Gerhart 1998) that may impinges on the
functionality of the cell.

The models above provide insights in the understanding of
those nodes that are key to the ordering of cell cycle events. Tang
and colleagues address this question by investigating the fea-
ture(s) that a (threshold) logical network must have in order to
reproduce the cell cycle trajectory found by Li et al. (Lau, Ganguli
and Tang 2007). By enumerating the threshold networks with 11
nodes, the authors found that 10 interactions in the Li network
are required to observe the cell cycle trajectory. They are as fol-
lows: (i) activation of SBF by Cln3; (ii) activation of MBF by Cln3;
(iii) activation of Clb1,2 by Clb5,6; (iv) activation of Mcm1/SFF by
Clb5,6; (v) inhibition of Sic1 by Cln1,2; (vi) inhibition of Cdh1 by
Cln1,2; (vii) inhibition of Clb1,2 by Sic1; (viii) inhibition of Cdh1
by Clb1,2; (ix) activation of Mcm1/SFF by Clb1,2; (x) activation
of Swi5 by Cdc20/Cdc14. The networks that contain these inter-
actions have, on average, larger basins of attraction and, corre-
spondingly, fewer attractors. Boldhaus and Klemm (2010) took
a similar approach by analyzing the structural properties of the
ensemble of logical threshold networks with 11 nodes that real-
ize the cell cycle trajectory found by Li et al. Even among those
networks that generate the cell cycle trajectory, the Li network
stands out: it has fewer interactions, and the basin size of the
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G1 attractor is actually smaller than the average network that
produces the cell cycle trajectory.

Essentially, all the modeling efforts presented here support
the structure of the Li model, and investigate only logical net-
works with threshold functions. The models of Fauré and Irons
abandon this assumption and, thus, the analyses do not extend
to those models. As highlighted by Glass and colleagues, the
structure of the genetic networks of the budding yeast cell cy-
cle determines robust dynamics (Perkins, Wilds and Glass 2010);
thus, it represents a scaffold thatmay integratedwith regulatory
layers that crosstalk together to drive cellular functions.

Implementation of stochasticity

Further analyses of the Li network have been performed by in-
corporating stochasticity (Zhang et al. 2006a,b; Ge, Qian andQian
2009; Lee and Huang 2009), with the aim to understand the ro-
bustness of the cell cycle network with respect to noise in the
update function. Zhang et al. and Lee and Huang extended the
Li model to an irreducible time-independent Markov chain. To
do this, the authors assigned a probability, or noise, ρ so that a
given node in the networkwould follow the defined update func-
tion with probability 1−ρ while it would update randomly with
probability ρ. The details of how these modeling efforts intro-
duced this noise differ, but the analysis that follows is similar,
as both examine the details of the steady-state distribution of
Markov chain (Zhang et al. 2006a,b; Lee and Huang 2009). In both
studies, the state of maximum likelihood corresponded to the
G1 attractor identified in the Limodel, and themost likely trajec-
tory corresponded to the Li’s cell cycle trajectory. Furthermore,
the studies also found that a phase transition occurs: when the
noise passes a critical level, the steady-state distribution of the
Markov chain no longer favors the G1 attractor, nor the cell cycle
trajectory, and the network behavior becomes essentially ran-
dom.

In Ge et al., the same network built by Zhang et al.was consid-
ered, but a more sophisticated analysis was performed by using
circulation theory for Markov chains (a topic beyond the aim of
this work). Even in the context of this analysis, a similar result
was found: the Li network shows remarkable robustness to noise
in the network update rules (Ge, Qian and Qian 2009). Stoll et al.
also study the Li networkwith perturbation by using the station-
ary distribution of the corresponding Markov chain. In addition,
checkpoints are added externally. Using concepts from informa-
tion such as entropy and mutual information, the authors show
that several essential interactions, including all of the negative
self-regulations, contribute to the proper behavior of the Li net-
work with perturbation (Stoll, Rougemont and Naef 2006). Inter-
estingly, a different set of regulatory interactions was found as
compared to Lau, Ganguli and Tang (2007); in addition, a signif-
icant amount of symmetry was observed in the Li network that
contributes to its stability.

Most of the analyses presented in this section seek to iden-
tify the origins of different types of robustness, or to inquiry
into the prudence of particular modeling choices. In some ways,
these questions overlap and arise naturally in the context of log-
ical modeling. The analyses presented are in line with one of
the basic conclusions of Irons: ‘the exact timing of events, and
the order in which the nodes update, does not alter the funda-
mental behavior of the system’ (Irons 2009). While there are fea-
tures common to many models as well as results from different
analyses that point to common features, it is clear that the de-
tails of certain choices are critical to understand from a biolog-
ical point of view, such as the choices made when defining the

update functions. As noted by Fauré et al., ‘detailed analysis of
themutants reveals that, in some cases, incorporation of refined
information about expression . . . may be necessary to fully re-
produce some properties of the system’ (Fauré et al. 2009). Inves-
tigating the robustness of the cell cycle trajectory with respect
to update order of deletion of edges has a natural interpreta-
tion in the cell, such as the timing of interactions, explanation
of deletion mutants, and so on. However, the robustness being
measured by incorporating noise in the update function should
somehowbe related to the stochasticity inherent in gene expres-
sion (Rao, Wolf and Arkin 2002; Raj and van Oudenaarden 2008).
The effect of stochastic gene expression as perturbation in a log-
ical network should be explored in more detail.

