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Abstract

A subtractive hybridization strategy for the identification of differentially expressed genes was performed between LPS-
challenged and naive Ciona intestinalis. This strategy allowed the characterization of two transcripts (Ci8short and Ci8long)
generated by the use of two Alternative Polyadenylation sites. The Ci8long transcript contains a protein domain with
relevant homology to several components of the Receptor Transporting Protein (RTP) family not present in the Ci8short
mRNA. By means of Real Time PCR and Northern Blot, the Ci8short and Ci8long transcripts showed a different pattern of
gene expression with the Ci8short mRNA being strongly activated after LPS injection in the pharynx. In situ hybridization
analysis demonstrated that the activation of the APA site also influenced the tissue localization of the Ci8short transcript.
This analysis showed that the Ci8long mRNA was expressed in hemocytes meanwhile the Ci8short mRNA was highly
transcribed also in vessel endothelial cells and in the epithelium of pharynx. These findings demonstrated that regulation of
gene expression based on different polyadenylation sites is an ancestral powerful strategy influencing both the level of
expression and tissue distribution of alternative transcripts.
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Introduction

Alternative Polyadenylation (APA) has recently gained attention

as a major player influencing the dynamics of gene regulation [1].

Usually, mature 39 ends of almost all eukaryotic mRNAs are

created by a two-step reaction that involves an endonucleolytic

cleavage of the pre-mRNA, followed by synthesis of a polyadeny-

late tail onto the upstream cleavage product. Polyadenylation

influences many aspects of mRNA metabolism: transcription

termination by RNAP II, mRNA stability, mRNA export to the

cytoplasm and the efficiency of translation are all dependent on 39

processing.

In recent years it has become increasingly evident that APA

regulates gene expression [2]. In some cases the alternative

poly(A)+ sites are located in internal introns/exons regions (Coding

Region Alternative PolyAdenylation CR-APA) leading to different

protein isoforms. In other cases, APA sites are all located in the

39untranslated region (UTR-APA), resulting in transcripts with 39

UTRs of different length but encoding the same protein. In this

way, CR-APA can qualitatively affect the gene expression by

producing distinct protein isoforms, whereas UTR-APA quanti-

tatively affects the expression.

Ascidians (subphylum Tunicata) are chordate invertebrates

whose immune system relies only on innate immunity including

inflammatory humoral and cellular responses [3–5]. Due to the

knowledge of the Ciona intestinalis genome [6], this ascidian has

become a model to study the evolution of immune related genes

[7]. In particular, previous research has shown that pharynx and

hemocytes responses can be challenged by LPS inoculation

through the body wall, therefore this experimental setting

represents a well-established model to examine innate immunity

gene expression. Previously published papers have described the

inflammatory response and the immune role of C. intestinalis

pharynx. In this respect, pharynx epithelia and hemocytes (mainly

compartment/morula cells) express immune related genes (coding

type IX collagen-like [8], TNFa-like [9,10], CAP-like [11], MBL-

like [12], and galectin-like proteins [13]) upregulated by lipopoly-

saccharide (LPS). The pharynx occupies an extensive part of the

adult body. It consists of two epithelial monolayers perforated by

dorso-ventrally aligned rows of elongated elliptical, ciliated

stigmata [14] enclosed in a mesh of vessels (also called transversal

and longitudinal bars), where the hemolymph, containing

abundant mature and immature hemocytes, flows. Hemopoietic

nodules are associated with the bar epithelia that can be stimulated

by mitogens [15,16]. In addition, in this organ, a C3-like protein

gene is upregulated by LPS [17] suggesting the activation of

a lectin-dependent complement-like system [18], while the
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activation of the proPO-system and an increased release of lectins

with opsonic property have been shown [19,20].

In the present paper, a subtractive hybridization strategy for

selective amplification of differentially expressed sequences showed

that LPS challenge can induce an alternative polyadenylation

mechanism in C. intestinalis. The LPS induced model correlates

with the up-regulation and differential tissue localization of a novel

gene.

Materials and Methods

Tunicates and LPS injection
Ascidians were collected from Sciacca Harbour (Sicily, Italy),

a non-protected area in the Mediterranean sea, maintained in

tanks with aerated sea water at 15uC and fed every second day

with a marine invertebrate diet coraliquid (Sera Heinsberg,

Germany) according to local guidelines. The work described in

this study did not involve endangered or protected species. No

specific permits were required for the described field studies.

Lipopolysaccharide (LPS-Escherichia coli 055:B5, LPS, Sigma-

Aldrich, Germany) solution was prepared in sterile marine solution

(12 mM CaCl2 X 6H2O, 11 mM KCl, 26 mM MgCl2 X 6H2O,

43 mM TrisHCl, 0.4 M NaCl, pH 8.0). Ascidians were injected

into the tunic tissue at the median body region with: marine

solution (sham ascidians) and LPS solution (100 mg LPS in 100 ml

marine solution per animal). Untreated and sham ascidians were

used as controls.

Total RNA extraction and poly(A)+ purification
Ascidian pharynx fragments (200 mg), excised at various times

(from 1 to 72 hours), were immediately soaked in RNA later

Tissue collection (Ambion, Austin, TX), and stored at 280uC.

