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Identity prediction errors in the human midbrain
update reward-identity expectations in the
orbitofrontal cortex
James D. Howard1 & Thorsten Kahnt 1,2

There is general consensus that dopaminergic midbrain neurons signal reward prediction

errors, computed as the difference between expected and received reward value. However,

recent work in rodents shows that these neurons also respond to errors related to inferred

value and sensory features, indicating an expanded role for dopamine beyond learning cached

values. Here we utilize a transreinforcer reversal learning task and functional magnetic

resonance imaging (fMRI) to test whether prediction error signals in the human midbrain are

evoked when the expected identity of an appetitive food odor reward is violated, while leaving

value matched. We found that midbrain fMRI responses to identity and value errors are

correlated, suggesting a common neural origin for these error signals. Moreover, changes in

reward-identity expectations, encoded in the orbitofrontal cortex (OFC), are directly related

to midbrain activity, demonstrating that identity-based error signals in the midbrain support

the formation of outcome identity expectations in OFC.
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Over the last two decades, activity of dopaminergic mid-
brain neurons has become almost synonymous with
reward prediction errors1,2, signaling the difference

between expected and received reward3–5. Such prediction errors
are a key component of many reinforcement learning
algorithms6,7, wherein they update associations between pre-
dictive events and rewarding outcomes.

These signals are typically described in terms of reward value
prediction errors, restricting their use to learning associations
between events and cached (model-free) value. A mechanism
that only computes errors in cached value cannot account for
the learning of complex associative structures that facilitate
model-based behavior8–12. However, recent experiments in
animals demonstrate that midbrain dopamine responds to
errors in inferred value13–15 and is necessary for learning of
value-neutral associations16. Most strikingly, dopamine neu-
rons in rats have recently been shown to also respond
in situations where value remains the same but the sensory
features of the predicted reward change17. This suggests a much
broader role for midbrain error signals beyond cached value to
include the learning of a wide range of associations that toge-
ther form a model of the task state.

One state feature that is particularly important for model-based
behavior is the identity of future outcomes. For instance, infor-
mation about outcome identity is necessary for adaptive behavior
following devaluation, a hallmark of goal-directed behavior18–21.
The orbitofrontal cortex (OFC) is critical for representing the
identity of expected rewards along with other features of the task
state8,9,21–29. However, the mechanisms by which task state fea-
tures such as identity are learned and updated in the OFC remain
unclear. Here we tested the hypothesis that the human midbrain
responds to errors in predicted reward identity, and that these
identity prediction errors are directly related to updating identity
expectations in the OFC.

Hungry participants performed a transreinforcer reversal
learning task during functional magnetic resonance imaging
(fMRI) involving different types of value-matched food odors as
rewards. Unexpectedly throughout the task, participants experi-
enced violations either in expected reward identity while leaving
value unaltered, or in expected reward value while leaving identity
unchanged. Using this approach, we demonstrate that the human
midbrain responds to value-neutral errors in identity predictions,
and that these signals are correlated with changes in identity
expectations in the OFC.

Results
Odor reward selection and experimental design. For each par-
ticipant (n= 23), we selected one sweet (SW) and one savory
(SV) odor that were matched in rated pleasantness (Fig. 1a)21,25.
Low intensity (SWL, SVL) and high intensity (SWH, SVH) versions
of these odors differed in pleasantness (Fig. 1b, repeated measures
ANOVA, main effect of intensity: F(1,22)= 56.0, p= 1.77 × 10−7),
and there were no differences between either SWL and SVL

(paired t-test: t(22)= 1.16, p= 0.26) or SWH and SVH (t(22)=
0.18, p= 0.86) odor pairs (main effect of identity: F(1,22)= 0.35,
p= 0.56, intensity-by-identity interaction: F(1,22)= 0.66,
p= 0.42). These four odors composed a 2 × 2 factorial design
(intensity × identity), and were used as unconditioned stimuli
(US) in the subsequent reversal learning task (Fig. 1c). Two
randomly selected visual symbols served as conditioned stimuli
(CS) for the remainder of the experiment (Fig. 1c).

During the transreinforcer reversal learning task, subjects
encountered four unique task states, defined by the pairings
between the two CS’s and two of the four US’s (Fig. 1d). Within
each state, one CS was paired with a high-intensity US, and the

other CS was paired with the low-intensity US of the same odor
identity. These deterministic associations were intermittently and
covertly changed such that both CS’s were paired with a different
US identity, but the same value (identity reversal, iREV), or such
that both CS’s were paired with different US values, but the same
identity (value reversal, vREV; Fig. 1d). A given state persisted for
9 or 12 trials, and reversals alternated between iREV and vREV
throughout the task (Fig. 1f).

On each trial, participants chose one of the two CS’s to receive
its currently paired US (Fig. 1e). Two thirds of trials were “forced
choice,” wherein participants were cued (and only able) to choose
one of the two CS’s. The remaining third were “free choice,”
wherein participants could choose either of the two CS’s.
Reversals occurred only on forced choice trials, and were
followed by another forced choice trial. This experimental design
allowed us to examine neural signatures of reward expectation
and prediction errors on the forced choice trials, and probe
behavior on the free choice trials.