ADVANCES IN LOGICAL MODELING:
PREDICTING BIOLOGICAL SCENARIOS

Recently, several studies have been presented that include a
more detailed verification of the models aforementioned, make
detailed predictions or combine predictions with detailed ex-
perimentation. The three studies that will be presented in the
following, Todd and Helikar (2012), Alcasabas et al. (2013) and
Rubinstein et al. (2013), have their foundations in the work of
Li, Fauré or Irons. Todd and Helikar (2012), while adapting their
model from the one of Irons (Irons 2009), investigated the cell cy-
cle logical network as a Markov chain where stochasticity is not
interpreted as noise but as continuous activity level. Specifically,
if a node has probability p of being active, then this probability is
interpreted as its activity level. While the study does not make
direct predictions or suggest specific experiments, it demon-
strates that logical information can be used to derive continu-
ous activation curves for the species represented in the model.
Furthermore, in the study of Todd and Helikar, the time is in-
corporated only relative to the cell size. This is a significant de-
parture from the notion that the steps in a trajectory of a logi-
cal network are the only way that time can be incorporated. As
previously noted, several authors investigate Markov chain ver-
sions of the yeast cell cycle network. In those studies, stochas-
ticity was included by using the concept of a noise; as such, the
notion of an attractor was no longer applicable. However, the re-
sults of Todd and Helikar support the idea that irreducible sets
of states, also called ergodic sets, of a Markov chains are the nat-
ural extension of the attractor as previously noted (Ribeiro and
Kauffman 2007). Themodel, unlike a traditional logical network,
is not autonomous. The model contains input nodes that stand
for external conditions, the cell size in particular. Thus, the au-
thors show that the activities of the primary cyclins are highly
robust to variations in what they term ‘cell size signal’, i.e. the
cell cycle network is robust to variations in the external envi-
ronment. A qualitative similarity was observed when compar-
ing the analytically calculated results of Todd and Helikar with
the experimental ones found by Cho et al. regarding the mRNA
transcript profile of the network components throughout cell cy-
cle progression (compare Cho et al. 1998 and Todd and Helikar
2012). Furthermore, the model reproduces a secondary activa-
tion for the G1 cyclins that occurs later in the cell cycle, as ob-
served experimentally (Cho et al. 1998). In addition, the model
reproduces qualitatively experimental results of Charvin et al.
(2010), showing that the checkpoint START driving cells through
the G1/S transition is reversible without a positive feedback loop
involving Cln1,2.

The work of Oliver and colleagues is based on the Fauré
model and employs a logical model to predict how variation in
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the copy number of genes influencing growth ratemaymodulate
progression throughout the mitotic cell cycle. The authors use
the standard interpretation of time as steps in a trajectory but,
similar to the work of Todd and Helikar, they use stochasticity
to model node activation. To test the effect of growth, sequen-
tial deletions of alleles in tetraploid yeast cells were conducted,
with mutants expressing 0%, 25%, 50% and 75% of the wild-type
dosage, corresponding to 0, 1, 2 and 3 gene copies (Alcasabas
et al. 2013). The gene dosages were then modeled by probabil-
ities. That is, if a gene is to have 25% of the wild-type dosage,
then the corresponding node is assumed to take the value 1 for
the 25% of the time, and the value 0 for the remaining 75% of the
time. As the model is stochastic, attractors are not well defined,
with the exception of the wild-type or the homozygous dele-
tionmutants (0% and 100%, respectively). In thewild-typemodel
(a direct descendent of the Fauré model), the trajectory start-
ing in an excited G1 state ends at a stationary G1 state and, as
with the other models, the activations of the species match that
expected in the course of the cell cycle. This trajectory has 31
steps and, thus, establishes a time against which the behaviors
of deletion mutants may be compared (Alcasabas et al. 2013). In
the stochastic model, trajectories will differ over each iteration.
To determine the number of cell cycles that occur over a given
trajectory, the activation and deactivation of the nodes START,
CYTOKINESIS andMASS are verified. The authors then calculate
the length of individual cell cycles and compare the length of the
various deletionmutants to thewild-type length of 31 steps. The
model predicted a phenotypic difference in growth rate between
deletion mutants with low copy numbers for CLB1 and CLB2 cy-
clin genes—which regulate the timing of cell division together
with the kinase Cdk1—that was observed experimentally (Al-
casabas et al. 2013). Furthermore, themodel shows that different
dosages of the kinase Cdk1 can result in phenotypic variation. In
fact, as CDK1 gene dosage decreases from the wild-type levels
to 50% of that level, an increasing number of cells accumulate
in the G2 phase, about 2.5 times the wild-type level. Noticeably,
this is consistent with a connection between gene dosage and
phenotypic variation (Ouahchi, Lindeman and Lee 2006). These
results suggest that novel predictions can emerge from logical
modeling. However, the authors also identify several deviations
betweenmodel predictions and experimental results. In particu-
lar, the growth rate predicted for the low copy numbers of SWE1,
negative regulator of the Cdk1 kinase, was slower as compared
to the experimental observation (Alcasabas et al. 2013).

Kassir and colleagues develop a threshold logical model
where the nodes take values in {0, 1, . . . , 9}, and it can be consid-
ered to descend from the Limodel. However, thismodel is signif-
icantly larger, containing 65 nodes that represent RNA, proteins
and cellular events (Rubinstein et al. 2013). The authors show
that when the model starts at an excited G1 state the system
falls into an attractor that, as in the Li model, mimics the ac-
tivation levels of the nodes. Furthermore, the model is able to
reproduce the behavior of several mutants and the cell cycle re-
sponse to nitrogen depletion (Rubinstein et al. 2013). Strikingly,
the model is able to make detailed predictions. It has been sug-
gested that the transcription factor Hcm1 is a Cdk1 target (Uber-
sax et al. 2003); thus, the authors have examined three possi-
ble ways by which Hcm1 can be activated by phosphorylation
by the kinase complexes: (i) Cln3/Cdk1, (ii) Cln1/Cdk1 and (iii)
Clb5/Cdk1. Themodel predicts that if Cln3/Cdk1 activates Hcm1,
there is a premature decline in the transcription of the CLB2 cy-
clin gene during the S phase (Rubinstein et al. 2013). Contrar-
ily, if Cln1/Cdk1 or Clb5/Cdk1 activates Hcm1, the basic behav-
ior of the cell cycle is observed; a simulation of the response to

pheromone treatment suggested that Cln1/Cdk1 is more likely
the activator of Hcm1.