Total RNA extraction was performed by using an RNAqueousTM-

Midi Kit purification system (Ambion, Austin, TX).

Poly(A)+ RNA was prepared from control and injected animals

(1 hour) using IllustraTM mRNA Purification Kit (GE Healthcare,

UK) according to the manufacturer’s instructions.

Subtractive hybridization and screening of the cDNA
library

Subtractive hybridization was performed using the PCR-

SelectTM cDNA Subtraction Kit (Clontech Laboratories, USA)

according to the manufacturer’s instructions. This strategy is based

on a PCR-based method for selective amplification of differentially

expressed sequences allowing the isolation of transcript from

activated tissues. Briefly, 2 mg of poly(A)+ RNA from non-injected

(driver) and injected (tester) animals (1 h p.i. of LPS) were retro-

transcribed. The tester and driver cDNAs were digested with the

restriction enzyme Rsa I to yield blunt ends. The tester cDNA was

then subdivided into two parts and each was ligated with a different

cDNA adaptor (ADAPTOR1: 59-CTAATACGACTCACTA-

TAGGGCTCGAGCGGCCGCCCGGGCAGGT-39; ADAP-

TOR 2: 59-CTAATACGACTCACTATAGGG-

CAGCGTGGTCGCGGCCGAGGT-39).The ends of the

adaptor do not contain a phosphate group, so only one strand

of each adaptor attaches to the 59 ends of the cDNA. Then two

hybridizations were performed. In the first run, an excess of driver

was added to each sample of tester. The samples were then heat

denatured and allowed to anneal. In the second run of

hybridization, the two primary hybridization samples were mixed

together without denaturing to allow the subtracted single strand

tester cDNAs to re-associate. These new hybrids were molecules

with different ends, which correspond to the sequences of the two

adaptors. After filling in the ends by DNA polymerase, the

differentially expressed sequences display different annealing sites

for the nested primers on their 59 and 39 ends. The entire

population of molecules is then subjected to PCR to amplify the

desired differentially expressed sequences using the following

primers (Nested PCR Primer 1 59-TCGAGCGGCCGCCCGGG-

CAGGT-39; Nested PCR Primer 2 59-

AGCGTGGTCGCGGCCGAGGT-39) and PCR conditions

(94uC for 3099, 68uC for 3099, 72uC for 1,59; 12 cycles). Screening

of the library was performed hybridizing the subtracted library

with P32 labeled probes synthesized as first-strand cDNA from

tester and driver. Clones corresponding to differentially expressed

mRNAs will hybridize only with the tester probe, and not with the

driver probe. P32 labeled colonies were grown and plasmid DNA

extracted.

Cloning and sequences analysis
Differentially expressed cDNA was cloned in the pCR4-TOPO

vector (Invitrogen, USA) and sequenced. Sequence analysis

identified a cDNA fragment of 102 nucleotides. Similarity searches

performed using the FASTA algorithm (http://www.ebi.ac.uk/

Tools/fasta/) showed a relevant homology to some EST clones

from mature adult Ciona intestinalis animal (data not shown). The

full length sequence of the cDNA clone was obtained by using the

GeneRacerTM kit (Invitrogen, USA). The kit ensures the

amplification of only full length transcript via elimination of

truncated messages from the amplification process. 59 RACE was

performed by PCR (94uC 1 min, 52uC 1 min, 72uC 1 min for 30

cycles) using the Ci8 59Race R specific oligonucleotide (59-

CATCCACCACCAACAGGAA-39) (see Figure 1 for details) and

the GeneRacerTM 59-oligonucleotide (59- CGACTGGAGCAC-

GAGGACACTGA-39).The 59 RACE technology has identified

only one fragment of 379 bp;

The 39 RACE was performed using the Ci8 39Race F specific

oligonucleotide (59-GTGCAAATGGGGTGAGCTAT-39) and

the GeneRacerTM39 oligonucleotide (39-GCAATGCATCGCA-

TAGCAACTGTCG-59). PCR products were diluted 1:100 and

re-amplified using the Ci839Race Nested F specific oligonucleotide

(59-GTTCCCATTCAACTACCGGT-39) and the GeneRa-

cerTM39 nested oligonucleotide (59-GTTCCCATTCAAC-

TACCGGTT-39) (see Figure 1 and 2 for details). By means of

39RACE we were able to identify two cDNA fragments: a first one

of 1370 bp and a second one of 176 bp. DNA fragments were

purified and cloned in the pCR4-TOPO vector (Invitrogen, USA)

and sequenced. Sequence analysis showed that both fragments

contains a common 50 bp region overlapping with the originally

isolated 102 bp fragments (see figures 1 and 2 for details).

In order to uniquely identify the 59 sequences of the two 39

RACE cDNA fragments, a second step of 59RACE analysis was

performed. The full length longer cDNA was isolated by RT PCR

using the Ci8long 39 UTR R oligonucleotide and the GeneR-

acerTM 59-oligonucleotide (named Ci8long). The full length shorter

cDNA was isolated by PCR using the Ci8short 39UTR R and the

GeneRacerTM 59-oligonucleotide (named Ci8short). Two frag-

ments of 1662 and 486 bp were isolated, purified and cloned in

the pCR4-TOPO vector (Invitrogen, USA).