Choice behavior is sensitive to changes in US value. On free
choice trials, the CS associated with the high-intensity US was
chosen significantly above chance (50%) for both odor identities
(SW: t(22)= 4.03, p= 2.83 × 10−4; SV: t(22)= 4.20, p= 1.83 × 10−4;
Fig. 2a) and did not differ (t(22)= 0.71, p= 0.48). Analysis of
respiratory activity traces revealed that when cued to sniff the
odor outcome on forced choice trials, participants sniffed more
for high-intensity odors than for low-intensity odors (repeated
measures ANOVA, main effect of intensity on sniff amplitude:
F(1,22)= 5.95, p= 0.023; main effect of intensity on sniff duration:
F(1,22)= 5.11, p= 0.034; Fig. 2b). Sniffing for the two odor
identities did not differ (main effect of identity on sniff amplitude:
F(1,22)= 0.80, p= 0.38; identity-by-intensity interaction on sniff
amplitude: F(1,22)= 0.08, p= 0.78; main effect of identity on sniff
duration: F(1,22)= 0.16, p= 0.69; identity-by intensity interaction
on sniff duration: F(1,22)= 0.93, p= 0.35). Participants thus
demonstrated an equal preference for the high-intensity versions
of both odor identities.

To test whether decisions were sensitive to changes in CS-US
associations, we analyzed the proportion of high-intensity choices
in free choice trials in a two-way repeated measures ANOVA with
reversal type (vREV, iREV) and time as factors (three pre-reversal
and three post-reversal trials). We found a significant interaction
between reversal type and time (F(5,110) 21.30, p= 1.02 × 10−11),
demonstrating that subjects changed their choice behavior with
value reversals (one-way ANOVA with trial as a factor containing
6 levels, F(5,110)= 27.79, p= 3.34 × 10−10; Fig. 2c) but not identity
reversals (F(5,110)= 1.86, p= 0.131; Fig. 2d). As expected, this
change in behavior on value reversals was also evident in a post
hoc t-test comparing trials immediately before and after reversals
(t(22)= 5.98, p= 5.14 × 10−6). There was also a significant, albeit
temporary, decrease in high-value choices after identity reversals
(t(22)= 2.38, p= 0.026), although post-reversal choices remained
well above 50% chance (t(22)= 3.63, p= 0.0015). Interestingly, a
similar decrease in optimal value-based choices after identity
reversals has previously been observed in rodents8. Thus,
participants rapidly learned the new CS-US associations after
value reversals and adjusted their choices accordingly, but
continued to choose the cue paired with the high-intensity US
after identity reversals.

Prediction error signals for identity and value in the midbrain.
We next investigated whether violations in reward value and
identity expectation evoked prediction error signals in the mid-
brain. We used a standard reinforcement learning model (see
Methods section) to derive trial-by-trial estimates of iPE, positive
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vPE, and negative vPE (based on prior studies demonstrating that
positive and negative value PE’s are processed in dissociable brain
regions30,31, the vPE trace was split into positive and negative
components). As can be seen in Fig. 2c, this model accounted well
for choice behavior (average Fisher’s z-transformed correlation
between model-predicted and actual choice behavior across trials,

z= 0.48, one-sample t-test, t(22)= 6.04, p= 4.46 × 10−6). Model-
derived PE’s were included as parametric modulators of finite
impulse response functions (FIR) time-locked to the onset of the
US’s, and regressed against the fMRI responses in each voxel (see
Methods section).
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Fig. 1 Odor selection and transreinforcer reversal learning task. a From an initial set of eight food odors, one sweet (SW) and one savory (SV) odor was
chosen for each participant (n= 23) such that they were matched in rated pleasantness. A high-intensity and low-intensity version of each selected odor
was then established. b High-intensity odors (SWH, SVH) were rated as more pleasant than low-intensity odors (SWL, SVL), and matched in pleasantness
within intensity level. Error bars depict within-subject s.e.m. *p < 0.05 in post-hoc paired t-tests. c Two visual symbols (randomly selected for each
participant) were used as conditioned stimuli (CS). The four food odors, comprising a 2 × 2 factorial design with value and identity as factors, were used as
unconditioned stimuli (US). d Specific CS–US associations conformed to four unique states in the reversal learning task. Transitions between states
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In line with previous results across species1,3,4,29,32,33, US-
evoked responses in the bilateral midbrain were significantly
correlated with positive vPE’s (left, x=−12, y=−16, z=−10,
t(22)= 4.93, pFWE= 0.004; right, x= 10, y=−14, z=−10, t(22)
= 4.12, pFWE= 0.020; Fig. 3a). We found no regions that
correlated with negative vPE’s. A separate model with combined
positive and negative vPE’s revealed responses in left amygdala
(x=−22, y=−6, z=−6, t(22)= 4.31) and left ventral striatum
(x=−20, y= 20, z=−2, t(22)= 4.13). Most importantly, despite
the fact that the two food odor identities were matched in
pleasantness, we also found significant midbrain responses to
violations in expected outcome identity (iPE’s, left, x=−6,
y=−14, z=−12, t(22)= 3.62, pFWE= 0.040; right, x= 6,
y=−14, z=−14, t(22)= 4.05, pFWE= 0.033; Fig. 3b). Addition-
ally, whereas responses to vPE’s were restricted to the midbrain,
responses to iPE’s were found in other cortical and subcortical
areas, including the OFC, piriform cortex, amygdala, lateral
prefrontal cortex, and posterior parietal cortex (Fig. 4 and
Supplementary Table 1).