For each of the three models presented in this section, scale
is a significant challenge. While Helikar and Todd characterize
the entire state space of their model, such computations are not
feasible for systems that are substantially larger. On the other
hand, the models of Alcasabas et al. and Rubinstein et al. are so
large that the full state spaces can hardly be explored. For ex-
ample, the state space of the Rubinstein et al.model, which con-
tains 65 nodes, has about as many states as there are seconds
in 1.6 trillion years (265 states). Perhaps more incredibly, a cyclic
attractor is found at all.

More recently, Barberis and colleagues provide another ex-
ample of a sophisticated use of modeling and traditional bench
biology (Linke et al. 2017). In particular, a simple logical model
containing four nodes (Fig. 2), each representing a cell cycle
phase, was used to inform the experimentation and to explain
the results. Two types of logical modeling were employed: (i)
a multi-valued model satisfying the behavior of known exper-
imental conditions (Barberis et al. 2012) that was analyzed us-
ing GenYsis, a tool developed to reproduce the logical attractors
(Garg et al. 2008); and (ii) a stochastic exploration of the asyn-
chronous state space using Gillespie’s stochastic sampling algo-
rithm using the software MaBoSS (Stoll et al. 2012). The model of
Barberis and colleagues was validated against the Clb2 overex-
pression phenotype, showing that an increase of Clb2 level upon
a certain threshold leads to a reduction in the number of Clb
waves (Linke et al. 2017). This outcome is compatible with the in-
hibition of mitotic exit, as experimentally observed (Cross et al.
2005). Furthermore, the model predicted that waves of expres-
sion of mitotic CLB cyclin genes are the result of cyclin/Cdk1-
dependent linear regulation on the transcription factor Fkh2
(Linke et al. 2017), which is the main regulator of CLB2 transcrip-
tion (Koranda et al. 2000; Kumar et al. 2000). The contribution of
the logical model, based on the minimal number of interactions
needed to capture the information flow of the Clb/Cdk1 network,
is 2-fold: first, it captures the current knowledge of the regula-
tion among Clb cyclins and the Clb/Cdk1 inhibitor Sic1; second,
it predicts and independently verifies the interactions—proven
experimentally—among the nodes without assuming any prior
regulatory knowledge, but only by reproducing the expected be-
haviors known from the literature. Strikingly, themodelwas able
to predict a novel principle of design in cell cycle regulation, i.e. a
linear transcriptional cascade of activation of mitotic CLB genes
that is required to reproduce the sequential appearance ofwaves
of Clb cyclins (Linke et al. 2017). This continue iteration among
modeling and experimentation, typical of the systems biology
circle, proves to be increasingly successful to provide a ratio-
nal explanation of cellular functions by identifying regulatory
mechanisms previously unraveled.

A summary of the logical models of cell cycle regulation and
their properties is presented in Table 2. All of the models dis-
cussed above remain in the qualitative regime and may be pre-
dictive; however, they are divided in explanatory or predictive,
according to the use they have been built for.

THE CHALLENGE: BINARY LOGIC IN
MULTI-SCALE MODELING OF CELLULAR
REGULATION

The physiological responses of a cell are governed by a flux
of information that is integrated through complex processes.
Cellular communication, metabolism, signaling networks, gene
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Table 2. Logical models of cell cycle regulation and their properties.

Model Nodes A/Synchronous Stocastic/Deterministic Use

Li et al. 12 Synchronous Deterministic Explanatory
Irons 18 Synchronous Deterministic Explanatory
Fauré et al. 27 Mixed Deterministic Explanatory
Todd and Helikar 20 Synchronous Stochastic Explanatory
Rubinstein et al. 67 Synchronous Deterministic Predictive
Alcasabas et al. 52 Mixed Stochastic Predictive
Zhang et al. 12 Synchronous Stochastic Explanatory
Linke et al. 4 Synchronous Deterministic and Stochastic Predictive

regulation and cell cycle machinery have to be tightly regulated
to sustain cellular homeostasis (Gonçalves et al. 2013). Whereas
modeling approaches in the past have focused on cellular pro-
cesses delimited by spatiotemporal scale or function, they are
now increasingly being integrated (Kitano 2002). The cell cy-
cle models described above often implicitly accounted for mul-
tiple scales and functions. Boundary conditions such as cell
cycle checkpoints, cell size and other phenomena are summa-
rized in phenomenological nodes, making assumptions about
processes carried out by other functions occurring at differ-
ent spatial and/or temporal scales. Examples are the models of
Irons (Irons 2009) and Fauré (Fauré et al. 2009), which contain
phenomenological nodes representing budding and cytokine-
sis, and the model of Li (Li et al. 2004), which contains a phe-
nomenological node accounting for the cell size that a cell has
reached when the G1 Cln3/Cdc28 complex approaches its crit-
ical level. Even so, these models cannot be regarded as multi-
scale, as multi-scale models have to account for processes and
functions on different temporal and spatial scales in an explicit
way. Furthermore, multi-scale models must carry additional in-
formation about the merged subsystems not present in the ex-
ploration of the independent systems. Thus, information must
be carried over borders of spatiotemporal scales (Walpole, Papin
and Peirce 2013).

