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Testicular androgens during the perinatal period play an important role in the sexual
differentiation of the brain of rodents. Testicular androgens transported into the brain
act via androgen receptors or are the substrate of aromatase, which synthesizes
neuroestrogens that act via estrogen receptors. The latter that occurs in the perinatal
period significantly contributes to the sexual differentiation of the brain. The preoptic
area (POA) and the bed nucleus of the stria terminalis (BNST) are sexually dimorphic
brain regions that are involved in the regulation of sex-specific social behaviors
and the reproductive neuroendocrine system. Here, we discuss how neuroestrogens
of testicular origin act in the perinatal period to organize the sexually dimorphic
structures of the POA and BNST. Accumulating data from rodent studies suggest that
neuroestrogens induce the sex differences in glial and immune cells, which play an
important role in the sexually dimorphic formation of the dendritic synapse patterning
in the POA, and induce the sex differences in the cell number of specific neuronal cell
groups in the POA and BNST, which may be established by controlling the number
of cells dying by apoptosis or the phenotypic organization of living cells. Testicular
androgens in the peripubertal period also contribute to the sexual differentiation of
the POA and BNST, and thus their aromatization to estrogens may be unnecessary.
Additionally, we discuss the notion that testicular androgens that do not aromatize to
estrogens can also induce significant effects on the sexually dimorphic formation of the
POA and BNST.

Keywords: sexual differentiation of the brain, sexually dimorphic nucleus, sex difference, androgens, estrogens,
preoptic area, bed nucleus of the stria terminalis

INTRODUCTION

Sex differences in the structures of the brain are considered to underlie sex-specific functions of
the brain and brain functions that differ between sexes or genders. The mechanisms by which
the brain is sexually differentiated have not yet been completely elucidated; however, they have
long been studied using animal models, especially rodents. Based on accumulated data, androgens
secreted from the testes during the perinatal period are converted to estrogens in the brain, wherein
the neuroestrogens masculinize and defeminize the brain. Neuroestrogens are essential but not
sole factors in the sexual differentiation of the brain. There are other factors that significantly
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contribute to the brain sexual differentiation. The processes
of brain sexual differentiation require sex chromosome genes’
expression in the brain (McCarthy and Arnold, 2011; Cox et al.,
2014) and gonadal steroids secreted during the peripubertal
period (Juraska et al., 2013; Schulz and Sisk, 2016). However,
there is no doubt that neuroestrogens of testicular origin
play an important role in the sexual differentiation of the
brain. In this mini review, we focused on two sexually
dimorphic brain regions: the preoptic area (POA) and the bed
nucleus of the stria terminalis (BNST), which are involved
in the regulation of sexually dimorphic social behaviors and
reproductive neuroendocrine functions. First, we give an
overview of the sex differences in the POA and BNST of
the rodent brain. Second, we discuss how neuroestrogens
masculinize or defeminize the POA and BNST. Third, we further
discuss the notion that testicular androgens that do not aromatize
into estrogens can also induce the sexually dimorphic formation
of the POA and BNST.

SEX DIFFERENCES IN THE POA AND
BNST

The POA and BNST show morphological sex differences that are
related to sex-specific brain functions (Figure 1). The number of
dendritic spine synapses in the POA is twofold greater in male
rats than in females; the POA masculinized by neuroestrogens,
resulting in a greater number of dendritic spine synapses, plays an
important role in the control of male sexual behavior (Amateau
and McCarthy, 2002a, 2004; Wright et al., 2008; Wright and
McCarthy, 2009). The male-biased sex difference in dendritic
spine synapses in the POA is established by the crosstalk between
neuroendocrine and immune systems where microglia and mast
cells have significant roles [see reviews (Arambula and McCarthy,
2020; McCarthy, 2020) and the next section].