To directly compare PE responses for value and identity, we
extracted parameter estimates for both iPE and vPE from an
anatomically defined midbrain region of interest (ROI) consisting
of the substantia nigra (SN) and ventral tegmental area (VTA)34.
Interestingly, responses to iPE’s and positive vPE’s (iPE, t(22)=

1.69, p= 0.050; positive vPE, t(22)= 2.12, p= 0.022; Fig. 3c) were
significantly correlated across subjects (r= 0.37, p= 0.041;
Fig. 3d), suggesting that overlapping neuronal populations in
the midbrain may respond to errors in identity and positive value
prediction17.

Although the SW and SV odor US’s were closely matched in
pleasantness for each subject (see Fig. 1b), it remains possible that
subtle differences in pleasantness between odors could have
elicited value-based prediction errors during identity reversals,
potentially confounding iPE with vPE. To rule out this possibility,
we conducted a control analysis comparing iPE’s corresponding
to switches from SW to SV (iPESW→SV) to iPE’s corresponding to
switches from SV to SW (iPESV→SW). If pleasantness differences
between SW and SV caused a vPE during identity reversals, these
two iPE responses should be negatively correlated. Conversely, if
the error signal on identity reversals is computed as an unsigned
sensory mismatch, in the absence of a value component, these
two separate iPE’s should be positively correlated. In line with the
idea that midbrain responses were driven by value-neutral
violations in identity prediction, we found a positive correlation
between iPESW→SV and iPESV→SW (r= 0.49, p= 0.0087; Fig. 3e).
Moreover, there was no correlation between pleasantness
differences for the two odors (SW–SV), and midbrain responses
to either iPESW→SV (r=−0.06, p= 0.79) or iPESV→SW (r= 0.15,
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p= 0.50; Fig. 3f), providing further confirmation that the
midbrain iPE signals observed here were not driven by potential
value differences between the two odor identities. We conducted
several additional control analyses to verify that changes in odor
pleasantness as measured throughout the task (which were also
included as nuisance regressors in all GLMs) did not account for
the observed midbrain effects (Supplementary Fig. 1).

Encoding of expected outcome identity in the OFC. Analysis of
the US-evoked fMRI data revealed that identity reversals elicited
identity prediction error signals in the midbrain that co-localized
with responses to traditional value PE on value reversals. In
theory, these identity-based error signals could be used to update
expectations about the identity of future outcomes, which have
previously been reported in the OFC8,25,26.

To probe representations corresponding to expected outcome
identity at the time of the CS, we used a multivariate searchlight-
based pattern analysis35–37. At each searchlight location, and for
each forced choice trial, we computed the correlation between the
pattern of CS-evoked fMRI activity and four “template” patterns
corresponding to the four task states, defined using CS-evoked fMRI
responses in independent data (Fig. 5a, see Methods section). These

correlations were then sorted according to the relationship between
the current trial and the four state templates: same identity, same
value (SISV); same identity, different value (SIDV); different
identity, same value (DISV); different identity, different value
(DIDV, Fig. 5a). Of note, value refers to the specific association
between CS’s and the value of the US, not to different levels of
expected value (i.e., all states have the same expected value).

We tested for regions that encoded expected outcome identity by
comparing states that only differed in identity but not CS-value
associations (SISV–DISV). In line with previous work demonstrat-
ing expected outcome identity encoding in the OFC8,21,25,26, we
found significantly higher correlations for SISV compared to DISV
in the OFC (Fig. 5b, x=−32, y= 28, z=−14, t(22)= 4.35, pFWE=
0.0033; see Supplementary Fig. 2 for individual voxel-wise maps of
identity signals in this OFC cluster). Post hoc t-tests in this region
also revealed a difference between states that differed in both
expected outcome identity and CS-value associations (SISV–DIDV,
t(22)= 3.79, p= 0.001), but no difference between states with the
same expected identity but different CS-value pairing (SISV–SIDV,
t(22)= 0.24, p= 0.81; Fig. 5c). As illustrated in Fig. 5d, expected
identity representations in the OFC changed on a trial-by-trial basis
following identity reversals.
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A parallel comparison between task states that differed only in
CS-value but not identity expectations (i.e., SISV–SIDV) revealed
that specific CS-value associations were encoded in the amygdala
(Supplementary Fig. 3 and Supplementary Fig. 4). These findings
underscore prior studies demonstrating that while amygdala and
OFC are both critically important for signaling predictive reward
information38–41, they may do so using different computations42–44.