As elements in functional systems differ in the way they
are logically connected to each other and in the way informa-
tion is gathered about them, no single formalism is able to
correctly and conveniently model all different functions and
scales. To illustrate, metabolism is usually modeled with stoi-
chiometricmodels employing a constraint-based approach such
as Flux Balance Analysis (FBA, see below and Supporting Infor-
mation for details), although smaller subsystems can be repre-
sented more accurately by using kinetic models (Gombert and
Nielsen 2000; Lewis, Nagarajan and Palsson 2012). Models of
signaling networks use a wide range of formalisms including
Bayesian networks, logical, stochastic and rule-based models,
sets of ordinary differential and partial differential equations
(ODE, PDE), constrained fuzzy logic (Terfve and Saez-Rodriguez
2012; Gonçalves et al. 2013). Cell networks and tissues are of-
ten modeled using an agent-based method (Walpole, Papin and
Peirce 2013). For an oversight of the common use of modeling
formalisms for different scales, see Walpole, Papin and Peirce
(2013). An up-to-date oversight of all popular modeling, formal
analysis approaches and tools to carry them out can be found in
Bartocci and Lió (2016).

There are several explicit difficulties in bridging the gap
between individual biological subsystems and scales. Often
mechanistic knowledge about the connection between different
subsystems is lacking, as it is the case for the interconnection
between metabolism and cell cycle in yeast (Cai and Tu 2012).

Furthermore, combining two different formalismsmight lead to
inconsistencies. For example, when stochastic and determinis-
tic approaches are used to model the same reaction, completely
different phenomena can be observed, as illustrated in Qu et al.
(2011). Finally, finding the right relative temporal scale for sub-
modules can be challenging. A successful example of bridging
different temporal scales and biological process is provided by
Papin and colleagues, who developed a model of budding yeast
based on an FBA variant called integrated dynamic FBA (idFBA,
see below) (Lee et al. 2008). In this study, the authors integrate
metabolism, signaling and gene regulation by coupling fast and
slow reactions, to generate quantitative, dynamic predictions.

To date, very few efforts have been made to create multi-
scale integrationmodels of cell cycle with other cellular or inter-
cellular processes. Notably, Covert and colleagues constructed
a whole-cell model of the human pathogen Mycoplasma geni-
talium which simulates processes, among others DNA replica-
tion and cell division, in a chronology that resembles events oc-
curring throughout its life cycle (Karr et al. 2012). However, the
intricate interplay of cyclins, CKIs and transcription factors is
not represented in their attempt. To our knowledge, the only
case in which the cell cycle, represented by a logical model, has
been integrated in a multi-scale fashion is the model for avas-
cular tumor growth by Jiang et al. (2005). Integration of other
subsystems, such as gene regulation with metabolism, might
provide insights that can be used to integrate the cell cycle in
its wider environment. Table 3 presents an overview of model-
ing approaches that integrate binary logic with other modeling
strategies in budding yeast as well as in other organisms. In the
following, we provide an overview of the efforts that have been
made to employ logical modeling in multi-scale models, where
the binary logic has been used as the only strategy, or where
stoichiometry, kinetic and hybrid modeling strategies and data-
driven models have been integrated with the logical modeling.
Furthermore, approaches currently under development will be
presented, where appropriate. These may serve as basis for the
generation of multi-scale models in budding yeast.

BINARY LOGIC INTEGRATING REGULATORY
LAYERS

In a few cases, multi-scale models are generated by using ex-
clusively a binary logic. De Lorenzo and colleagues bridge the
gap between subsystems with an all-Boolean model by cre-
ating a regulatory circuit describing a system that combines
three levels of regulation: metabolism, transcription factors and
gene regulation (Silva-Rocha et al. 2011). The authors investigate
the mechanisms of m-xylene biodegradation by Pseudomonas
putida by integrating conventional regulatory elements—such
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Table 3. Computational efforts integrating binary logic with various modeling strategies.

Modeling strategy Formalisms Subsystems Source

rFBA (regulatory) Boolean, FBA (constraint) Metabolism, gene regulation Covert and Palsson (2002)
srFBA (steady-state regulatory) Boolean, FBA (constraint) Metabolism, gene regulation Shlomi et al. (2007)
iFBA (integrated) Boolean, FBA (constraint), ODE Metabolism, gene regulation, signaling Covert et al. (2008)
idFBA (integrated dynamic) Boolean, FBA (constraint) Metabolism, gene regulation, signaling Lee et al. (2008)
Multi-scale tumor model Boolean, ODE, Discrete lattice

Monte Carlo
Cell cycle, metabolism, cellular responses
(growth, volume, proliferation)

Jiang et al. (2005)

Hybrid systems theory Boolean, ODE Gene regulation, signaling Sneddon, Faeder and
Emonet (2011); Tenazinha
and Vinga (2011); Ryll
et al. (2014)

Hybrid modeling Boolean, PLDE Cell cycle Singhania et al. (2011)
Hybrid modeling (GESSA) Probabilistic Boolean, Stochastic,

ODE
Gene regulation, signaling, environmental
stimuli

Fertig et al. (2011)

Data-driven model Boolean, Data-driven (statistical) Cell cycle, gene regulation, signaling Melas et al. (2011)
Boolean–Boolean extension Boolean Gene regulation, signaling Schlatter et al. (2012)
Boolean–Boolean integration Boolean Metabolism, gene regulation Silva-Rocha et al. (2011)

as transcriptional regulators and sigma factors—alongside with
less conventional elements—such as metabolic enzymes, inter-
mediate metabolites and histone-like proteins—and phenom-
ena such as growth and temperature, represented as nodes in
a logical network. The presence and/or activity of former el-
ements discretized into Boolean values determines the pres-
ence and/or activity of other elements through Boolean func-
tions. As such, the model can account for the fact that enzymes
and substrates/products physically or functionally interact with
transcription factors. The model was not validated experimen-
tally, and served as a visualization of the knowledge about the
m-xylene degradation pathway. By using a similar, all-Boolean
strategy, Dandekar and colleagues integrated existing logical
models by coupling two logical models of hepatocyte signal
transduction: one describing the proliferation/apoptosis path-
ways within a cell and the other one considering cell–cell inter-
actions (Schlatter et al. 2012). The integration between the two
models occurs where nodes overlap. Modeling standards for log-
ical models are proposed to ensure smooth model integration
between modules.