Sequence, structural and phylogenetic analysis
Similarity searches were performed using the FASTA program

(http://www.ebi.ac.uk/Tools/fasta/). Multiple alignments were

accomplished with the Clustal W program [21]. The final

sequence alignment was done using CLUSTAL W v.1.81 [21]

and the similarity shaded with CLC workbench 6.4. A

phylogenetic tree was constructed by the Neighbor-Joining

method (NJ) after 1000 bootstrap iterations by using CLC

LPS Induced Alternative Polyadenylation Mechanism
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Figure 1. Nucleotide sequence of the full length Ci8long cDNA: 59 and 39 UTR regions are described in lower case letters; the coding
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workbench 6.4. The respective GenBank accession numbers were

as follows: ACM09027.1 (Salmo salar Receptor transporting protein

3), ACO08037.1 (Oncorhynchus mykiss Receptor transporting

protein 3, XP_693604.4 (Danio rerio Receptor transporting protein

2) XP_002405527.1 (Ixodes scapularis Receptor transporting pro-

tein), AAT70680.1 (Homo sapiens Receptor transporting protein 1),

AAT70681.1 (Homo sapiens Receptor transporting protein 2),

NP_113628.1 (Homo sapiens Receptor transporting protein 3),

AAH13161.1 (Homo sapiens Receptor transporting protein 4),

AAT70670.1 (Mus musculus Receptor transporting protein 1),

AAT70671.1 (Mus musculus Receptor transporting protein 2),

AAT70672.1 (Mus musculus Receptor transporting protein 3),

AAH24872.1 (Mus musculus Receptor transporting protein 4),

NP_001179185.1 (Bos taurus Receptor transporting protein 1),

DAA33411.1 (Bos taurus Receptor transporting protein 2),

NP_001069429.1 (Bos taurus Receptor transporting protein

4),XP_003358456.1 (Sus scrofa Receptor transporting protein 4),

XP_002934100.1 (Xenopus tropicalis Receptor transporting protein

3), GAA36455.2 (Clonorchis sinensis Receptor transporting protein

3) [21].

Structural prediction was performed using the PSIPRED

Protein Structure Prediction Server (http://bioinf.cs.ucl.ac.uk/

psipred/) and the Predict Protein algorithm (http://www.

predictprotein.org/).

Gene expression analysis
Tissue differential expression of the two mRNAs was studied by

Real-Time PCR using the Sybr-Green method. To discriminate

the two transcripts specific sets of primers were designed on

39UTR regions using Custom Primers OligoPerfectTM Designers

software (https://tools.invitrogen.com/) and synthesized commer-

cially (Eurofins MWG Operon, Ebersberg, Germany). Real-time

PCR analysis was performed using the Applied Biosystems 7500

real-time PCR System. Ci8long isoform tissue expression was

performed in a 25 ml PCR reaction containing 2 ml cDNA

converted from 250 ng of total RNA, 300 nM Ci8long 39UTR

forward primer (59-TTGCATTTTATTCCATCATTGC-39) and

Ci8long 39 UTR Reverse primers (59-TTGCGCA-

TAAGCTTGGTTTA-39), 300 nM actin forward (59-

TGATGTTGCCGCACTCGTA-39) and reverse (59- TCGA-

CAATGGATCCGGT-39) primers, and 12.5 ml of Power Sybr-

Green PCR Master Mix (Life Technologies, Milan, Italy).

Ci8short expression was performed in the same PCR conditions

with 300 nM Ci8short 39UTR Forward primer(-

59TACCGGTTGTTCCTGTTGGT-39)and 300 nM Ci8short

39UTR Reverse specific primer (59-GACGTCATCAGACTTC-

TAAATGCT-39).

The 50 cycles of the two-step PCR program consisted of initial

polymerase activation for 3 min at 95uC followed by denaturing

step at 95uC for 15 sec, and then the annealing/extension was

carried out at 60uC for 45 sec when the fluorescent signal was

detected. Each set of samples was run three times and each plate

contained quadruplicate cDNA samples and negative controls.

The specificity of amplification was tested with real time PCR

melting analysis. To obtain sample quantification, the 22DDCt

method was used and the relative changes in gene expression was

analysed as described in the Applied Biosystems Use Bulletin N.2

(P/N 4303859). The amount of Ci8long and Ci8short transcripts

from different tissues was normalized to actin in order to

compensate for variations in input RNA amounts. Relative

Ci8long and Ci8 short expression was determined by dividing

the normalized value of the target gene in each tissue by the

normalized value obtained from the untreated tissue.

Northern blot analysis was performed as previously described

[22]. A nucleotide fragment corresponding to the coding region of

the Ci8short cDNA (including the common region between the

two mRNAs) was labelled with a-CTP32 and the Rediprime II

DNA Labeling System (GE Healthcare Life Science, Milan, Italy).

