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a b s t r a c t

The renin–angiotensin system is known to be involved in skin remodeling and inflammation. Previously,
we reported that ultraviolet B (UVB) irradiation enhanced angiotensin-converting enzyme (ACE) ex-
pression and angiotensin II levels in hairless mouse skin, and an ACE inhibitor, enalapril maleate (EM),
accelerated repair of UVB-induced wrinkles. In this study, we analyzed gene expression profiles by DNA
microarray and protein distribution patterns using an immunofluorescence method to clarify the process
of EM-accelerated wrinkle repair in UVB-irradiated hairless mouse skin. In the microarray analysis, we
detected EM-induced up-regulation of various extracellular matrix (ECM)-related genes in the UVB-ir-
radiated skin. In the immunofluorescence, we confirmed that type I collagen α1 chain, fibrillin 1, elastin
and dystroglycan 1 in the skin decreased after repeated UVB irradiation but staining for these proteins
was improved by EM treatment. In addition, ADAMTS2 and MMP-14 also increased in the EM-treated
skin. Although the relationship between these molecules and wrinkle formation is not clear yet, our
present data suggest that the molecules are involved in the repair of UVB-induced wrinkles.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Skin photoaging is a consequence of chronic exposure to sun-
light. Ultraviolet B (UVB) is thought to contribute greatly to pho-
toaging [1]. UVB damages skin cells and tissues both directly and
indirectly through inflammation and production of reactive oxy-
gen species [2,3]. In dermis, UVB induces an imbalance between
production and degradation of extracellular matrix (ECM) com-
ponents and damages ECM; it causes loss of skin elasticity and
wrinkle formation [4–7]. Retinoids are well known to have wrinkle
repairing effects [8,9].

As well as retinoids, enalapril maleate (EM), one of the angio-
tensin-converting enzyme (ACE) inhibitors, has potential to pro-
mote repair of UVB-induced wrinkles as we reported previously
[10]. ACE converts inactive angiotensin I (Ang I) to active angio-
tensin II (Ang II), a major player in the renin-angiotensin system
(RAS). Ang II is a key factor for the pathogenesis of hypertension
B.V. This is an open access article u
and atherosclerosis, and ACE inhibitors are used as anti-
hypertensive drugs [11,12]. Besides the cardiovascular system, RAS
also plays as a local regulator of cell functions and involved in
tissue pathologies in many tissues such as skin [13–18].

ACE expression and Ang II levels in hairless mouse skin were
enhanced by repeated UVB irradiation, and EM and other ACE
inhibitors accelerated recovery of skin from UVB-induced wrinkles
[10]. Furthermore, EM treated hairless mouse skin was thinner and
showed lower transepidermal water loss (TEWL) than control
mice [10]. Because the effect of ACE inhibitors on wrinkle repair is
a quite novel phenomenon, it is very valuable to reveal the me-
chanism responsible for the anti-wrinkle effect. To clarify the
process responsible for the EM accelerated wrinkle repair, we used
DNA microarray technology and analyzed gene expression pat-
terns in UVB-irradiated, EM-treated hairless mouse skin. As a re-
sult, we found changes in expression of various ECM and ECM-
related genes. Furthermore, changes in expression and distribution
of proteins encoded by these genes in the skin were examined by
immunofluorescence method.
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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2. Materials and methods

2.1. Reagent

Enalapril maleate (1-[N-((S)-1-Carboxy-3-phenylpropyl)-L-ala-
nyl]-L-proline 1′-ethyl ester, maleate) was purchased from Wako
Pure Chemical Industries, Ltd. (Osaka, Japan).

2.2. Animals

Male hairless mice of the SKH-1 strain were purchased from
Charles River Laboratories Japan, Inc. (Tokyo, Japan). These animals
were approximately six weeks old at the start of experiment. They
were fed a commercial diet (CRF-1, Oriental Yeast Co., Ltd, Tokyo,
Japan) ad libitum and allowed free access to water. All experi-
mental procedures using mice were approved by the Animal Ex-
periment Committee of Tokyo University of Agriculture and
Technology (approval number 24–82).