INTEGRATING BINARY LOGIC WITH
STOICHIOMETRY

Constraint-based modeling is a widely adopted approach to
study biochemical networks, especially suited formetabolic net-
works (Gianchandani, Chavali and Papin 2010; Orth, Thiele and
Palsson 2010; Lewis, Nagarajan and Palsson 2012). A number of
multi-scale models that employ a logical component, integrate
it with a FBA component. FBA calculates the flux of metabo-
lites through a constrained network while optimizing for an
objective function (often represented by the biomass equation),
assuming the system being at steady-state (see Supporting In-
formation). FBA can predict growth rate, production rate of im-
portant metabolites and/or changes in metabolite flux due to
changing environmental conditions. Since no kinetic parame-
ters are needed for model generation, large networks can be
reconstructed and simulated, by imposing a relatively low com-
putational demand and by creating the possibility to run sim-
ulations using wide ranges of starting conditions and pertur-
bations. These advantages have led to metabolic models be-
ing available for at least 35 organisms (Orth, Thiele and Palsson

2010). However, because FBA is carried out at steady-state, only
fluxes can be analyzed and no information about the concentra-
tion of metabolites can be retrieved. Furthermore, regulation, ei-
ther due to genetic or protein–protein interaction, is not intrinsi-
cally included in FBA, possibly leading to inaccurate predictions
(Orth, Thiele and Palsson 2010).

Regulatory FBA

An integration of logical modeling with FBA has been proposed
by Palsson and colleagues (Covert, Schilling and Palsson 2001).
The authors have devised a method called regulatory FBA (rFBA)
where FBA models may account for gene expression and gene
product activity. In rFBA, a constraint-based FBA model is reg-
ulated by a Boolean regulatory network. Boolean equations re-
strict the value of gene transcription to 1 (gene transcribed) and 0
(gene not transcribed); as a consequence, transcription of genes
determines the presence (1) or absence (0) of proteins (see Sup-
porting Information for details). Palsson and colleagues have
employed rFBA to integratemetabolismwith transcriptional reg-
ulation in budding yeast (Herrgård et al. 2006). The authors have
reconstructed a minimal transcriptional network that is regu-
lated by nutrient concentrations. In theirmodel, 55 transcription
factors regulate the transcription of 750 metabolic genes based
on the concentration of 82 distinct intracellular and extracellu-
lar metabolites. A logical network is set so that the metabolites
determine the state of a transcription factor, which in turn de-
termines the transcription of a metabolic gene.

rFBA bridges the temporal scales of metabolism and gene
regulation by introducing a discretized time step tuned to the
scale of protein synthesis and degradation. As the time scale of
metabolism is faster (milliseconds to tens of seconds) as com-
pared to the transcriptional regulation (in the order of a few
minutes or slower), the quasi steady-state of metabolism can
be assumed to occur instantaneously after a new proteome
is set. Applications of constraint-based modeling integrated
with dynamic and regulatory information have started to be
employed in the generation of multi-tissue and multi-scale
models of higher organisms (Martins Conde Pdo, Sauter and Pfau
2016).

In the following, we will demonstrate the relevance of
constraint-based modeling for incorporating the cell cycle
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within its cellular context. Specifically, we will show how rFBA
methodologies may be integrated with logical modeling to ex-
plore the mutual regulatory interactions between cell cycle and
metabolism.

Integrated dynamic FBA

Differently from rFBA and iFBA (see below), the integrated dy-
namic FBA (idFBA) developed by Papin and colleagues repre-
sents not only metabolic reactions, but also signaling pathways
and gene transcription in a stoichiometric matrix (Lee et al.
2008). This strategy converts logical networks describing signal-
ing and gene transcription into a matrix, by using a formalism
described by Palsson and colleagues (Gianchandani et al. 2006).
The idFBA framework, applied to a module of budding yeast
that includes a portion of the high-osmolarity glycerol (HOG)
response pathway, incorporates 26 reactions among 48 compo-
nents. It aims to account quantitatively for the production and
use of proteins in the cell, and it introduces a cost for the amino
acids required for protein production. The integration of signal-
ing with regulation, which occurs on a far slower time scale,
with fast metabolism, creates a scale issue. To solve this issue,
time is discretized into small steps (see Supporting Information
for details).

Another issue within the idFBA methodology lies in the def-
inition of the objective function. To define a relevant objective
function, Papin and colleagues use an algorithm that defines ob-
jective functions based on network stoichiometry, and selects
for relevancy by comparing with experimental flux data (Gi-
anchandani et al. 2008). Since the cell cycle is governed by a
number of signaling cascades (such as PKA and TOR that reg-
ulate response to nutrients, or DNA damage signaling), as well
as by gene regulation (in the form of transcription factors) and
metabolism (in the form of growth), idFBAmay be an interesting
strategy to employ for the integration of these regulatory layers.

INTEGRATING BINARY LOGIC WITH KINETICS

Hybrid models, already proposed by Glass and Kaufmann in
1973, integrate discrete (logical) with continuous modeling,
thereby opening the possibility to simulate modules that can
be best represented with discrete values and modules best de-
scribed using continuous equations (Glass and Kauffman 1973).
Additionally, parts of modules that cannot be fully described us-
ing continuous modeling—due to a lack of knowledge on kinetic
parameters—can be replaced by discrete modeling techniques
(Tenazinha and Vinga 2011). An example is represented by a
model of the mammalian cell cycle described by Tyson and col-
leagues,where the Boolean representation of the cyclins in the Li
model is replaced by ODEs (Singhania et al. 2011). Additionally,
an equation is added to represent the exponential growth and
division of the cell over time. The features of the model are the
following: (i) Boolean states influence the rate of cyclin synthe-
sis and degradation; (ii) cell growth and division are a function
of time; (iii) Boolean states of the transcription factors are de-
pendent only on the cell cycle phase where the cell grows, and
not on the state of other transcription factors; (iv) the cell cycle
phase is determined by time, cyclin concentration, cell mass or
a combination of the former.