In the POA of rats and mice, there are two sexually
dimorphic nuclei that have been identified to date. The sexually
dimorphic nucleus of the POA (SDN-POA) exhibits male-
biased sex differences in volume and the number of neurons
(Gorski et al., 1978, 1980). The SDN-POA of male rats has
been suggested to be related to partner preference (Houtsmuller
et al., 1994; Woodson et al., 2002) and sexual arousal (Arendash
and Gorski, 1983; De Jonge et al., 1989; Maejima et al., 2018);
however, the physiological functions of the SDN-POA require
further investigation. Approximately half of the SDN-POA
neurons express calbindin-D28K (Calb) (Morishita et al., 2017),
a calcium-binding protein that functions as a buffer, sensor, and
transporter of calcium (Schmidt, 2012). A cluster of Calb neurons
in the SDN-POA is termed the calbindin-sexually dimorphic
nucleus (CALB-SDN), which has more Calb neurons in males
than in females (Sickel and McCarthy, 2000; Edelmann et al.,
2007; Orikasa and Sakuma, 2010). Although the physiological
roles of Calb neurons remain unclear, Calb neurons in male rats
are activated during sexual behavior (Yamaguchi et al., 2018).

Another sexually dimorphic nucleus in the POA is the
anteroventral periventricular nucleus (AVPV), which is larger
and contains more neurons in females than in males (Bleier et al.,

1982). The AVPV of rats contains neurons expressing kisspeptin,
neurons producing dopamine, and neurons producing both
GABA and glutamate, and exhibits a female-biased sex difference
in the number of these neurons (Simerly et al., 1985a; Ottem
et al., 2004; Kauffman et al., 2007). In the AVPV of mice,
approximately half of kisspeptin neurons produce dopamine and
vice versa (Clarkson and Herbison, 2011). In the female AVPV,
kisspeptin neurons expressing estrogen receptor α (ERα) are
a target of the positive feedback actions of ovarian estrogens
to induce ovulation (Kauffman, 2009; Tsukamura et al., 2010).
Furthermore, kisspeptin neurons in the AVPV of female mice
are key players in orchestrating successful reproduction by
synchronizing copulation with ovulation (Hellier et al., 2018).
Dual-phenotype GABA/glutamate neurons in the AVPV of rats
and mice interact with gonadotropin-releasing hormone neurons
to excite or inhibit their activity (Ottem et al., 2004; Liu et al.,
2011). Dopamine neurons in the AVPV of female mice enhance
maternal behavior, whereas dopamine neurons in the AVPV of
male mice do not affect parental behavior, but suppress intermale
aggression (Scott et al., 2015).

The principal nucleus of the BNST (BNSTp) is a subnucleus
of the BNST showing male-biased sex differences in size and
neuron number (Hines et al., 1985, 1992). Like the SDN-POA, the
BNSTp contains more Calb neurons in male mice than in female
mice (Gilmore et al., 2012). The subregion of the BNSTp that
contains many Calb neurons and exhibits the male-biased sex
difference in the number of Calb neurons is hereinafter referred
to as CALB-BNSTp. BNSTp neurons expressing aromatase in
male mice are necessary to distinguish the conspecific sexes and
ensure social interactions (Bayless et al., 2019). However, the
physiological functions of Calb neurons in the BNSTp remain
unclear. Unlike the CALB-BNSTp, the ventral part of the BNSTp
(BNSTpv) contains few Calb neurons without sex differences, but
the BNSTpv is larger and has more non-Calb neurons in female
mice than in males (Moe et al., 2016; Morishita et al., 2017). Thus,
the BNSTp is composed of a region exhibiting male-biased sex
differences in Calb neurons and a region exhibiting female-biased
sex differences in non-Calb neurons.