2.3. UVB irradiation and drug treatment of hairless mice

The dorsal region of each mouse was repeatedly irradiated with
UVB for 10 weeks as described previously [10]. EM treatment was
started at one week after the 10-week irradiation. One hundred
microliters of 1% w/v EM dissolved in 30% v/v ethanol solution or
30% v/v ethanol (control) was applied five times a week for two or
six consecutive weeks to the whole dorsal skin of each of the mice
without anesthesia. Each group comprised six mice. After the two-
or six-week drug treatment, mice were killed by cervical disloca-
tion under isoflurane anesthesia, and skin samples were collected
for microarray analysis and immunofluorescence. For microarray
analysis, 1 cm2 skin samples of the two-week-treated mice were
collected in 2 mL sampling tubes on ice and immediately im-
mersed in liquid nitrogen and stored at �80 °C until isolation of
total RNA. For immunofluorescence, skin samples of the two- or
six-week-treated mice were fixed with cold acetone at 4 °C, and
embedded by the AMeX method [19].

2.4. Microarray experiment

Total RNA was isolated with Isogen reagent (NIPPON GENE CO.,
LTD., Tokyo, Japan) and purified with RNAeasy mini kit (QIAGEN,
California, USA) according to the manufacturer's instructions. Total
RNA concentration and purity were checked with NanoDrop
spectrophotometer (NanoDrop Technologies Inc., Delaware, USA).
The quality of total RNA was assessed by electrophoretic separa-
tion on an RNA Nano lab chip, using a 2100 Bioanalyzer (Agilent
Technologies Inc., California, USA). The total RNA samples were
amplified and labeled with Cy3 by using the Quick Amp labeling
Kit and hybridized with an Agilent 4�44 K Whole Mouse Genome
Microarray (Agilent Technologies Inc.). Then, the array was scan-
ned with Dual-Laser microarray Scanner G2565AA (Agilent Tech-
nologies Inc.). The scanned data were analyzed using Feature Ex-
traction Software 9.1 (Agilent Technologies Inc.), which tagged the
data as signals recognized as being outliers or equal to the back-
ground. The fold change of each gene was calculated as the ratio of
signal intensity between the experimental average data and the
control average data.

2.5. Microarray data analysis

The data were analyzed by weighted average difference (WAD)
[20] method using a free software environment R [R Development
Core Team (2008) R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Aus-
tria]. WAD method was designed for accurate gene ranking which
calculated on signal significance. Briefly, WAD statistic is calcu-
lated by average difference (AD); difference between the average
of two group log signals (i.e. log fold-change), and weight (w);
relative average log signal intensity. WAD statistic is obtained by
multiplication of AD and w [20]. WAD rank and WAD statistic
value were obtained and 500 most up-regulated genes and 500
most down-regulated genes in WAD statistics were listed respec-
tively. Using these up- or down-regulated gene lists, the sig-
nificance of the enrichment of the Gene Ontology (GO) categories
in each gene list was obtained by the Database for Annotation,
Visualization and Integrated Discovery (DAVID) [21]. The full
complement of the expression data is available at Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo; accession
number GSE61708).

2.6. Immunofluorescent analysis

Rabbit polyclonal antibodies for type I collagen, a disintegrin
and metalloprotease with thrombospondin repeats 2 (ADAMTS2)
(ab34710, ab125226 Abcam plc, Cambridge, UK), fibrillin 1, elastin,
(AP06122PU-N, BP8022, Acris Antibodies Inc., California, USA),
MMP-14 (AB6004, Millipore, Darmstadt, Germany) and dystro-
glycan 1 (11017-1-AP, Proteintech Group, Inc., Illinois, USA) were
used as primary antibodies. Deparaffinized and rehydrated sec-
tions were incubated with the primary antibodies in phosphate-
buffered saline (PBS) containing 12% bovine serum albumin over-
night at 4 °C. Then, the sections were washed eith PBS and in-
cubated with Alexa Fluors 488 Donkey Anti-Rabbit IgG (HþL)
Antibody (Life Technologies Japan Inc., Tokyo, Japan). Following to
washing, the sections were coverslipped with Vectashield
mounting medium with DAPI (H-1200, Vector Laboratories, Inc.,
California, USA) and observed with Olympus BX51 microscope
(Olympus Corporation, Tokyo, Japan).
3. Results