Fertig et al. present another example of a hybrid approach,
named GESSA (Graphically Extended Stochastic Simulation
Algorithm), used for multi-scale modeling by using a Boolean
component (Fertig et al. 2011). The authors model multi-cell sig-
naling and transcriptional reprogramming by using a Pooled

Probabilistic BooleanNetwork (PPBN)model of cell signaling and
a stochastic simulation of transcription and translation model,
which responds to a diffusionmodel of extracellular signals (Fer-
tig et al. 2011). The system is applied to simulate the devel-
opment of Caenorhabditis elegans and predicted phenotypes are
compared with the experimental ones. The PPBN model rep-
resents an abstraction of the signaling pathway to circumvent
high computational cost and the need of parameters, whereas
the gene transcription model—which occurs at a longer time
scale—is modeled by using the stochastic simulation algorithm
originally developed by Gillespie (1976). This allows for the sim-
ulation of the generation of transcripts and proteins by a small
number of molecules. The diffusion model simulates the be-
havior of ligands that can diffuse in three dimensions from a
constant point source. The three different modules are allowed
to run asynchronously; each module has a specified (continu-
ous or discrete) time step after which the organism state is up-
dated, which is used to re-initiate the cell signaling and tran-
scription/translation processes. This allows for a smooth inte-
gration of processes active on different temporal and spatial
scales. Within the framework, an additional manual specifies
how appropriate models can replace the ones used in the paper
as examples. Interestingly, the inclusion of a cell cyclemodel has
not been attempted yet.

Another hybrid, multi-scale model is presented by Jiang et al.
(2005), and mimics the avascular tumor growth by integrating
the G1/S cell cycle transition and growth to the extracellular
microenvironment (production of waste, i.e. lactate, and con-
sumption of nutrients, i.e. glucose). At the subcellular level, a
Boolean logic regulates the protein network that control the ex-
pression of cell cycle proteins; the input for the Boolean net-
work consists of continuous concentrations of different groups
of molecules which can be above or below critical thresholds
resulting in arrest, quiescence or necrosis. At the extracellular
level, concentrations of components are determined by a set
of differential equations describing their diffusion, consump-
tion and production. At the cellular level, a lattice Monte Carlo
model integrates growth, cell volume, proliferation, death and
intercellular adhesion, resulting in a 3D simulation of spherical
growth of the tumor cells. To integrate the different time scales,
each cell has a clock that determines the cell cycle phase. For
each iteration, first the cell lattice is evolved, next the chemi-
cal reaction diffusion equations are solved for 3

4 h, after which
the Boolean network is updated and all cells progress into a
new cell cycle phase. Model behavior is compared quantita-
tively with experimental work in multicellular spheroids (Jiang
et al. 2005).

Another integrative framework is presented by Klamt and
colleagues, where signaling and gene regulatory pathways are
linked with metabolic models (Ryll et al. 2014). Specifically, an
ODE model of hepatocyte metabolism is linked to a logical
model of signaling and gene regulation. First, the multiple inter-
faces between signaling and metabolism were classified. Sub-
sequently, the Boolean network was converted to a system of
logic-based ODEs by using the Odefy transformation method
(Wittmann et al. 2009). The resulting continuous value between
0 and 1 was then fed into the metabolic kinetics. The other way
around, the output of the metabolic ODEs was normalized to
the values 0 and 1 to feed back into the Boolean network. Fi-
nally, parameter values were recalibrated, since the submodules
were previously parameterized independently. The model de-
scribes qualitatively the switch-like dynamics of hepatocytes in
response to nutrients; however, focused experiments have not
been performed yet to validate the model.
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With the Network Free Stochastic Simulator, NFsim, Emonet
and colleagues integrate binary logic and kinetic modeling,
where parts of Boolean networks can be replaced for piecewise
linear or hill functions as more fine grained knowledge about
the system is gathered (Sneddon, Faeder and Emonet 2011).
NFsim simulates complex dynamicswhere a detailedmechanis-
tic knowledge ismissing, and overcomes the computational cost
associated with biochemical combinatorial issues. The method-
ology is suitable to model a wide range of systems, which at
present include immune system signaling, microbial signaling,
cytoskeletal assembly and oscillating gene expression (Sneddon,
Faeder and Emonet 2011).

INTEGRATING BINARY LOGIC WITH KINETICS
AND STOICHIOMETRY

Integrated FBA

A development of rFBA, called integrated FBA (iFBA), has been
proposed by Covert et al. (2008) to integrate binary logic with ki-
netic and stoichiometric strategies. Specifically, in addition to
the Boolean network, a module of the metabolic network for
which kinetic parameters are known is replaced by a kinetic
model consisting of a set of ODEs (see Supporting Information
for details). An advantage of iFBA over rFBA is that the ODEmod-
ules contain far more detail than their FBA counterparts, and
it enables the calculation of intracellular metabolite concentra-
tions in specific areas of the metabolism where kinetic param-
eters are known. This is critical for events in which the regula-
tion is depends on internal metabolite concentration. Another
advantage of iFBA over rFBA is that it can restrict fluxes to non-
zero values that would normally have no flux because they do
not contribute to growth or other objective functions. This is es-
pecially relevant in the context of the possible integration of the
cell cycle with an FBA model, since to define objective functions
that will drive flux toward cell cycle proteins without perturbing
their dynamics is a challenge. Remarks on multi-scale proper-
ties described for rFBA also apply to the iFBA strategy.