Midbrain iPE signals update identity expectations in the OFC.
Activity patterns in the OFC encoded the identity of the expected
outcomes, whereas midbrain activity responded to violations of
these identity expectations. Computationally, the central function
of prediction errors is to update, or “teach,” associations between
predictive events and future outcomes7. Given that OFC receives
direct projections from midbrain dopamine neurons45, we next
tested whether midbrain iPE signals are involved in updating
identity expectations in the OFC by correlating iPE-related
midbrain responses with the degree to which identity expecta-
tions changed after identity reversals (“OFC identity update”).
Indeed, we found that in the OFC, changes in expected identity
from pre to post identity reversals were significantly correlated
with the magnitude of midbrain iPE’s (r= 0.48, p= 0.0097;
Fig. 6a). Importantly, neither the OFC identity update nor the
midbrain iPE response was correlated with the subject-specific
learning rates or the inverse temperature parameters estimated by
the RL model (p > 0.12), suggesting that this effect is not driven
by individual differences in model parameters. Moreover, the
correlation between midbrain iPE and OFC identity update
remained significant (r= 0.46, p= 0.026) when iPE’s were

derived from a model with the group-average learning rate rather
than individual learning rates.

To further test whether midbrain responses correlated with
changes in OFC identity expectations on a trial-by-trial basis, we
conducted an additional GLM analysis in which changes in
pattern-based OFC identity expectations were used as parametric
modulators of US-evoked midbrain activity (see Methods
section). This analysis probes the degree to which a US-evoked
response on trial t is related to a change in CS-evoked OFC
identity information from trial t to trial t+ 1. At the group level,
mean parameter estimates extracted from the midbrain ROI were
significantly above zero (t= 2.19, p= 0.039, one-sample t-test,
Fig. 6b, c). Post hoc analyses revealed that no other regions
associated with iPE signals showed a similar relationship with
changes in pattern-based OFC identity expectations (p > 0.10, see
Supplementary Table 1). Together, these findings provide further
evidence that midbrain activity drive updates in identity
expectations in the OFC.

Discussion
Model-based behavior requires neural representations of the
sensory and contextual features that constitute a task state, as well
as knowledge about the transitions between these states. Although
these state representations and transitions play a fundamental
role in supporting model-based behavior11, the mechanisms by
which they are learned and updated have remained elusive. Here
we show that one important feature of the task state, the sensory
identity of an expected reward, is learned using a midbrain pre-
diction error mechanism akin to traditional learning of cached
values3,46. Critically, this identity prediction error signal was
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correlated with trial-by-trial changes in OFC identity expecta-
tions, providing a direct link between this learning signal and the
information that is updated in a downstream cortical target.

We found overlapping responses to errors in both value and
identity expectations in the midbrain. Previous imaging work has
shown that the human midbrain responds to value prediction
errors29,32,47. In addition, human studies have identified state-
based prediction error signals in the midbrain29,48,49, as well as in
the lateral prefrontal cortex and posterior parietal cortex50,51. We
observed similar widespread responses to identity prediction
errors in prefrontal, olfactory, limbic, and posterior parietal
regions. Identity prediction errors in lateral prefrontal cortex
might be related to this region’s involvement in learning causal
relationships between cues and outcomes50. Posterior parietal
cortex has been linked to sensory evidence accumulation and
mismatch52, surprise signals have been shown in OFC29 and
striatum53, and risk prediction errors have been observed in
insula54. The unexpected, value-matched changes in odor identity
that subjects experienced in the present study may have involved
elements of each of these processes. However, our results suggest
that identity-based error signals in midbrain are unique in that
only they are directly linked to identity-based updating in
downstream OFC.

Our task was designed to independently violate expectations
regarding the value and the value-neutral identity of rewarding
outcomes, providing direct evidence that both types of errors
evoke responses in overlapping regions of the dopamine-rich
midbrain. However, given the nature of fMRI, we cannot deter-
mine the neurochemical origin of these error signals. The iden-
tified area in the midbrain, consisting of VTA and SNc,
encompasses a heterogeneous population of dopaminergic, glu-
tamatergic, and GABAergic neurons55. In this regard, it is
important to note that our results directly parallel recent findings
in rodents, which demonstrate that the same dopaminergic
neurons respond to errors in the value and identity of expected
rewards17. Together, these findings support the idea that dopa-
mine plays a much broader role for learning that is not restricted
to learning the cached value of rewards.

Our findings show that value-neutral error signals in the
midbrain are related to updating of value-neutral associations
between predictive events and outcomes. Specifically, our pattern-
based analysis revealed signals related to the identity of the
expected reward in the OFC8,25,26. As in our data, work in
rodents has shown that these predictive identity signals in the
OFC change rapidly after identity reversals8. Critically, our results
show that across trials, this change correlates with the strength of
midbrain responses, suggesting that midbrain error signals are

directly involved in updating value-neutral associations in the
OFC.

Unlike several other human imaging studies51,56–63, we did not
observe a value prediction error in the striatum. This is in line
with the suggestion that the striatum responds to value prediction
errors only when the timing, but not the magnitude of the pre-
dicted reward is violated47.

