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Abstract
As healthspan and lifespan research breakthroughs have become more commonplace, the need for valid, practical markers of
biological age is becoming increasingly paramount. The accessibility and affordability of biological age predictors that can reveal
information about mortality and morbidity risk, as well as remaining years of life, has profound clinical and research implications.
In this review, we examine 5 groups of aging biomarkers capable of providing accurate biological age estimations. The unique
capabilities of these biomarkers have far reaching implications for the testing of both pharmaceutical and non-pharmaceutical
interventions designed to slow or reverse biological aging. Additionally, the enhanced validity and availability of these tools may
have increasingly relevant clinical value. The authors of this review explore those implications, with an emphasis on lifestyle
modification research, and provide an overview of the current evidence regarding 5 biological age predictor categories:
Telomere length, composite biomarkers, DNAmethylation “epigenetic clocks,” transcriptional predictors of biological age, and
functional age predictors.
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Introduction

Age-related disease is a persistent and increasingly prevalent
burden on healthcare systems around the world (Atella et al.,
2019; Benjamin et al., 2018; Chang et al., 2019; Hurd et al.,
2013; Mariotto et al., 2011). Any affordable and accessible
intervention capable of ameliorating this trend would
therefore be of significant value. One class of interventions
that seems well suited for this challenge is lifestyle modifi-
cation (Ruiz-Estigarribia et al., 2020; Wu et al., 2020; Zhang
et al., 2021). Although lifestyle-based interventions such as
diet and exercise are generally known to increase lifespan
(Chudasama et al., 2020), experimental evidence is not as
abundant as one might expect. Large volumes of research
show positive effects from exercise on specific disease
processes (Campbell & Turner, 2018; Edwards et al., 2007;
Larson & Bruce, 1987;Warburton & Bredin, 2017), and other
studies have found association between lifestyle factors and
longevity (Quach et al., 2017; Sae-Lee et al., 2018; Zhao
et al., 2019). However, fewer studies experimentally validate

or quantify the causal effects of non-pharmaceutical lifestyle
modification interventions on lifespan. This is likely due in
part to the inherent time scale challenge that longevity re-
search entails. Any future studies that examine lifestyle
modification interventions would benefit from a practical tool
that is capable of measuring change in expected lifespan.

One persistent challenge when studying the efficacy of
interventions intended to increase lifespan is identifying an
outcome measure that is both valid and feasible to use ex-
perimentally. From a validity perspective, change in total
years of lifespan between experimental and control groups
would be ideal, except for the fact that it would necessitate
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multi-decade longitudinal studies. Not only does this add
significant cost and effort, but it also makes controlling for
confounding variables exceedingly difficult. The apparent
alternative to measuring actual lifespan would be to identify a
biomarker or group of biomarkers capable of estimating
remaining years of life. This would grant researchers the
ability to test the efficacy of interventions designed to in-
crease lifespan without necessitating the use of long-term
longitudinal studies.

Generally, metrics designed to predict remaining lifespan,
mortality risk, and age-related morbidity risk have come to be
known as predictors of biological age or biomarkers of aging.
Consensus around these terms’ definitions is lacking, as is the
definition of aging more generally (Butler et al., 2004). In his
review of recent papers attempting to identify biomarkers of
aging, Thomas Johnson cites one of the original clarifying
statements by Baker and Sprott (Johnson, 2006):

“A Biomarker of Aging is a biological parameter of an
organism that either alone or in some multivariate composite
will, in the absence of disease, better predict functional ca-
pability at some late age, than will chronological age.” (Baker
& Sprott, 1988).

Even though it was written in 1988, this statement went a
long way towards establishing the current criteria for bio-
markers of aging. A potential concern with this definition for
a researcher interested in examining interventions capable of
biological age reversal is that there is no mention of lifespan.
This definition discusses functional capability only. Another
potential point of disagreement among researchers may be the
“in the absence of disease” criterion. It seems that a useful
metric for aging research would include the effects of age-
related disease on lifespan.

In the time since this statement was published, there has
been much development and discussion regarding the exact
meaning of the term, “biomarker of aging”. An interdisci-
plinary workshop cosponsored by the International Lon-
gevity Center-USA, The EllisonMedical Foundation, Kronos
Longevity Research Institute, the Institute for the Study of
Aging, and Canyon Ranch Health Resort proposed the fol-
lowing three parameters for biomarkers of aging:

1. The biomarker should predict the outcome of a wide
range of age-sensitive tests in multiple physiological
and behavioral domains, in an age-coherent way, and
do so better than chronological age.