Membrane was exposed to a Kodak X-Omat AR X-ray film for

48 hours.

region were in upper case letters; the first ATG and the STOP codon were underlined; sequence in bold displays the 102 bp
fragment identified by Subtractive Hybridization. Box shows the canonical C.intestinalis polyadenylation site. The arrows indicate the
oligonucleotides used for cloning procedures, Real time PCR and ISH assay.
doi:10.1371/journal.pone.0063235.g001

Figure 2. Nucleotide sequence of the full length Ci8short cDNA: 59 and 39 UTR regions are described in lower case letters; the
coding region were in upper case letters; the first ATG and the STOP codon were underlined; sequence in bold display the 102 bp
fragment identified by Subtractive Hybridization. The arrows indicate the oligonucleotide used for cloning procedures, Real time PCR and ISH
assay.
doi:10.1371/journal.pone.0063235.g002
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Figure 3. Amino acid comparison and structural analysis of Ci8long and Ci8short proteins. Panel A) Alignment of Ci8long and Ci8short
deduced amino acid sequences. Asterisks indicate amino acid identity. Panel B) Schematic representation of Ciona intestinalis ENSCING00000009651
gene, Ci8long and Ci8short transcripts. Panel C) Schematic representation of the in silico analysis of the Ci8long deduced amino acid sequences.
doi:10.1371/journal.pone.0063235.g003
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Pharynx explants preparation and histology
The tunic surface was cleaned and sterilized with ethyl alcohol

and pharynx fragments (200 mg) were excised from the injection

site of sham and LPS challenge ascidians. For in situ hybridization

studies, pharynx fragments were fixed in Bouin9s fluid (saturated

picric acid:formaldehyde:acetic acid 15:5:1) for 24 hours, paraffin

embedded, and serially cut at 6 mm (Leica RM2035 microtome,

Solms, Germany).

In situ hybridization assay (ISH)
To examine tissue excised from the inflamed body wall, ISH

was carried out with digoxigenin-11-UTP-labeled riboprobes

(1 mg/ml final concentration). The Ci8long probe was generated

by PCR amplifying a cDNA fragment of 165 bp covering the

39untranslated region from nucleotide 1496 to nucleotide 1662 of

the isolated cDNA using the Ci8long 39UTR forward oligonucle-

otide (59-TTGCATTTTATTCCATCATTGC-39) and the Ci8-

long 39UTR reverse oligonucleotides (59-TTGCGCA-

TAAGCTTGGTTTA-39) (see Figure 1).

The DNA fragment was cloned in the pCR4-TOPO vector

(Invitrogen, USA). The Ci8short probe was generated by PCR

amplifying a cDNA fragment of 138 bp covering the 39un-

translated region from nucleotide 348 to nucleotide 486 of the

isolated cDNA using the Ci8 short 39UTR forward primer (-

59TACCGGTTGTTCCTGTTGGT-39)and the Ci8 short

59UTR Race Reverse specific oligonucleotide (59-GACGTCAT-

CAGACTTCTAAATGCT-39) (see Figure 2).

The digoxigenin-11-UTP-labeled riboprobes was carried out

according to manufacturer9s instructions (Roche Diagnostics). The

re-hydrated histological sections were digested with proteinase K

(10 mg/ml) in PBS for 5 min, washed with PBS-T, and treated for

hybridization with 50% formamide, 5X SSC, 50 mg/ml heparin,

500 mg/ml yeast tRNA, and 0.1% Tween 20, at 37uC overnight.

After exhaustive washing in PBS-T and 4XSSC (twice for 10 min),

the sections were incubated for 1hr with anti-DIG-Fab-AP

conjugate (Roche Diagnostics, Milan, Italy) diluted 1:500 and

washed in PBS-T. Finally, the sections were incubated in the 5-

bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium liquid

substrate system (Sigma-Aldrich, Milan, Italy). Colour develop-

ment was stopped after 30 min at room temperature.

Statistical methods
Student9s t-test was used to estimate statistical significance.

Multiple comparisons were performed with one-way analysis of

variance (ANOVA) and different groups were compared by using

Tukey9s t-test. Standard deviations were calculated on four

experiments. P,0.01 was considered statistically significant.

Results

Isolation of the Ci8short and Ci8long cDNAs generated
by alternative APA

By means of a PCR-based subtractive hybridization strategy

and 59 and 39 Gene RACE, two full-length cDNAs were identified

from mRNA extracted from the pharynx of C. intestinalis after LPS

injection. A first cDNA of 1708 nucleotides (named Ci8long)

showed short 59 and 39untranslated regions (170 and 224

nucleotides, respectively) and an open reading frame of 1314

nucleotides coding for a 437 amino acid long protein (putative

MW 47973.90 Dalton) (see Figure 1 and Figure 3 panel A for

details). A second cDNA, named Ci8short, consisted of a 511

nucleotides fragment with 59 and 39untranslated regions of 167

and 122 nucleotides, respectively (Figure 2). The Ci8short cDNA

contains an open reading frame of 219 nucleotides coding for a 73

amino acid long protein (putative MW 7328.54 Dalton) (Figure 3

panel A). Alignments between the Ci8long and the Ci8short

deduced amino acid sequences showed that the Ci8short protein

represents a shorter form of the Ci8long protein (Figure 3 panels A

and B).