Due to its direct and reciprocal connections with primary
olfactory cortex64, OFC has been conceptualized as a secondary
olfactory cortex65. This view is supported by studies across spe-
cies demonstrating sensory-like odor-evoked responses in OFC,
often in the absence of associative cues or perceptual judg-
ments66–70. Thus it is possible that OFC has relatively privileged
access to olfactory information, and may generate identity-based
expectations for odors more readily than for other sensory
modalities. Although other studies have shown evidence for
identity-based reward representations in the OFC using both
olfactory21,25,26 and non-olfactory rewards26,71, we speculate that
olfaction constitutes a uniquely advantageous modality with
which to investigate identity-specific encoding in this region.

Taken together, our findings support a role for dopamine in
learning the value-neutral associative structure, or model, of the
task. This associative structure, consisting of states and the
transitions between them, is the basis of model-based control of
behavior and has been suggested to be encoded in the OFC9,22,72.
Thus, in contrast to a relatively narrow role in facilitating model-
free learning of cached values, midbrain dopamine signaling may
lie at the core of a system supporting predictive coding of any
task-relevant features.

Methods
Subjects. Twenty seven healthy human participants with no history of psychiatric
illness (nine male, ages 19–34, mean ± SD= 25.5 ± 4.1 years) gave informed
written consent to participate in this study. The study protocol was approved by
the Northwestern University Institutional Review Board. Four participants were
excluded from all analyses: two due to excessive head motion during scanning (>4
mm), and two due to a high number of missed responses (>20%). All results
presented here are from the 23 remaining participants.

Odor stimuli and presentation. Eight food odors, including four sweet (straw-
berry, caramel, cupcake, and gingerbread) and four savory (potato chips, pot roast,
sautéed onions, and garlic), were provided by International Flavors and Fragrances
(New York, NY). For all experimental tasks, odors were delivered directly to
participants’ noses using a custom-built computer-controlled olfactometer capable
of redirecting medical grade air with precise timing at a constant flow rate of 3.2 L/
min through the headspace of amber bottles containing liquid solutions of the food
odors. The olfactometer is equipped with two independent mass flow controllers
(Alicat, Tucson, AZ), allowing for dilution of odorants with odorless air. There was
a constant stream of odorless air delivered to participants’ noses throughout the
experiment, and odorized air was mixed into this airstream at specific time points,
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without any change in the overall flow rate. Thus, odor presentation did not
involve a change in somatosensory stimulation.

Experimental design. The experiment consisted of two separate days of testing.
On both days, participants were instructed to arrive in a hungry state, having fasted
for at least 6 h prior to testing. All behavioral ratings were made on visual analog
scales using a scroll wheel and mouse button press. Anchors for pleasantness
ratings were “most liked sensation imaginable” and “most disliked sensation
imaginable.” Anchors for intensity ratings were “strongest imaginable” and
“undetectable.” Identity rating anchors corresponded to two-letter abbreviations of
the two food odor rewards (e.g., SB for strawberry and PC for potato chip). Subjects
were compensated with $20 per h of behavioral testing, and $40 per h of fMRI
scanning.

Day 1: Stimulus selection and task familiarization: Participants first provided
pleasantness ratings of the eight food odors. One sweet odor and one savory odor
were chosen based on these ratings such that they were closely matched in
pleasantness. Next, we acquired pleasantness ratings for the two selected odors
across a range of odor concentrations, diluted to varying degrees with odorless air.
Based on these ratings, we selected two intensity levels for each odor, such that the
two low-intensity odors had the same pleasantness and the two high-intensity
odors had the same pleasantness. Next, participants provided independent
pleasantness and intensity ratings on these four odors to verify the relationship
between intensity and pleasantness (i.e., value).

Participants next completed 84 consecutive trials of the transreinforcer reversal
learning task they would eventually complete in the fMRI scanner on Day 2. For
this task, two abstract visual symbols were randomly chosen to serve as conditioned
stimuli (CS) throughout the rest of the experiment. Each trial started with a trial
type “cue” phase in which either one of the two CS’s (indicating it was a forced
choice trial) or a question mark (indicating it was a free choice trial) appeared for 4
s. In the subsequent “choice phase,” both CS’s were presented in white font on
either side of a white crosshair (side fully randomized and counterbalanced).
Participants had 1.5 s to choose via left or right mouse click the CS that appeared in
the preceding “cue” phase (in the case of a forced choice trial), or whichever CS
they preferred (in the case of a free choice trial). If no response was made within
1.5 s of choice onset, “TOO SLOW” appeared on the screen and the next trial was
initiated after a variable delay. If a response was made, the unselected CS turned
gray, and the odor (unconditioned stimulus, US) currently paired with the selected
CS was delivered 2 s later. Odor delivery was indicated by changing the color of the
center crosshair to blue, informing participants to sniff to receive the US. After this
3 s “outcome” phase, participants rated (max duration 3.5 s) either the pleasantness
or identity of the odor (rating type randomized), followed by a 0–2 s inter-trial
interval. Across the 84 trials, the choice task was covertly subdivided into 8 blocks
of trials delineated by the specific CS–US associations predetermined for that block.
Each block consisted of either 9 or 12 trials, and the length of blocks across the
session was pseudorandomized. Within a given block, one of the CS’s was paired
deterministically with the high-intensity version of one odor identity (e.g., sweet
high: SWH), while the other CS was paired deterministically with the low-intensity
version of the same odor identity (e.g., sweet low: SWL). After each block, the
CS–US associations were changed without warning, and new blocks always began
with two forced choice trials (one for each CS). In the case of reward identity
reversals, the expected identity of the US was changed for both CS’s while leaving
CS-value associations the same. In the case of reward value reversals, the CS-value
association was swapped between the two CS’s, while leaving expected identity the
same. Reversals alternated between identity and value, and there were seven total
reversals across the 84-trial task.