3.1. Expression of ECM-related genes were up-regulated in enalapril
maleate-treated mouse skin

There were 1150 up-regulated genes and 612 down-regulated
genes in the EM-treated mouse skin with p-values less than 0.05
when the data were analyzed with the Benjamini–Hochberg pro-
cedure. The most up-regulated 500 genes and most down-regu-
lated 500 genes in WAD statistics were obtained and GO terms
specifically enriched with the up- or down-regulated genes were
analyzed with DAVID. The mean WAD statistics of up-regulated
500 genes was 0.238 (from 1.900 to 0.157). The mean WAD sta-
tistics of down-regulated 500 genes were �0.735 (from �1.959 to
�0.632). In the GO terms of up-regulated genes, ECM-related
terms were involved as shown in Table 1. The up-regulated genes
involved in the ECM-related terms are shown in Table 2. Genes
involved in connective tissue constituents such as fibrillar collagen
components Col1 a1, Col1a2, Col27a1), elastic system fiber com-
ponents (Eln, Fbn1, Fbn2, Col6a1) and basement membrane com-
ponents (Lama2, Dag1) were up-regulated (Table 2).

3.2. ECM components in UVB-irradiated skin were increased by en-
alapril maleate treatment

To examine distribution of ECM components encoded by the
up-regulated genes and their contribution to wrinkle formation
and repair in the UVB-irradiated mouse skin, immunofluorescent
analysis for type I collagen, fibrillin 1, elastin and dystroglycan
1 was performed (Fig. 1). The sections of three mice of each group
were tested in the immunofluorescent staining (Supplementary
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Table 1
Gene ontology categories overlapping with the list of up-regulated genes in the
EM-treated mouse skin. Two hundred and sixty three DAVID IDs were assigned
from up-regulated 500 genes to DAVID. The enriched GO terms of biological pro-
cess (BP), cellular component (CC) and molecular function (MF) associated with up-
regulated genes were obtained and the terms whose value of Benjamini–Hochberg
FDR-corrected EASE score were smaller than 0.05 were listed. Count: number of
genes involved in the term; Category: category of GO term; %: percentage of in-
volved genes per total assigned genes; P-value: EASE score (modified Fisher's exact
p-value); Benjamini: Benjamini–Hochberg FDR-corrected EASE score.

Term Category Count % P-value Benjamini

Extracellular matrix CC 20 7.6046 1.63E-08 1.91E-06
Extracellular matrix part CC 12 4.5627 2.51E-08 1.95E-06
Proteinaceous extracellular
matrix

CC 20 7.6046 8.58E-09 2.01E-06

Extracellular region part CC 28 10.6464 1.89E-06 1.11E-04
Extracellular region CC 44 16.7300 5.11E-06 2.39E-04
Epidermis development BP 11 4.1825 7.86E-06 0.006147
Morphogenesis of an
epithelium

BP 12 4.5627 2.46E-05 0.006407

Epithelium development BP 16 6.0837 4.48E-06 0.006998
Ectoderm development BP 11 4.1825 1.36E-05 0.007094
Tissue morphogenesis BP 14 5.3232 2.28E-05 0.007111
Gland morphogenesis BP 9 3.4221 1.83E-05 0.007148
Basement membrane CC 7 2.6616 3.47E-04 0.013435
Extracellular matrix struc-
tural constituent

MF 6 2.2814 5.46E-05 0.017861

Vesicular fraction CC 10 3.8023 5.76E-04 0.019087
Biological adhesion BP 20 7.6046 2.40E-04 0.046040

Table 2
Up-regulated ECM and related genes in the enalapril maleate-treated mouse skin.
The genes were listed according to WAD statistic.