A search in Ensembl genome browser performed with the

Ci8long nucleotide sequence identified a five exons and four

introns gene (ENSCING00000009651) localized on Chromosome

5: 555,293–559,003. This analysis identified a unique transcript

(ENSCINT00000019621) for this gene. Then, a more detailed

analysis was performed aligning the nucleotide sequences of the

Ci8long, the Ci8short and the sequence of the annotated transcript

(ENSCING00000009621). The Ci8long matches with the entire

coding sequence of the annotated transcript. A comparison

between the Ci8short versus the annotated genomic sequence

showed that it matches with the 59untranslated region, the first 218

nucleotides of the coding region (corresponding to the first exon

sequence) plus 91 nucleotides lying within the first intron of the

gene (Figure 3 Panel B). In this region, we identified a non-

canonical polyadenylation site (AAUACA) between nucleotides

402–407. In addition, two conserved tetranucleotides elements

(UGUA) were identified in the positions 433–436 and 442–445,

respectively (Figure 4).

On the other hand, the Ci8long 39 UTR was analysed for the

presence of polyadenylation sites. The Ci8long cDNA displays an

ATTAAA sequence located between nucleotides 1640 and 1646

which is considered the most frequent variant of the canonical

polyadenylation site [23] (Figure 1). In conclusion, in silico analysis

showed that the 39 untraslated regions of the two mRNAs differ in

the length, sequence and polyadenylation signals.

In silico structural analysis
In silico structural analysis of the Ci8long protein showed two

putative transmembrane regions between aa 72–90 and aa 173–

192 (Figure 3 panel C). None of these regions were detected in the

Ci8short deduced sequence. In addition, the residue composition

analysis of the Ci8short deduced sequence revealed a high

percentage of proline and glycine residues (22% and 13%,

respectively).

Phylogenetic analysis of the Ci8long RTP-like domain
A FASTA3 search showed that the Ci8long transcript contains

a protein domain with relevant homology to several components

of the Receptor Transporting Protein (RTP) family. This RTP-like

domain, absent in the Ci8short transcript, displays a high

percentage of similarity (SP) and identity (IP) with vertebrate

and invertebrate RTPs: 64% SP and 55% IP with Ixodes scapularis

RTP (arthropod), 46% SP and 27% IP with Danio rerio RTP2, 41%

SP and 31% IP with Salmo salar RTP3, 45% SP and 30% IP with

Oncorhynchu mykiss RTP3, 41% SP and 25% IP with Mus musculus

RTP 4, 42% SP and 25% IP with Bos taurus RTP4, 41% SP and

21% IP with Homo sapiens RTP 4. Ci8long Receptor Transporting

Protein domain was aligned with Receptor Transporting Protein

domain of invertebrate (Ixodes scapularis, Clonorchis sinensis) and

vertebrate (Salmo salar, Oncorhynchus mykiss, Danio rerio, Xenopus

tropicalis, Bos taurus, Sus scrofa, Mus musculus, Homo sapiens) (Figure 5).

The phylogenetic tree, constructed by comparing vertebrate

and invertebrate components of the RTP family, showed the

following main clusters. The first one containing fish RTP2

(D.rerio) and RTP3 (S. salar, O. mykiss), the Ci8long and the

arthropod RTP sequences (I. scapularis). The second one consists of

mammal RTPs separated into the RTP3 and RTP4 subgroups (H.

sapiens, M. musculus, B.taurus, S.scrofa) and the RTP1 and RTP2

LPS Induced Alternative Polyadenylation Mechanism
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subgroups. The third one consists of the amphibian X. tropicalis and

the flatworm C.sinensis RTP 3-like (Figure 6).

Differential expression of Ci8long and Ci8short
transcripts disclosed by Real Time PCR and Northern
blotting

To study the expression pattern of the Ci8long and Ci8short

mRNAs, specific primers were designed within the 39 UTR of the

two cDNAs (see Figure 1 and Figure 2). Quantitative mRNA

expression of Ci8long and Ci8short in naive, sham and LPS

challenged ascidians was examined by Real Time PCR analysis.

Four naive, sham and LPS-treated ascidians in three distinct

experiments were examined at different post-inoculation time

points (1, 4, 8, 12, 24, 48, 72 h). The LPS treated ascidians were

compared to specimens inoculated with marine solution, and the

latter compared to naive ascidians.

In the LPS-treated ascidians, Ci8short expression, compared to

the Ci8long one, disclosed a significantly higher RNA level at all

time points (P,0.01). In particular, the Ci8short expression was

enhanced at 1 h and reached a maximum of expression 12 h p.i.,

then decreased at 72 h p.i. (Figure 7, panel A).

The Ci8long mRNA level was slightly enhanced at 1 and 12 h

p.i. (Figure 7, panel B). The inoculation procedure (sham

ascidians) slightly modulated the expression levels in comparison

to the naive specimens (Figure 7, panel A e B).

In addition, Figure 7 panel C shows the comparison of the level

of expression of the Ci8short mRNA versus the Ci8long one. This

assay demonstrates that the number of molecules of the short

mRNA is statistically higher in the LPS challenged ascidians at all

the time points.