Day 2: Transreinforcer reversal learning task and fMRI scanning: The Day 2
fMRI scanning session, conducted within ~10 days (mean ± SD= 10.0 ± 4.4 days)
of the Day 1 behavioral session, started with a brief reminder of the four odor US’s
chosen on Day 1, followed by odor pleasantness ratings. Participants then
completed three runs (84 trials each) of the reversal learning task described above
while undergoing fMRI scanning. Each run lasted ~21 min, and the sequence of
alternating identity and value reversals was counterbalanced across subjects.

fMRI data acquisition. MRI data were acquired on a Siemens 3T PRISMA system
equipped with a 64-channel head-neck coil. Echo-Planar Imaging (EPI) volumes
were acquired with a parallel imaging sequence with the following parameters:
repetition time, 2 s; echo time, 22 ms; flip angle, 90°; multi-band acceleration factor,
2; slice thickness, 2 mm; no gap; number of slices, 58; interleaved slice acquisition
order; matrix size, 104 × 96 voxels; field of view 208mm × 192mm. The functional
scanning window was tilted ~30° from axial to minimize susceptibility artifacts in
OFC73. Each fMRI run consisted of 640 EPI volumes covering all but the dorsal
portion of the parietal lobes. To aid in co-registration and normalization of the
functional scans, we also acquired ten EPI volumes for each participant covering
the entire brain, with the same parameters as described above except 95 slices and a
repetition time of 5.25 s. A 1 mm isotropic T1-weighted structural scan was also
acquired for each participant. This image was used for spatial normalization.

Sniff recording and analysis. During scanning, breathing activity was monitored
using a respiratory effort band (BIOPAC Systems Inc, Goleta, CA) affixed around

the participant’s torso, and recorded using PowerLab equipment (ADInstruments,
Dunedin, New Zealand) at a sampling rate of 1 kHz. Breathing traces for each fMRI
run were smoothed using a moving window of 250 ms, high-pass filtered (cutoff,
50 s) to remove slow-frequency drifts, normalized by subtracting the mean and
dividing by the standard deviation across the run trace, and down-sampled to 0.5
Hz for use as nuisance regressors in fMRI data analyses (see below).

For analysis of sniff peak amplitude and sniff duration, trial-specific sniff traces
were baseline corrected by subtracting the mean signal across the 0.5 s window
preceding sniff cue onset, and then normalized by dividing by the maximum sniff
amplitude of all trials in the run. Sniff amplitude was then calculated as the max
signal within 5 s of sniff cue onset, and sniff duration was calculated as the time
from sniff cue onset to max amplitude. Trial-by-trial measures of sniff peak
amplitude and duration were sorted by condition and tested at the group level for
significant effects.

Reinforcement learning model. To generate trial-by-trial estimates for prediction
errors, we implemented a standard reinforcement learning (RL) model6,7. This
model independently learned and updated identity and value expectations via
prediction errors for identity (iPE) and value (vPE), respectively

iPEt ¼ It � EIt

vPEt ¼ Vt � EVS;t

Here EI and EV indicate expected identity and expected value, respectively. EV was
initialized at 0 for each CS. V is the value (i.e., intensity) of the odor delivered on
trial t and was set to 0 and 1 for low- and high-intensity odors, respectively. EI was
initialized at 0.5. I is the identity of the delivered odor and was set to 0 and 1 for
savory and sweet odors, respectively. EV for the selected CS (EVS) was updated
using a learning rate (α) according to

EVS;tþ1 ¼ EVS;t þ α � vPEt

Within a given block of trials in our task, the value of the outcomes associated with
the two CS’s was anti-correlated. We therefore incorporated a fictive (i.e., coun-
terfactual) prediction error (fPE) to update the EV of the non-selected CS (EVNS),
as in previous studies with similar designs74–76

fPEt ¼ �Vt þ 1ð Þ � EVNS;t

EVNS;tþ1 ¼ EVNS;t þ α � fPEt

Note that the term (−Vt+ 1) inverts the value of the delivered odor, and thus
reflects the value of the odor that would have been obtained if the other CS had
been selected. Within a given block of trials in our task, the identity of the out-
comes paired with the two CS’s was the same. We therefore included a single EI
term in the model, and assumed that EI was updated simultaneously for both CS’s
according to