Gene
symbol

Gene name WAD statistic Fold
change

Dag1 dystroglycan 1 0.403717 2.62
Col1a1 collagen, type I, alpha 1 0.402896 1.86
Fbn1 fibrillin 1 0.329296 2.14
Chl1 cell adhesion molecule with homol-

ogy to L1CAM
0.255440 5.43

Adamts2 a disintegrin-like and metallopepti-
dase (reprolysin type) with throm-
bospondin type 1 motif, 2

0.254100 2.44

Mmp14 matrix metallopeptidase 14 0.247086 1.81
Fn1 fibronectin 1 0.223204 1.85
Spon2 spondin 2, extracellular matrix

protein
0.216120 1.72

Fbn2 fibrillin 2 0.216081 2.03
Col27a1 collagen, type XXVII, alpha 1 0.204232 3.39
Eln Elastin 0.200950 1.73
Wnt1 wingless-related MMTV integration

site 1
0.190974 1.13

Bgn Biglycan 0.187014 1.65
Smoc2 SPARC related modular calcium bind-

ing 2
0.181531 1.63

Col15a1 collagen, type XV, alpha 1 0.176043 2.06
Col6a1 collagen, type VI, alpha 1 0.175368 1.56
Tnc tenascin C 0.174481 1.63
Ntn1 netrin 1 0.170001 1.82
Lama2 laminin, alpha 2 0.169368 1.68
Col1a2 collagen, type I, alpha 2 0.161055 2.00
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Fig. 1). Type I collagen was densely stained in dermis in intact skin
(Fig. 1a) and the staining slightly decreased after the 10-week UVB
irradiation (Fig. 1b). Staining for fibrillin 1 and elastin was ob-
served in upper dermis before the UVB irradiation (Fig. 1e and i),
and the staining decreased after the 10-week UVB irradiation
(Fig. 1f and j). Dystroglycan 1 was stained at the dermal–epidermal
junction of hair follicles and interfollicular area in intact skin
(Fig. 1m). However, after the 10-week UVB irradiation, it was rarely
detected at the region (Fig. 1n). After the six-week treatment
period following to the UVB irradiation, the distribution patterns
of these ECM components tended to recover in the control mice
(Fig. 1c, g, k and o), and they were more strongly stained in the
EM-treated mice (Fig. 1d, h, l and p) than the control mice. These
results indicated that the EM treatment increased expression of
various ECM components and promoted reconstruction of UVB-
damaged collagen fibers, elastic system fibers and basement
membrane.

3.3. ADAMTS2 and MMP-14 were decreased by UVB irradiation, and
enalapril maleate opposed the effects of UVB

In addition to ECM components, EM-induced up-regulation of
Adamts2 and Mmp14, which encode a procollagen I N-proteinase
and the membrane type 1 matrix metalloprotease (MT1-MMP)
respectively, was detected in the microarray analysis (Table 2). In
immunofluorescence, ADAMTS2 was stained in the cell membrane
of epidermal basal cells and some cells in upper dermis (Fig. 2a),
and disappeared after the 10-week UVB irradiation (Fig. 2b). After
the two-week treatment period following to the UVB irradiation,
After UVB irradiation, distribution of ADAMTS2 was recovered
more rapidly in EM-treated mouse skin than control mice (Fig. 2c–
f). MMP-14 was stained in whole epidermal cell layers before the
UVB irradiation (Fig. 2g) and there were no obvious change in the
epidermis just after the 10-weeks UVB irradiation (Fig. 2h).
However, the staining markedly decreased after the two-week
treatment period following to the 10-week UVB irradiation (Fig. 2i
and j). After the six-week treatment with EM, strong staining for
MMP-14 was observed in the epidermis (Fig. 2l), while only
moderate staining was observed in the time-matched control mice
(Fig. 2k). The sections of three mice of each group were tested in
the immunofluorescent staining (Supplementary Fig. 2).
4. Discussion