NEUROESTROGENS OF TESTICULAR
ORIGIN ARE SIGNIFICANT FACTORS
FOR SEXUALLY DIMORPHIC
FORMATION OF THE POA AND BNST

Neuroestrogens originating from testicular androgens affect the
POA and BNST in the perinatal period to organize sexually
dimorphic structures in a variety of modes of action (Figure 2).
As mentioned before, the POA of rats has more dendritic spines
in males than in females. The increased number of dendritic
spines in the male POA is induced by estrogens in the perinatal
period (Amateau and McCarthy, 2002a, 2004). The mechanisms
responsible for the masculinization of dendritic spine patterning
by estrogens are considered to be as follows. First, neuroestrogens
originating from testicular androgens during the perinatal period
affect mast cells in the POA via ER to stimulate histamine

Frontiers in Neuroscience | www.frontiersin.org 2 July 2020 | Volume 14 | Article 797

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00797 July 27, 2020 Time: 18:3 # 3

Tsukahara and Morishita Sexually Dimorphic Formation by Neuroestrogens

FIGURE 1 | Morphological sex differences in the POA and BNST of rats and mice. The AVPV exhibits female-biased sex differences in volume and neuron number.
Compared with males, females have a greater number of kisspeptin neurons, dopamine neurons, and GABA/glutamate neurons in the AVPV. The SDN-POA exhibits
male-biased sex differences in volume and neuron number. The SDN-POA contains a cluster of Calb neurons termed CALB-SDN. The CALB-SDN is larger in volume
and contains a larger number of Calb neurons in males than in females. The POA shows a sex difference in the dendritic synapse pattern. POA neurons in males
have more dendritic spines compared with POA neurons in females. The BNST contains a male-biased sexually dimorphic nucleus (BNSTp), which is composed of a
sexually dimorphic subregion that is larger in volume and number of Calb neurons in males (CALB-BNSTp) and a sexually dimorphic subregion that is larger in
volume and number of non-Calb neurons in females (BNSTpv).

release, which then stimulates microglia in the POA to release
prostaglandin E2, which triggers POA neurons to increase
dendritic spine synapses via induction of glutamate receptor
signaling (Wright et al., 2008; Wright and McCarthy, 2009;
Lenz et al., 2011, 2013, 2018). Thus, microglia and mast cells
have critical roles in the masculinization of dendritic spine
patterning. The POA of postnatal males has twice as many
ameboid microglia, a class of microglia with a more activated
morphological profile, compared with postnatal females (Lenz
et al., 2013). The male-biased sex difference in ameboid microglia
is regulated by neuroestrogens of testicular origin, because
treatment with estradiol increased ameboid microglia in the POA
of postnatal females (Lenz et al., 2013). The male POA has more

activated mast cells than the female POA in the perinatal period,
and approximately half of the mast cells in both sexes express
ERα (Lenz et al., 2018). Additionally, astrocytes in the POA of
postnatal rats exhibit a sex difference in morphology: astrocytes in
males have longer and more primary processes, and the astrocyte
morphology is masculinized by neuroestrogens in the postnatal
period (Amateau and McCarthy, 2002b). Astrocytes release
chemical transmitters, including glutamate, and are involved in
synapse formation (Araque et al., 1999). Taken together, the
sexually dimorphic synapse formation may follow the sexual
differentiation of these non-neuronal cells.