INTEGRATING BINARY LOGIC WITH
DATA-DRIVEN MODELS

Logical, constraint-based and kinetic models can only be con-
structed with the knowledge about the connectivity between
their components (bottom-up approach). In contrast, data-
driven models provide a top-down approach for which the
knowledge about the connectivity among entities is not always
needed. For example, if gene expression data are used to con-
strain a metabolic model, it is sufficient to know how genes re-
late to the metabolic reactions (connectivity), but not which are
the intermediate steps or the biological processes (mechanistic
knowledge). An example of a data-driven approach combined
with logical modeling is a method developed by Alexopulos and
colleagues that integrates logical models of signaling pathways,
optimizedwith high-throughput phosphoproteomic data, to cel-
lular responses such as growth, death, differentiation, cytokine
secretion and gene expression in order to investigate cellular re-
sponses in hepatocellular carcinoma (Melas et al. 2011). A multi-
linear regression algorithm was employed to generate regres-
sion coefficients that serve as weights for the connection of key
phosphoproteinswith cellular responses. The approachwas val-
idated by comparing the simulations with hepatocyte cellular
responses and phosphoprotein activity. One issue, often men-
tioned, withmulti-scalemodeling is the lack of knowledge about

submodule interfaces. Integrating logical and data-driven mod-
els provides support to fill the gap between data from observable
cell features and detailed networks resulting from mechanistic
knowledge.

PERSPECTIVES: INTEGRATING BINARY LOGIC
WITH STOICHIOMETRY TO ADDRESS THE
MUTUAL REGULATION BETWEEN CELL CYCLE
AND METABOLIC YEAST NETWORKS

Recent interest has focused on the regulation between cell cy-
cle and metabolism, both in budding yeast (Alberghina et al.
2012; Cai and Tu 2012; Ewald et al. 2016; Zhao et al. 2016) and
in mammalian cells (Lim and Kaldis 2013; Kaplon, van Dam
and Peeper 2015). Building a new cell is dependent on a num-
ber of metabolic and biosynthetic reactions which impact on
cellular growth, e.g. lipid production for membrane synthesis
in the course of genome duplication, as well as for accumu-
lating biomass. Furthermore, genome-scale, high-throughput
metabolic data are available, but it is at present not known
whether or not—and if so, to what extent—cell cycle events im-
pinge on fluxes of metabolic reactions. These observations have
prompted efforts to integrate these subsystems in a computa-
tional framework. By generating a model that simulates the dy-
namics of physical and/or genetic interactions between cell cy-
cle and metabolism, hypotheses may be drawn to elucidate ex-
perimentally the mechanisms at the interface between these
two networks. Genome-wide computer models of the budding
yeast metabolism are available, and regulation of the cell cycle
has been successfully simulated using Boolean networks, as de-
scribed above. Thus, possibilities to develop integrative model-
ing strategies to unravel the mutual regulation between cell cy-
cle and metabolism may be explored.

Here, we envision an example of such strategies, by integrat-
ing an FBA model of metabolism to a Boolean cell cycle network
(L.v.d.Z. and M.B., in preparation) similar to the rFBA approach.
Specifically, we present preliminary considerations about an ex-
ploratory model simulating the physical interactions between
the minimal cell cycle network presented by Barberis and col-
leagues (Linke et al. 2017) and the iMM904 metabolic map devel-
oped by Palsson and colleagues (Mo, Palsson and Herrgård 2009).
In thismodel, we implicitly assume that the presence and/or ac-
tivity of cell cycle proteins determines the activity of metabolic
enzymes: the cell cycle proteins interact directly with the en-
zymes, thus activating or inhibiting them through a Boolean
function. Metabolic adjustments to the flux distribution are as-
sumed to be instantaneous as compared to the cell cycle dy-
namics, and synthesis and degradation delays are not taken into
account. The modeling strategy is based on the definition of
the nature (activatory or inhibitory) of interactions. For a given
state in the cell cycle attractor, the state of the cell cycle nodes
constrains the flux bounds of interacting metabolic reactions to
0 if inhibited (or not activated), or their normal value if acti-
vated (or not inhibited). Subsequently, metabolic fluxes are cal-
culated for the cell cycle phase defined by the Boolean state.
The procedure is repeated until a cell cycle attractor is reached.
The integrative model has been validated by testing the regu-
lation of trehalose degradation, which has been recently sug-
gested to occur in both in vitro and in vivo experiments by Cdk1-
mediated phosphorylation of the trehalase Nth1 (Ewald et al.
2016; Zhao et al. 2016). Since in vitro experiments suggested a
Clb2/Cdk1-mediated phosphorylation of the trehalase Nth1, an
activatory effect of Clb2 on Nth1 was simulated, as shown in
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Figure 3. The integrative model linking cell cycle to metabolism highlights a phase-dependent regulation of threalose metabolism. The minimal model of cell cycle

regulation described in Fig. 2, including Sic1 (G1 phase), Clb5 (S phase), Clb3 (G2 phase) and Clb2 (M phase), has been connected to the iMM904 metabolic map
(Mo, Palsson and Herrgård 2009). The presence of Clb2 stimulates the activity of the threalase Nth1, which converts threalose (TRE) into glucose (Gluint). A flux of
trehalase is observed in M phase when Clb2 is active (indicated in violet), which results in a high flux through the glycolysis (indicated in red). Conversely, no flux of
threalase is observed in G1 and S phases (indicated in gray), inhibited by the absence of Clb2, which results in a reduced glycolytic flux (indicated in purple).