EItþ1 ¼ EIt þ α � iPEt

The model used the EV for the two CS (EV1 and EV2) to generate trial-wise choice
probability for the two CS [P1,t and P2,t= (1− P1,t)] according to a softmax rule
with slope θ (θ= 3c− 1; parameterizing the slope in this way accounts for deter-
ministic choice strategies that tend to be adopted in binary decision tasks77–79)

P1;t ¼ eθ�EV1;t

eθ�EV1;t þ eθ�EV2;t

The two free parameters of the model (α and c) were estimated for each subject
using Bayesian hierarchical parameter estimation, based on previous work78. In
brief, parameters of individual participants are assumed to be generated from
parent distributions that are modeled as independent beta distributions with
parameters for means and standard deviations taken from normal and uniform
distributions, respectively. We used choice data from all participants to compute
the posterior distributions for the two parameters. Posterior inference was per-
formed using the Markov Chain Monte Carlo (MCMC) sampling scheme as
implemented in the Stan software package for Matlab (MatlabStan, mc-stan.org/
users/interfaces/matlab-stan). A total of 3000 samples were drawn after 1000 burn-
in samples with three chains.

Our model used the same learning rate to update EI based on iPE, and to
update EV based on vPE and fPE. We tested alternative models with independent
learning rates for vPE and fPE. Models were compared using the Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC). The model
with a single learning rate outperformed models with independent learning rates
for vPE and fPE (AIC= 2223.59 vs. 2270.67; BIC 2334.32 vs. 2436.78), and was
therefore used for analysis of fMRI data. We also compared this model with a
model without a fictive PE component. The model without the fictive PE
performed slightly worse that the model including the fPE (AIC= 2224.12, BIC=
2334.86).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04055-5

8 NATURE COMMUNICATIONS |  (2018) 9:1611 | DOI: 10.1038/s41467-018-04055-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


fMRI data preprocessing. All image preprocessing and general linear modeling
was done using SPM12 software (www.fil.ion.ucl.ac.uk/spm/). To correct for head
motion during scanning, for each subject all functional EPI images across the 3
fMRI runs were aligned to the first acquired image. For the multivoxel pattern
correlation analysis (see below), the motion-corrected images were smoothed with
a Gaussian kernel at native scan resolution (2 × 2 × 2 mm) to reduce noise but
retain potential information content80. The ten whole-brain EPI volumes were
independently motion corrected and averaged. Both the EPI time series (using the
average EPI) and the T1 structural image were then co-registered to the mean
whole-brain EPI. For spatial normalization of images to a standardized template,
the structural image was normalized to the Montreal Neurological Institute (MNI)
space using the 6-tissue probability map provided by SPM12. The deformation
fields resulting from this normalization step were applied to brain maps of cor-
relation values. For univariate analyses, the motion-corrected and co-registered EPI
images were normalized to MNI space using the previously calculated deformation
fields. Both the normalized pattern correlation maps (see below) and the nor-
malized functional EPI volumes were spatially smoothed with a 6 × 6 × 6 mm
Gaussian kernel for group-level statistical testing.

Univariate test for prediction error-related fMRI signals. In order to test for
neural responses related to both value (vPE) and identity prediction errors (iPE),
we constructed subject-level event-related GLM’s using finite impulse response
(FIR) functions specified over nine time bins time locked to the onset of odor US.
Each time bin included three parametric modulators, corresponding to the
unsigned iPE, positive vPE, and negative vPE estimates derived from the best-
fitting reinforcement learning model (with individually estimated parameters)
described above. Serial orthogonalization of modulator regressors was turned off
for this and all other SPM GLM analyses. Nuisance regressors included: the
smoothed, normalized sniff trace, down-sampled to scanner temporal resolution
(0.5 Hz); pleasantness ratings acquired during the task; the six realignment para-
meters (three translations, three rotations) calculated for each volume during
motion-correction; the derivate, square, and the square of the derivative of each
realignment regressor; the absolute signal difference between even and odd slices,
and the variace across slices, in each functional volume (to account for fMRI signal
fluctuation caused by within-scan head motion); additional regressors as needed to
model out individual volumes in which particularly strong head motion occurred.
To account for typical hemodynamic lag (4–6 s) and time to peak inhalation (~2 s)
relative to odor cue onset, we constructed subject-level contrast images composed
of the average of time bins 3, 4, and 5 for each parametric modulator (corre-
sponding to 6, 8, and 10 s after sniff cue onset). These subject-level contrasts were
then tested at the group level using one-sample t-tests for significance.