The masculinization of the SDN-POA/CALB-SDN requires
the actions of estrogens that are synthesized in the brain from
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FIGURE 2 | Possible mechanisms for organizing the sexually dimorphic structures of the POA and BNST of rats and mice. (A) The mechanism responsible for the
sexual differentiation of dendritic synapse patterning in the POA, which was proposed by McCarthy and colleagues (see reviews Arambula and McCarthy, 2020;
McCarthy, 2020). Estradiol (E), which is synthetized in the brain from testicular testosterone (T) during the perinatal period, stimulates histamine release from mast
cells, which then stimulates prostaglandin E2 (PGE2) to increase dendritic spines. (B) The mechanism for organizing the sexually dimorphic structures of the
SDN-POA/CALB-SDN and CALB-BNSTp. E originating from testicular T in the perinatal period protects a population of neurons from apoptotic cell death, although
the neurochemical properties of the cell population have not been identified. Additionally, E may upregulate Calb expression, followed by induction of a male-biased
sex difference in the number of Calb neurons. (C) The mechanisms for inducing a female-biased sex difference in the number of cells in the specific neuronal cell
groups in the AVPV. E originating from testicular T in the perinatal period induces the death of GABA neurons by apoptosis to reduce their number. E may also
reduce the number of kisspeptin neurons and dopamine neurons by a mechanism other than apoptosis, although the mechanism remains unknown. (D) The roles of
T and E during the perinatal period in the sexual differentiation of the BNSTpv. T and E reduce the number of BNSTpv neurons that do not express Calb. However,
identification of the neurochemical properties and the mechanism responsible for inducing the sex difference require further investigation.
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testicular androgens and act via ERα during the postnatal
period (Gorski et al., 1978; Patchev et al., 2004; Orikasa and
Sakuma, 2010; Gilmore et al., 2012; Morishita et al., 2017).
How neuroestrogens masculinize the SDN-POA/CALB-SDN is
not completely understood. However, controlling cell numbers
by apoptosis during the postnatal period appears to produce
a male-biased sex difference in the number of SDN-POA
neurons. The number of cells generated during the late fetal
period and incorporated into the SDN-POA during the neonatal
period does not differ between sexes (Jacobson et al., 1985;
Dodson et al., 1988; Kato et al., 2012), but the number of
apoptotic cells in the SDN-POA of postnatal rats is smaller in
males because of suppression of apoptosis by neuroestrogens
of testicular origin (Arai et al., 1996; Davis et al., 1996;
Chung et al., 2000). Postnatal apoptosis in the SDN-POA is
regulated by the mitochondrial apoptotic pathway involving Bcl-
2, Bax, and caspase-3. In the SDN-POA of postnatal rats, the
expression of Bcl-2 and Bax is higher in males and in females,
respectively, followed by higher activity of caspoase-3 in males
(Tsukahara et al., 2006). The sex differences in Bcl-2 and Bax
expression result from the upregulation of Bcl-2 expression
and downregulation of Bax expression by neuroestrogens of
testicular origin because estradiol treatment increased the Bcl-
2 protein level and decreased the Bax protein level in the POA
of postnatal female rats (Tsukahara et al., 2008). Nevertheless,
the sex difference in the number of Calb neurons may occur
independently of apoptotic regulation, because deletion of the
Bax gene did not affect the number of Calb neurons in the
CALB-SDN of mice in both sexes (Gilmore et al., 2012). Calb
expression may be upregulated by neuroestrogens of testicular
origin; the number of Calb neurons is increased in male mice,
because the mouse Calb promoter possesses estrogen-responsive
elements and is estrogen responsive (Gill and Christakos, 1995).
Ca2+ is a key regulator of cellular functions in living cells, but it
also induces apoptosis upon prolonged changes in its intercellular
concentrations, including an increase in its cytoplasmic and
mitochondrial concentrations (Hajnoczky et al., 2003). Calb
protects neurons from cell death by chelating intercellular Ca2+

(Meier et al., 1998; D’Orlando et al., 2002; Fan et al., 2007). It
also prevents neuronal cell death by inhibiting caspase-3 activity
(Choi et al., 2008; Choi and Oh, 2014). These findings may
support the notion that Calb upregulation by estrogens prevents
apoptotic cell death.

Neuroestrogens originating from testicular androgens in
the perinatal period reduce the total number of neurons
to defeminize the AVPV in rats and mice (Patchev et al.,
2004; Kanaya et al., 2014). Furthermore, these neuroestrogens
defeminized specific neuronal cell groups in the AVPV by
reducing their cell number. The number of kisspeptin neurons
in the AVPV increased in male rats with neonatal castration
and decreased in female rats with neonatal estradiol treatment
(Kauffman et al., 2007; Homma et al., 2009). Perinatal or neonatal
testosterone treatment reduced the number of dopamine neurons
in the AVPV of female rats (Simerly et al., 1985b). The number
of dopamine neurons in the AVPV of male mice increased
upon the deletion of the genes for ERα and ERβ, resulting in
the disappearance of the sex difference in dopamine neurons