2. It should predict remaining longevity at an age at
which 90% of the population is still alive and do so for
most of the specific illnesses that afflict the species
under study.

3. Its measurement should not alter life expectancy or the
outcome of subsequent tests of other age-sensitive tests.

The American Federation for Aging Research (AFAR)
formulated the criteria for aging biomarkers as follows
(Butler et al., 2004; Johnson, 2006; Jylhävä et al., 2017)

1. It must predict the rate of aging. In other words, it
would tell exactly where a person is in their total life
span. It must be a better predictor of life span than
chronological age.

2. It must monitor a basic process that underlies the aging
process, not the effects of disease.

3. It must be able to be tested repeatedly without harming
the person. For example, a blood test or an imaging
technique.

4. It must be something that works in humans and in
laboratory animals, such as mice. This is so it can be
tested in lab animals before being validated in humans.

Although both clear and thorough lists, the existence of a
biomarker that meets all of the criteria above may be unlikely
(Johnson, 2006). Perhaps the most challenging criterion for
researchers intending to measure the effects of interventions
on lifespan and healthspan is the American Federation for
Aging Research criterion listed above. This statement out-
lines the need for an aging biomarker to separate the aging
process from disease processes. This may not always be
possible, and it is hard to differentiate the effects of the aging
process from the effects of age-related disease. That said, this
criterion does illustrate the need to create markers that are not
influenced by acute illnesses or diseases that have no effect on
lifespan. As mentioned earlier, there is no consensus on what
the definition of aging is within the aging research com-
munity, let alone agreement that there is a specific aging
process or aging rate that is separate from disease processes
(Butler et al., 2004; Johnson, 2006). What is clear, even to a
lay observer, is that if we examine a large group of 70-year-
old people, we would find a phenotypically diverse sample,
despite all members being the same chronological age. This is
described clearly and concisely by Lowsky et al. in their
article’s introductory sentence: “For a surprisingly large
segment of the older population, chronological age is not a
relevant marker for understanding, measuring, or experi-
encing healthy aging.” (Lowsky et al., 2014) This may be the
most concise way to illustrate the need for a valid and easy to
obtain measure of biological age.

For the purposes of this scoping review, we will be fo-
cusing on biomarkers of aging that satisfy at least some of the
American Federation of Aging Research biomarkers of aging
criteria. Given the lack of consensus around terminology and
definition, we will seek to view biomarkers in the context of
their ability to predict two aspects of biological age:
healthspan and lifespan. These criteria best facilitate the
selection of a marker that measures the effectiveness of in-
terventions on biological age reversal. Until recently, the
possibility of biological age reversal was uncertain, but
thanks to recent experimental trials utilizing biological age
predictors we now know that biological age as measured by
biomarkers of aging can be slowed or even reversed (Fahy
et al., 2019; Fitzgerald et al., 2020; Hachmo et al., 2020).
With that in mind, our specific aim is to compile the available
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evidence related to various readily accessible biological age
predictors. In doing so, we hope to provide a basis for se-
lection in future experimental studies that utilizes wellness
and lifestyle interventions to slow or reverse biological aging.
For example, investigators could choose to examine diet
modification, sleep quality, exercise type or quantity, sup-
plementation, implementation of a stress management pro-
gram, or any number of other wellness interventions’ effects
on biological age. This has far reaching implications for the
wellness and successful aging research communities, as it
provides a means to assess the effectiveness of an inter-
vention on biological age in a comparatively short time frame.

This article investigates and summarizes the following
predictors of biological age: Telomere length, allostatic load
index, DNA methylation clocks, functional age, and tran-
scriptional predictors of biological age. The ability of these
tools to estimate mortality risk and biological age, opera-
tionally defined as an estimate of remaining healthspan/
lifespan, will be highlighted. Various capabilities and
weaknesses of each will be examined as well, including
criteria such as: ease of use, accessibility, ability to glean
underlying mechanisms influencing lifespan/healthspan, and
other relevant features.

Search Strategy and Selection Criteria

Using the PubMed database, Medical Subject Headings
(MeSH) terms “Aging” and “Humans” and the specific terms
for each of the biomarkers of aging categories: 1) Telomere
Length, 2) Frailty Index or Deficit Accumulation or Func-
tional age, 3) Epigenetic clock, 4) Transcriptomic age or
Transcriptional age, 5) Composite biomarker or Allostatic
load index were combined. Cited papers in the selected
publications and papers that referenced the selected publi-
cations were also considered. The searches were performed
between December 2020 and May 2021.