We previously demonstrated that UVB-irradiation induced ex-
pression of ACE and angiotensin II, and treatment with the ACE
inhibitor enalapril maleate improved UVB-induced wrinkles and
skin damage in hairless mouse skin [10]. Then, in present study,
we demonstrated that the expression of ECM components was
increased by treatment with EM during the repairing process of
the UVB-induced wrinkles by microarray analysis with WAD
method. WAD method is superior to avoid falsely detecting low
expression genes as high-ranked genes because highly expressed
genes are highly ranked in this method [20]. We detected many
genes involved in ECM components as top-ranked genes.

Several studies have reported that changes in ECM components
are involved in wrinkle formation and repair [5,8,22,23]. UVB ir-
radiation in skin activates proteases including MMPs and elastase,
and decreases ECM components [6,7,22]. On the other hand, re-
tinoid treatment increases expression of ECM components such as
collagen and elastin during wrinkle repair in human and mouse
skin [8,23,24]. The effect of EM on UVB-irradiated mouse skin is
similar to that of retinoids in this respect [23,25,26].

The present study demonstrated that type I collagen, a major
fibrous collagen in skin, decreased after the UVB irradiation. UVB
irradiation is well known to induce degradation of ECM compo-
nents by activating MMPs [4,5,27–29]. In this study, expression of
Col1a1 was up-regulated by treatment with EM. Furthermore
Col27a1, Col15a1 and Col6a1 gene expression was upregulated by
EM Type VI collagen forms a branching filament structure and is
connected to collagen fiber and basement membrane in skin [30].
The expression of Type XXVII collagen and type XV collagen in
dermis were reported previously [31,32]. Although the functions
of these minor collagens are not clear, they may also be involved in



Fig. 1. Distribution of ECM components in hairless mouse skin. Mouse skin samples were obtained before (a, e, i and m) and after (b, f, i and n) 10-week UVB irradiation, and
after 6-week treatment with 30% ethanol (control; c, g, k, and o) or enalapril maleate (EM; d, h, l and p) following to 10-week UVB irradiation and a one-week interval period.
Skin sections were stained with antibodies for type I collagen (a–d), fibrillin 1 (e–h), elastin (i–l), and dystroglycan 1 (m–p) and fluorescent signals specific to the antibodies
were visualized as green. Nuclei were counterstained with DAPI (blue). Arrows indicate the dermal–epidermal junction. Scale bars indicate 100 mm. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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the process of wrinkle repair together with type I collagen.
Deposition of elastin and fibrillin-1 protein was remarkably

affected by UVB irradiation. In a previous study of human photo-
aged skin, fibrillin 1 gene expression and protein deposition
proximal to the dermal–epidermal junction were increased in an
early stage of all-trans retinoic acid treatment [23]. The present
and the previous studies indicate that fibrillin 1 and elastin fiber
proximal to the dermal–epidermal junction are susceptible to UVB
irradiation and the following repair.

Dystroglycan 1 is a cell surface component, which is expressed
as a single polypeptide and converted into membrane-associated
α-dystroglycan and transmembrane β-dystroglycan by post-
translational modification [33,34]. It was reported that dystrogly-
can 1 was involved in cell-ECM interaction and essential for la-
minin assembly and basement membrane formation, and shed by
IL-1β-stimulated proteinase in keratinocytes [4,33–35]. It is pos-
sible that UVB-irradiated epidermis promotes shedding of α-dys-
troglycan via IL-1β signaling [36]. Regeneration of dystroglycan
1 may have occurred during repair of the dermal–epidermal in-
teraction prior to reconstruction of basement membrane structure
in the EM-treated mice.