(Simerly et al., 1997; Bodo et al., 2006). Male rodents have
a greater number of apoptotic cells in the AVPV during the
perinatal period than female rodents do, which is attributed to
the induction of apoptosis by estrogens (Sumida et al., 1993;
Arai et al., 1996; Yoshida et al., 2000; Waters and Simerly,
2009). Controlling the number of neurons by apoptosis via Bcl-
2 and Bax is required for the sexually dimorphic formation of
the AVPV of mice (Zup et al., 2003; Forger et al., 2004). The
AVPV of postnatal rats shows a male-biased sex difference in Bax
expression and a female-biased sex difference in Bcl-2 expression,
followed by higher activity of caspase-3 in the male AVPV
(Tsukahara et al., 2006). In addition, the tumor necrosis factor
α (TNF-α)-TNF receptor 2 (TNFR2)-NFκB cell survival pathway
is activated in the AVPV of postnatal female rats to upregulate
Bcl-2 expression, whereas this pathway is suppressed by TNF
receptor-associated factor 2-inhibitng protein (TRIP) in the male
AVPV, followed by an increase in the number of apoptotic cells
(Krishnan et al., 2009). Postnatal apoptosis regulated by this
pathway may result in a sex difference in GABA neurons of the
AVPV (Krishnan et al., 2009). However, the sex differences in
the number of dopamine and kisspeptin neurons in the AVPV of
mice are independent of Bcl-2 and Bax (Zup et al., 2003; Forger
et al., 2004; Semaan et al., 2010). There may be other mechanisms
that establish the sex differences in dopamine and kisspeptin
neurons, although they remain nuclear.

Estrogens that are synthesized in the brain from testicular
androgens and act via ERα during the postnatal period
masculinize the BNSTp by increasing the volume and neuron
number in rats and mice (Guillamon et al., 1988; Chung et al.,
2000; Hisasue et al., 2010; Tsukahara et al., 2011). The number
of apoptotic cells in the BNSTp of postnatal rats is smaller
in males because of the protection of cells from apoptosis
by neonatal testicular androgens (Chung et al., 2000). This
indicates that suppression of apoptotic cell death by testicular
androgens contributes to the masculinization of the BNSTp. The
apoptotic pathway involving Bax accounts for the male-biased
sex difference in the number of BNSTp neurons in adulthood
following the female-biased sex difference in postnatal apoptosis
(Forger et al., 2004; Gotsiridze et al., 2007). Like the BNSTp,
the CALB-BNSTp in mice is masculinized by postnatal testicular
androgens, which act after aromatization (Morishita et al., 2017).
However, Bax-dependent apoptosis may not be necessary for
establishing the sex difference in the number of Calb neurons,
because deletion of the Bax gene increased Calb neurons in both
sexes, but did not eliminate the sex difference (Gilmore et al.,
2012). As mentioned earlier, estradiol can induce Calb expression
(Gill and Christakos, 1995). Phenotypic organization induced by
estrogens is a possible mechanism for the sexual differentiation
of Calb neurons, although this idea needs to be investigated.
The volume and the number of non-CALB neurons in the
BNSTpv increased in male mice with neonatal castration and
decreased in female mice upon postnatal treatment with estradiol
or dihydrotestosterone (Morishita et al., 2017), suggesting that
testicular androgens affect the BNSTpv after aromatizing to
estrogens, but they also affect this area without aromatization.

In rodents, the critical time window in which neuroestrogens
effectively induce brain sexual differentiation is limited to the

Frontiers in Neuroscience | www.frontiersin.org 5 July 2020 | Volume 14 | Article 797

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00797 July 27, 2020 Time: 18:3 # 6