The data are in agreement with the Northern blot assay showed

inside Figure 8. Total RNA, from pharynx from naive and LPS-

challenged ascidians 1 hour and 12 hours p.i., were fractionated

Figure 4. Genomic structure of the Ci8long gene. Panel A) schematic representation of the Ciona intestinalis ENSCING00000009651 gene (Ci8
ANN); B) Alignment of the Exon 1 and Intron 1 of Ciona intestinalis gene (Ci8 ANN) with the Ci8long fragment (1–390 bp) and Ci8short full length
sequence. 59 UTR regions were described in lower case letters; the first ATG was highlighted in bold. The Ci8short 39UTR corresponds to the first 91bp
of the first intron of the annotated gene (Ci8 ANN). Boxes show the non-canonical C.intestinalis ‘‘AAUACA’’ polyadenylation sites and the
tetranucleotide sequences’’UGUA’’.
doi:10.1371/journal.pone.0063235.g004
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and hybridized with a P32 labeled probe covering the coding

region of the Ci8short cDNA. This analysis showed a faint band

corresponding to the size of the Ci8long mRNA in all the lines and

an increasing hybridization signal in LPS-challenged ascidians in

a region of about 500 nucleotides corresponding to the size of the

Ci8short mRNA.

In situ hybridization assay of pharynx
Figure 9 shows histological sections of the pharynx containing

hemocytes from sham (panels A and F) and LPS-treated ascidians

(panels B,C,D,E,G and H) 12 h p.i.

The Ci8short localization in the pharynx from LPS-treated

ascidians shows an enhanced gene expression (Figure 9 panels

B,C,D and E) when compared to the sham (panel A). In particular,

a large part of the vessels appeared to be densely populated with

hemocytes expressing the Ci8short transcript (Figure 9 panels B,C).

The Ci8short is manly expressed by endothelial cells (panel d) that

appeared to be marked in various regions of the pharynx bars

(panel E).

On the contrary, differences in Ci8long transcript expression

could not be observed between sham (Figure 9, panel F) and LPS

treated ascidians (Figure 9, panel G). Figure 9 panel H shows that

the Ci8long transcript is mainly expressed in compartment/morula

and signet ring cells located in tightly packed cluster within the

vessel lumen (Figure 9 panel H, insets).

Histological sections treated with the sense strand (negative

control) did not display any positive staining.

Discussion

In recent years it has become evident that APA is an important

mechanism in vertebrate and invertebrate organisms to produce

different protein isoforms (coding region-APA) or regulate gene

expression (UTR-APA). Differential processing at multiple poly(A)

sites can be influenced by physiological and pathological

conditions such as cell growth, differentiation, development,

cancer and stress condition such as inflammation [1].

In this paper, we used a subtractive hybridization strategy on

the attempts to identify LPS differentially expressed sequences in

the C.intestinalis pharynx tissue that has been retained to be the

main protagonist of the innate immunity responses. This strategy

allowed us the identification of two mRNAs (Ci8long and Ci8short)

derived from the transcription of the (ENSCING00000009651)

annotated gene. In particular, LPS was able to weakly modulate

the expression of the Ci8long transcript and to induce the

activation of a LPS-induced APA mechanism responsible for the

generation of a shorter mRNA (Ci8short). In fact, in silico analysis

identified a non-canonical polyadenylation site within the first

intron of the annotated gene. This region was composed by the

hexanucleotide AATACA followed by two short tetranucleotides

(TGTA). The latter sequences have been shown to be involved in

alternative polyadenylation events in vertebrate binding specific

cleavage factors [24].

Sequence analysis showed that the Ci8long deduced amino acid

sequence displays a protein domain with homology to components

of the Receptor Transporting Protein (RTP) family [25]. The RTP

family is composed of four members (RTP1-4) who were first

identified as partners for mammalian odorant receptors, pro-

moting cell surface expression and leading to functional responses

in heterologous cell system. RTP1 and RTP2 are expressed in

Figure 5. Alignment of Ci8long Receptor Transporting Protein domain with Receptor Transporting Protein domain of invertebrate
(Ixodes scapularis, Clonorchis sinensis) and vertebrate (Salmo salar, Oncorhynchus mykiss, Danio rerio, Xenopus tropicalis, [RTP1,
RTP2 and RTP4 from Bos Taurus], Sus scrofa, [RTP1-4 from Mus musculus], [RTP1-4 from Homo sapiens]). The conservation of amino
acid is represented by letter background colour gradients (from black to white).
doi:10.1371/journal.pone.0063235.g005

Figure 6. Phylogenetic tree of vertebrate and invertebrate components of Receptor Transporting Protein family. The tree was
constructed by the neighbour-joining method and bootstrap analysis. Bootstrap value indicates the percentage of time that the particular node
occurred in 1000 trees generated by bootstrapping the sequences. Bar 0.6 (number of amino acid residues substitutions for site).
doi:10.1371/journal.pone.0063235.g006
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olfactory neurons and vomeronasal neurons, RTP3 is expressed in

liver, lung and testis and RTP4 is expressed in a wide variety of

tissues including lymph nodes, peripheral blood leucocytes, spleen

and thymus (reviewed in [25]). The mechanism of action of this

family of proteins is poorly understood and the existence of several

closely related family members with disparate phenotypes suggests

a wide role of these proteins.

The phylogenetic analysis supports that the CiRTP-like domain

identified in the Ci8long RNA is a component of the RTP family

while discloses the close relationship of RTPs inside the chordate

clade sharing a common ancestor. Moreover, the RTP-like

sequence found in the arthropod I. scapularis suggests a more

ancient progenitor. A similar consideration arises from the

phylogenetic branch formed with the amphibian X. laevis and

the flatworm C. sinensis RTP3-like sequences.