MVPA for identity expectations and CS-value associations. We implemented a
searchlight-based correlation analysis to test for information about specific task
states in fMRI activity patterns without potential bias due to voxel selection.
Searchlight spheres consisted only of gray matter voxels specified by inclusively
masking functional volumes with the gray matter probability map provided by
SPM, thresholded at 0.1 and inverse normalized to native space. We considered a
task state to be defined by the combined associations between the two CS’s and two
US’s assigned to a given block of choice task trials. Thus there were four unique
task states in this experiment (see Fig. 1d), each of which occurred twice in each
fMRI run. To estimate CS-evoked voxel activity patterns corresponding to these
task states, which we refer to as “templates” for later testing, we first specified
separate general linear models (GLMs) for each fMRI run using the motion-
corrected and smoothed (2 × 2 × 2 mm) functional EPI volumes. These GLMs
included two event-related regressors of interest for the forced choice trials of each
task state (corresponding to the two occurrences of each state), modeled from the
onset of the pre-choice trial type cue to the time a choice was made. These GLMs
also included two similar regressors for each task state corresponding to the free
choice trials, one event-related regressor time-locked to the onset of all US’s, and
one event-related regressor time-locked to the onset of all ratings. Nuisance
regressors were the same as those described above for the univariate GLM’s.

We next specified a second set of “test” GLMs for each fMRI run, wherein each
trial was modeled as a separate event-related regressor spanning from pre-choice
trial type cue to the time a choice was submitted. These “test” GLMs also included
regressors for US and rating onset, and the same nuisance regressors that were
included in the template GLMs described above. We then used the parameter
estimates from these template and test GLMs in a searchlight approach to identify
brain regions that encoded specific types of information about task states on a trial-
by-trial basis. Within a given searchlight sphere (radius of ~3 voxels) we extracted
patterns of parameter estimates from two of the three template GLMs (e.g., runs 1
and 2) corresponding to forced choice regressors specified for each task state, and
averaged across runs to generate one template pattern for each of the four task
states. Template patterns were decorrelated by subtracting the mean across the four
states from each voxel. We then extracted patterns of parameter estimates from the
test GLM of the “left out” run (e.g., run 3) corresponding to each single-trial
regressor. We then calculated the Pearson correlation (r) between each test pattern
and each of the four template patterns. This process was repeated three times, with
each of the three runs serving as test and the other two runs serving as templates.

The resulting r values were Fisher’s z transformed (z ¼ ln 1þrð Þ�ln 1�rð Þ
2 ) to allow

for averaging and statistical testing, and then sorted according to the relationship
between the actual state of each trial-specific test pattern and the states of the four
template patterns. Correlations between the same states were labeled SISV, and
served as a control condition with which to contrast other correlations.
Correlations with state templates that differed in expected outcome identity, but
not CS-value associations, were labeled DISV, those that differed in CS-value
associations, but not expected outcome identity, were labeled SIDV, and those that
differed in both features were labeled DIDV. Average (across trials) correlation
values corresponding to each of these labels were mapped back to the center voxel
of each searchlight sphere, resulting in a unique brain map for each label and
subject. Contrasts between conditions (e.g., SISV–DISV) were tested for
significance at the group level using paired t-tests.

Relating midbrain activity to OFC identity expectations. For the identity-based
analysis, we first created an ROI consisting of a sphere of 3-voxel radius sur-
rounding the peak coordinate of identity-coding OFC. Within this sphere, and for
each forced choice trial, we calculated the correlation between that trial’s CS-
evoked activity pattern in one fMRI run and the state-specific template patterns
from the other two runs. We then computed the difference between the correla-
tions corresponding to the two sweet identity states and savory identity states,
resulting in a trial-by-trial measure of identity-based information content. We then
computed the absolute difference between identity information content on each
trial and the next trial, thus deriving a measure of the trial-by-trial changes in CS-
evoked pattern-based identity expectations in OFC. These traces were then used as
parametric modulators of US-evoked fMRI activity on forced choice trials in
subject-wise GLM’s with FIR as basis functions. Free choices were modeled in a
separate regressor, and nuisance regressors were the same as those described above.
Subject-wise parameter estimates corresponding to the parametric modulator term
(averaged across time bins 3, 4, and 5) were extracted from an anatomical midbrain
ROI (and in subsequent post hoc analyses from spheres [3-voxel radius] sur-
rounding other coordinates showing a significant response to iPE’s outside the
midbrain), averaged across voxels within this ROI, and subjected to a group-level
one-sample t-test.

For the analysis testing for a relationship between midbrain activity and
updating of CS-value associations (see Supplementary Fig. 4), we first created an
ROI consisting of a sphere of 3-voxel radius surrounding the peak coordinate of
CS-value coding amygdala. Within this sphere, and for each trial, we calculated the
difference in pattern correlation between states that differed in specific CS-value
associations (regardless of identity), and then proceeded as described above to
implement the change in this correlation difference as a parametric modulator of
US-evoked fMRI activity.

Group-level statistical analysis. For both the univariate and multivariate whole-
brain group-level analyses we used voxel-wise t-tests. Significance threshold was set
at p < 0.05, small-volume corrected for multiple comparisons at the voxel level
(family-wise error rate, FWE) using anatomical regions of interest in the mid-
brain34, the OFC and amygdala (defined using the Automatic Anatomical Labeling
[AAL] atlas).

Data availability. All relevant data and Matlab codes are available from the
authors upon request.
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