Fig. 3. Time course measurements of trehalose concentrations
following cell synchronization in G1 phase show that trehalose
concentration peaks when 50% of cells are at the G1/S transi-
tion (Ewald et al. 2016). Contrarily, our model simulations show
that the flux of trehalase is present only during M phase—which
is defined in the cell cycle model by the first Clb2 activity—and
continues until the next G1 phase (Fig. 3). This result leads to the
hypothesis that other cyclin/Cdk1 complexes may be involved
in the activation of trehalase. Furthermore, indirect effects are
seen throughout the whole central carbon metabolism, most
of which are related to an increase of biomass production due
to the extra carbon source available when trehalase is active
(L.v.d.Z. and M.B., in preparation). It must be noted that in the
current simulation the ratio of biomass constituents is fixed in
the biomass reaction, as is prevailing in FBAmodels. In the light
of cell cycle as regulator of metabolism, this implicit assump-
tion shall be further investigated, as in the trehalose simulation
it might have distorted the central carbon fluxes resulting from
activation/inactivation of Nth1.

By using the knowledge about the regulatory system of gene
transcription, signaling and protein production underlying a
metabolic network, a more realistic representation of the pres-
ence, absence and activity of metabolic enzymes may be gener-
ated in the form of a Boolean network such as the one presented
by Palsson and colleagues (Herrgård et al. 2006) and discussed
above. When protein amount of metabolic enzymes is explic-
itly considered, the effects of metabolism on cell cycle may be
simulated. By replacing parts of the metabolic network with a
set of ODEs, as in the iFBA approach (Covert et al. 2008), poten-
tial effects of metabolites on metabolic enzymes and cell cycle
proteinsmay be also considered. In fact, metabolite and enzyme
concentrationsmay be explicitly taken into account in the ODEs,

and a combination of Boolean delay functions may account for
synthesis and degradation events. It is likely that by addingmore
connections and a more detailed representation of the cell cycle
events will lead to more fine-grained results than the one pre-
sented above. However, one of themajor issueswhen linking the
cell cycle to metabolism is that the interface between the two
subnetworks is usually described on a phenomenological rather
than a mechanistic level. Through the Saccharomyces Genome
Database (SGD) a large amount of high-throughput data is avail-
able regarding the possible entities connecting cell cycle and
metabolism, potentially enabling the discovery of functional re-
lationships. However, although the database provides informa-
tion on the connections between entities, the nature of their (ge-
netic or physical) interaction is not yet understood. Even when
interactions are simplified to a Boolean ON/OFF logic, these may
still be activatory or inhibitory; moreover, the direction can be
from the cell cycle to metabolism or vice versa. We are currently
developing a model that explores all possible combinations of
directionality and nature of the interactions between cell cycle
proteins and metabolic enzymes (L.v.d.Z. and M.B., in prepara-
tion). Comparing the simulation results with experimental data
such asmetabolic fluxmeasurements, changingmetabolite con-
centrations and details about cell cycle dynamics may provide
hypotheses about the precise mechanisms of interaction be-
tween the two subnetworks to be tested experimentally.

OUTLOOK

Budding yeast has been employed as model organism to study
cell cycle dynamics that reflect—although in a simpler, but not
trivial, manner—that of the more complex eukaryotes.
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These dynamics are triggered by changes of environmen-
tal cues and crosstalk among intracellular pathways that
are responsible for functional properties, e.g. cell growth,
genome duplication and cell division. Logical modeling has
been employed to rationalize and predict temporal dynamics
of cell cycle regulation; however, the integration of formalisms
that underlie different computational methodologies is still a
challenge.

Here we have summarized some of the formalisms that can
provide systems biologists with a range of methodologies that
may be employed to build multi-scale models. Although only
time can tell which of these formalisms would be more ap-
propriate to integrate the cell cycle into multi-scale models, or
whether new formalisms will have to be developed, some re-
marks can be made about directions that can be taken. One
of the most promising combinations to achieve this integra-
tion is that of constraint-based models regulated by a logical
network. The examples presented by Palsson and colleagues
(Covert, Schilling and Palsson 2001; Herrgård et al. 2006) have
shown that regulatory networks can be successfully combined
with metabolic networks. One of the major issues, the fact that
FBA models lead to a steady-state metabolite concentration,
can be overcome by replacing parts of an FBA network with a
set of differential equations (Covert et al. 2008). Another issue
is that, up to date, no model of budding yeast exists that ex-
plicitly accounts for the presence, synthesis and degradation of
metabolic and other proteins. In addition, a minimal regulatory
network has been created by Palsson and colleagues (Herrgård
et al. 2006), and comprehensive network integrations are still
lacking.

To connect logical or other models of the cell cycle to a
constraint-based model, a gene regulatory network as well as a
metabolic enzyme and regulatory proteome should be included
in the metabolic model in order to explicitly account for all the
interactions between cell cycle and metabolism. Although high-
throughput data have shed some light on the protein interac-
tions between these subnetworks, the nature and direction of
the interactions is often not known. Thus, before fully compre-
hensive multi-scale models can be created, further mechanistic
insight into the connections has to be gained from experimen-
tation. Curating manually the interconnections between regula-
tory elements and their targets as well as developing Boolean
networks based on mechanistic knowledge can be time con-
suming. Data-driven approaches using algorithms to automati-
cally infer regulatory networks such as PROM (probabilistic reg-
ulation of metabolism), which enables quantitative integration
of high-throughput data into constraint-based modeling (Chan-
drasekaran and Price 2010), may be able to replace Boolean reg-
ulatory networks and speed up this process. The ON/OFF dy-
namics typical of Boolean networks may also be overcome us-
ing such an approach, by introducing probabilities to represent
presence/activation states and cell cycle proteins–metabolic en-
zymes/metabolites interactions.

Any combination of formalisms used for network integration
should lead to the formulation of new hypotheses about the reg-
ulatory interconnections between cell cycle and other subsys-
tems. This will hopefully inspire effort within the systems biol-
ogy community to reach the next level in the understanding of
the functional properties of biological systems.
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