We do not know the functional role of the presumptive RTP-

like protein as deduced from Ci8long cDNA sequence as well as of

the presumptive protein encoded by the Ci8short sequence. In any

case, the short isoform do not contain the RTP domain and do not

display any other homolog in the data banks different from the

C.intestinalis annotated transcript (data not shown).

Figure 7. Real-time PCR analysis. Comparison of the Ci8short (Panel A) and Ci8long (Panel B) gene expression in Ciona intestinalis pharynx in LPS-
injected, sham and naı̈ve ascidians. Panel C shows the comparison between the Ci8short and Ci8long expression in LPS-injected animals. *P,0.05,
**P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0063235.g007

Figure 8. Northern blot analysis. Panel A shows the ethidium
bromide staining of the RNA extracted from Ciona intestinalis pharynx
in naive ascidians (Un) and LPS-injected ascidians (1 h and 12 hours
p.i.). Panel B shows the same gel blotted on membrane and hybridized
with a P32 labelled fragment corresponding to the coding region of the
Ci8short cDNA.
doi:10.1371/journal.pone.0063235.g008
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Furthermore, in silico prediction demonstrated that the Ci8long

derived protein contains two transmembrane regions which are

not present in the Ci8short protein suggesting that the short

isoform may represent an LPS induced secreted form of the

constitutively expressed gene.

In fact, it is noteworthy that Ci8long is expressed both in naive

and LPS-challenged ascidians while the Ci8short transcript is

significantly enhanced during the inflammatory process.

In particular, as demonstrated by means of Real Time PCR, the

Ci8short expression profile showed a peak of activation within 1

hour p.i. followed by a second wave of activation at the stage of

12 hours. Interestingly, a similar pattern of activation has been

observed for the expression of other LPS-induced components of

the C. intestinalis inflammatory response [8,9,11–13]. These data

are in agreement with the Northern blot analysis.

Furthermore, the tissue localization of the Ci8short and Ci8long

transcripts showed that LPS inoculation also induced a differential

tissue localization of the two mRNAs probably related to the APA

mechanism. The Ci8long transcript was expressed in some

hemocytes of pharynx vessels, whereas the Ci8short mRNA

appears to be strongly up regulated in compartment/morula and

signet ring cells as well as in vessel endothelial cells and epithelium.

In this respect, compartment/morula cell types are known to

populate inflamed tissues engaged in the expression of immune

related genes [8,9,11–13]. Although precise quantitative data were

not derived from the histological observations, the possibility that

an increased number of Ci8short positive hemocytes in the vessels

as well as positive regions of the endothelium can be related to LPS

inoculation is supported by previous published papers [8,9,11–13].

Finally, the finding that pharynx tissues gene expression can be

upregulated by LPS is consistent with evidence on C3-like gene

expression [17], and supports the finding that ascidian pharynx is

involved in immune-surveillance. This is in accordance with the

role of this organ that comes in contact with a large variety of

microbes exerting an early recognition of Pathogen-associated

molecular patterns.

Figure 9. Histological sections of Ciona intestinalis pharynx. In situ hybridization with the Ci8short riboprobe: sham ascidian (Panel A) and
ascidian at 12 h after LPS challenge (Panel B). Panels C-E show magnification of vessels and endothelium reported inside Panel B. In situ hybridization
with the Ci8long riboprobe: sham ascidian (Panel F) and ascidian at 12 h after LPS inoculation (Panel G). Panel H shows magnification of a vessel
inside panel G. Panel H inserts: signet ring cells (rc) and compartiment\morula cells (mc).Bars size: 50 mm (Panels A, B), 25 mm (Panels C, E), 10 mm
(Panels D, H), 100 mm (Panels F, G), 5 mm (Panel H insets); phv: pharynx vessels, ctr: sense strand control hybridization, e: epithelium, hc: hemocyte
cluster.
doi:10.1371/journal.pone.0063235.g009
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Conclusions
This paper reports on the first identification of a CiRTP-like

protein and an LPS induced APA mechanism in the invertebrate

chordate Ciona intestinalis. In this respect, we showed that the

mechanism based on different polyadenylation sites is an ancestral

powerful strategy of gene regulation interfering with the level of

expression and tissue distribution of alternative transcripts.

Acknowledgments

We thank Prof. Nicola Parrinello for critical reading and corrections of the

manuscript.

Author Contributions

Conceived and designed the experiments: PC AB AV. Performed the

experiments: DP VL MAS AB AV. Analyzed the data: PC AB AV. Wrote

the paper: PC AB AV.

References

1. Di Giammartino DC, Nishida K, Manley JL (2011) Mechanisms and

consequences of alternative polyadenylation. Mol Cell 43: 853–866.

2. Tian B, Hu J, Zhang H, Lutz CS (2005) A large-scale analysis of mRNA

polyadenylation of human and mouse genes. Nucleic Acids Res 33: 201–212.

3. Parrinello N, Patricolo E, Canicattı̀ C (1984) Inflammatory-like reaction in the

tunic of Ciona intestinalis (Tunicata). Encapsulation and tissue injury I. Biol Bull

167: 229–37.