Tsukahara and Morishita Sexually Dimorphic Formation by Neuroestrogens

perinatal period. Nevertheless, the effects of neuroestrogens
persist until adulthood. The long-lasting effects are considered
to be due to epigenetic changes in gene expression [see reviews
(Forger, 2016, 2018; McCarthy, 2019)]. In fact, some of the
aforementioned sex differences emerge via epigenetic regulation.
Compared with postnatal males, postnatal female rats have higher
DNA methyltransferase activity in the POA, which is followed
by higher DNA methylation, and postnatal estradiol treatment
reduced DNA methyltransferase activity and DNA methylation
in the female POA (Nugent et al., 2015). Moreover, inhibition
of DNA methyltransferase in the brain of neonatal females
increased dendritic spines of POA neurons and masculinized
sexual behavior (Nugent et al., 2015), and increased the number
of Calb neurons in the CALB-SDN and CALB-BNSTp, resulting
in elimination of the sex difference in Calb neurons (Mosley et al.,
2017; Cisternas et al., 2020). Epigenetic regulation via histone
modification also contributes to masculinization of the brain.
Inhibition of histone deacetylase in the brain reduced the number
of BNSTp neurons in male mice and neonatally testosterone-
treated females (Murray et al., 2009) and reduced the activity
of sexual behavior in male rats (Matsuda et al., 2011). ER is
a ligand-activated transcription factor, and thereby estrogens
binding to ER modulate the expression of the target genes at the
transcriptional level. Therefore, though it may not be the whole
story, epigenetic regulation by estrogens is an essential part of the
molecular mechanisms of brain sexual differentiation.

SEXUALLY DIMORPHIC FORMATION OF
THE POA AND BNST REQUIRES
NEUROESTROGENS OF TESTICULAR
ORIGIN AND TESTICULAR ANDROGENS

Masculinization of the BNSTp is disrupted in rats with reduced
functional androgen receptors (ARs) (Durazzo et al., 2007) and
AR-knockout mice (Kanaya et al., 2014), indicating that the
masculinization of the BNSTp requires the actions of testicular
androgens via AR. The BNSTp of mice begins to express AR
from the neonatal period, but the expression level is low until
one week after birth (Juntti et al., 2010; Kanaya et al., 2014).
It seems likely that the androgen actions via AR mainly occur
after the perinatal period. The sex difference in the number
of Calb neurons in the CALB-SDN and CALB-BNSTp of mice
emerges before puberty and becomes pronounced after puberty
(Wittmann and McLennan, 2013a,b; Morishita et al., 2017). This
is partly due to an increase in the number of Calb neurons during
the peripubertal period, which is induced by testicular androgens
via AR because the decrease in the number of Calb neurons by

prepubertal castration was reversed by peripubertal treatment
with dihydrotestosterone, but not with estradiol (Morishita et al.,
2020). Thus, testicular androgens that are synthesized during
the peripubertal period and act via ARs are necessary for
the masculinization of Calb neurons. However, it cannot be
excluded that masculinization of the brain requires the actions of
neuroestrogens during puberty, because prepubertal knockdown
of ERα in the medial amygdala, a male-biased sexually dimorphic
nucleus, disrupts the masculinization of this nucleus in mice
(Sano et al., 2016).

CONCLUSION

Perinatal testicular androgens induce masculinizing and
defeminizing effects on the POA and BNST of rodents through
binding to ER after conversion to estrogens in the brain rather
than by binding to AR directly, resulting in sex differences in
glial and immune cells, dendritic synapse patterning, and specific
neuronal cell groups. Interactions among immune cells, glial
cells, and neuronal cells under the influence of neuroestrogens
is a prerequisite for producing the sex difference in dendritic
synapse patterning in the POA. Sex differences in specific
neuronal cell groups in the SDN-POA, AVPV, and BNSTp may be
established by controlling the number of dying cells by apoptosis
or phenotypic organization of living cells that are influenced
by neuroestrogens. Neuroestrogens binding to ER modulate the
expression of the target genes at the transcriptional level, but
also modulate gene expression by epigenetic regulation, which
ensures the long-lasting effects of neuroestrogens beyond the
perinatal period. Testicular androgens in the peripubertal period
also contribute to the sexual differentiation of the POA and
BNST, but aromatizing them to estrogens may not be necessary.
Thus, peripubertal testicular androgens can act via AR directly to
masculinize the sexually dimorphic nuclei.
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