Besides structural constituents of ECM, gene expression of
Mmp14 and Adamts2, which encode enzymes participating in ECM
structure formation and degradation, was up-regulated in the EM-
treated mouse skin. ADAMTS2, a secreted procollagen N-protei-
nase, is involved in processing of types I, II and III procollagens
[37,38]. Procollagen α chains are hydroxylated and glycosylated,
and form triple-helical procollagen molecules in intercellular
space. Then, procollagen molecules are transported to extracellular
space by HSP47, a specific molecular chaperone of procollagen
[39]. Subsequently, N-terminus and C-terminus propeptides were
cleaved by ADAMTS2 and BMP-1 respectively [37,38,40]. The
processed triple-helical collagen molecules are cross-linked and
mature to collagen fibers [41,42]. This processing is necessary for
maturation of collagen fibers with tensile strength [43]. During the
recovery process from the UVB irradiation, the EM-induced up-
regulation of ADAMTS2 may have helped collagen fiber formation
in combination with the up-regulation of type I collagen gene.
MMP-14 degrades ECM components and regulates cellular func-
tions via release and degradation of cell surface proteins such as
growth factors. It was reported that MMP-14 was highly expressed
in epidermis of wound healing skin and regulated angiogenesis
[44]. It has been suggested that epidermal MMP-14 activity is in-
volved in dermal–epidermal crosstalk regulating angiogenesis.
Furthermore, Quan et al. reported that MMP14 mRNA was highly
expressed in sun-protected human skin but decreased by UVB



Fig. 2. Expression of ADAMTS2 and MMP-14 in hairless mouse skin. Mouse skin samples were obtained before (a and g) and after (b and h) 10-week irradiation, and after
2-week (c, d, i and j) or 6-week (e, f, k and l) treatment with 30% ethanol (control; c, e, i and k) or enalapril maleate (EM; d, f, j and l) following to 10-week UVB irradiation
and a one-week interval period. Mouse skin sections were stained with anti-ADAMTS2 antibody (a–f) or anti-MMP14 antibody (g–l) and fluorescent signals specific to the
antibodies were visualized as green. Nuclei were counterstained with DAPI (blue). Scale bars indicate 100 mm. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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stimulation [4]. A decrease in epidermal MMP-14 may cause fail-
ure of dermal–epidermal crosstalk followed by suppression of
wrinkle repair. Further investigation for revealing functions of
MMP-14 in skin remains to be done.

The mechanism by which EM up-regulates ECM components is
not clear yet. However, involvement of ACE and angiotensin II in
inflammation and anti-inflammatory effects of angiotensin re-
ceptor blocker in skin and other tissues have been reported
[17,45–50]. In addition, previous studies indicate that angiotensin
II augments IL-1β signaling [49,51]. Furthermore, other studies
demonstrated that proinflammatory cytokines suppressed ex-
pression of ECM [52,53]. Thus, it is possible that EM promoted
repairing of UVB-induced wrinkle through its anti-inflammatory
effects. In contrast, during the process of wrinkle repairing by
retinoids, not only up-regulation of ECM components but also
inflammatory-like responses, such as hyperplasia of epidermis, or
expression of pro-inflammatory cytokines are observed [54,55].
Therefore, the molecular mechanism of wrinkle repairing by EM is
likely different from that by retinoids. However, both EM and re-
tinoids induce up-regulation of ECM, suggesting that the increase
in ECM expression is required for promoting wrinkle repair.

In conclusion, we detected up-regulation of ECM and related
genes and improvement of distribution patterns of ECM compo-
nents and related molecules by EM treatment following to UVB
irradiation. Although the molecular mechanism by which EM in-
creases these ECM components in mouse skin remains to be de-
termined, it is suggested by comparing the effects of retinoids and
EM that up-regulation of ECM components is crucial for improving
UVB-induced wrinkles.
Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.bbrep.2015.09.012.
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