4. Parrinello N, Patricolo E, Canicattı̀ C (1984) Inflammatory-like reaction in the

tunic of Ciona intestinalis (Tunicata). Encapsulation tissue injury II. Biol Bull

167: 238–50.

5. Parrinello N, Rindone D (1981) Studies on the natural hemolytic system of the

annelid worm Spirographis spallanzanii viviani (Polychaeta). Dev Comp

Immunol 5: 33–42.

6. Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, et al. (2002) The draft

genome of Ciona intestinalis: insights into chordate and vertebrate origins.

Science 298: 2157–2167.

7. Iwanaga S, Lee BL (2005) Recent advances in the innate immunity of

invertebrate animals. J Biochem Mol Biol 38: 128–150.

8. Vizzini A, Pergolizzi M, Vazzana M, Salerno G, Di Sano C, et al. (2008) FACIT

collagen (1alpha-chain) is expressed by hemocytes and epidermis during the

inflammatory response of the ascidian Ciona intestinalis. Dev Comp Immunol

32: 682–692.

9. Parrinello N, Vizzini A, Arizza V, Salerno G, Parrinello D, et al. (2008)

Enhanced expression of a cloned and sequenced Ciona intestinalis TNFalpha-

like (CiTNF alpha) gene during the LPS-induced inflammatory response. Cell

Tissue Res 334: 305–317.

10. Parrinello N, Vizzini A, Salerno G, Sanfratello MA, Cammarata M, et al. (2010)

Inflamed adult pharynx tissues and swimming larva of Ciona intestinalis share

CiTNFalpha-producing cells. Cell Tissue Res.

11. Bonura A, Vizzini A, Salerno G, Parrinello D, Parrinello N, et al. (2010) Cloning

and expression of a novel component of the CAP superfamily enhanced in the

inflammatory response to LPS of the ascidian Ciona intestinalis. Cell Tissue Res

342: 411–421.

12. Bonura A, Vizzini A, Salerno G, Parrinello N, Longo V, et al. (2009) Isolation

and expression of a novel MBL-like collectin cDNA enhanced by LPS injection

in the body wall of the ascidian Ciona intestinalis. Mol Immunol 46: 2389–2394.

13. Vizzini A, Parrinello D, Sanfratello MA, Salerno G, Cammarata M, et al. (2012)
Inducible galectins are expressed in the inflamed pharynx of the ascidian Ciona

intestinalis. Fish Shellfish Immunol 32: 101–109.
14. Martinucci GB, Dallai R, Burighel P, Lane NJ (1988) Different functions of tight

junctions in the ascidian branchial basket. Tissue Cell 20: 119–132.

15. Raftos DA, Cooper EL, Habicht GS, Beck G (1991) Invertebrate cytokines:
tunicate cell proliferation stimulated by an interleukin 1-like molecule. Proc Natl

Acad Sci U S A 88: 9518–9522.
16. Raftos DA, Stillman DL, Cooper EL (1991) Interleukin-2 and phytohaemag-

glutinin stimulate the proliferation of tunicate cells. Immunol Cell Biol 69 ( Pt 4):
225–234.

17. Giacomelli S, Melillo D, Lambris JD, Pinto MR (2012) Immune competence of

the Ciona intestinalis pharynx: complement system-mediated activity. Fish
Shellfish Immunol 33: 946–952.

18. Pinto MR, Chinnici CM, Kimura Y, Melillo D, Marino R, et al. (2003) CiC3-
1a-mediated chemotaxis in the deuterostome invertebrate Ciona intestinalis

(Urochordata). J Immunol 171: 5521–5528.

19. Cammarata M, Arizza V, Cianciolo C, Parrinello D, Vazzana M, et al. (2008)
The prophenoloxidase system is activated during the tunic inflammatory

reaction of Ciona intestinalis. Cell Tissue Res 333: 481–492.
20. Parrinello N, Arizza V, Cammarata M, Giaramita FT, Pergolizzi M, et al.

(2007) Inducible lectins with galectin properties and human IL1alpha epitopes
opsonize yeast during the inflammatory response of the ascidian Ciona

intestinalis. Cell Tissue Res 329: 379–390.

21. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucleic
Acids Res 22: 4673–4680.

22. Vizzini A, Arizza V, Cervello M, Cammarata M, Gambino R, et al. (2002)

Cloning and expression of a type IX-like collagen in tissues of the ascidian Ciona
intestinalis. Biochim Biophys Acta 1577: 38–44.

23. Lutz CS, Moreira A (2011) Alternative mRNA polyadenylation in eukaryotes:
an effective regulator of gene expression. Wiley Interdiscip Rev RNA 2: 22–31.

24. Yang Q, Gilmartin GM, Doublie S (2010) Structural basis of UGUA recognition

by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA
39 processing. Proc Natl Acad Sci U S A 107: 10062–10067.

25. Mainland J, Matsunami H (2012) RAMP like proteins : RTP and REEP family
of proteins. Adv Exp Med Biol 744: 75–86.

LPS Induced Alternative Polyadenylation Mechanism

PLOS ONE | www.plosone.org 12 April 2013 | Volume 8 | Issue 4 | e63235