Telomere Length

Telomeres are repeating sequences of nucleoprotein caps
located at the ends of chromosomes (Sanders & Newman,
2013). Each time a cell undergoes mitosis, a section of these
nucleotides is cleaved, and the telomere shortens incre-
mentally. This is an overly simplistic description given that
oxidative stress is also associated with telomere shortening,
and multiple mechanisms exist for telomere lengthening as
well (Sanders & Newman, 2013). Even with this simple
definition, however, an inference can be drawn that telomere
length serves in part as a cumulative measure of cellular
division and by extension, age. This would be a well-founded
inference and one that has received significant attention from
the aging research community. As of March 13, 2021, the
search phrase “Telomere Length” on the PubMed database
yielded 10,245 results, making it the most investigated
biomarker of aging discussed in this article.

Multiple meta-analyses exist examining the relationship
between telomere length and age (Gardner et al., 2014;
Lapham et al., 2015). Additionally, many studies have shown
relationships between telomere length and specific disease
processes associated with increased chronological age. A
2014 meta-analysis (43,725 individuals) showed an inverse
relationship between telomere length and coronary heart
disease independent of traditional vascular risk factors
(Haycock et al., 2014). Similar results have been obtained
when investigating Alzheimer’s disease and telomere length.
Both observational and Mendelian randomization studies (a
method of analyzing single nucleotide polymorphisms to
determine causation) have shown that patients diagnosed with
Alzheimer’s disease have shorter telomere lengths (Forero
et al., 2016; Zhan & Hägg, 2018). Despite this prevalence
of age-related telomere research, data pertaining to telomere
length and mortality risk specifically has been less consistent.
Perhaps the most compelling investigation is a meta-analysis
performed byWang et al. (2018) that examined the relationship
between telomere length and all-cause mortality. Twenty-five
studies were determined to meet eligibility for inclusion
(121,749 combined individuals), including 4 Swedish Twin
Registry (STR) cohorts (12,083 individuals). Results from the
Swedish twin registry studies showed one standard deviation
reduction of leukocytic telomere length corresponded to 13%
increased all-cause mortality risk (95% confidence interval 7–
19%) (Wang et al., 2018). However, a study by Li et al. that
examined nine different biomarkers of aging over a 20 year
timeframe found that the only marker not associated with
mortality risk was in fact, telomere length (Li et al., 2020).
Another Swedish study performed by Svensson et al. exam-
ined the relationship between telomere length and mortality in
2744 elderly men and also found no association (Svensson
et al., 2014). The evidence presented here indicates that
telomere length is associated with various disease processes,
but that the research pertaining to its use as a predictor of
biological age may be contradictory (Table 1).

Composite Biomarkers/Allostatic
Load Indices

In 1998, BruceMcEwen described allostasis as “adaptation in
the face of potentially stressful challenges [that] involves
activation of neural, neuroendocrine, and neuroendocrine-
immune mechanisms.” (McEwen, 1998) The phrase “con-
stancy through change” is often used as shorthand to describe
allostasis, as it so concisely describes the constant changing
physiological processes that maintain homeostasis. Fava et al.
describes allostatic load as reflecting the cumulative effects of
stressful experiences in daily life that may lead to disease over
time (Fava et al., 2019). Like telomere length, allostasis and
allostatic load have been extensively researched. Most
commonly, this research focuses on the relationship between
allostatic load and various health outcomes such as cognition
(Juster et al., 2010), chronic stress (Juster et al., 2010), sleep
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quality (McEwen & Karatsoreos, 2015), age-related disease
(Danese &McEwen, 2012), cardiovascular disease (Logan &
Barksdale, 2008), and addiction (Koob & Schulkin, 2019),
among others. A smaller portion of allostasis research is
dedicated to evaluating the performance of allostatic load as a
predictor of biological age. The study that has perhaps best
demonstrated the capability of an allostatic predictor of bi-
ological age is part of the MacArthur studies of successful
aging series in 2005 that utilized 10 physiological parameters
to generate allostatic load scores in 171 70–79-year-old
adults(Karlamangla et al., 2006). An allostatic load score
or index falls under a broader category of biological age
predictors called composite biomarkers of aging. This is due
to the combination of multiple blood biomarkers and clinical
measures used to make an estimation regarding mortality risk.
Other predictors within this category include phenotypic age
(Levine et al., 2018) and physiological age (Li et al., 2020).

In the previously mentioned study published by Karla-
mangla in 2005 (Karlamangla et al., 2006), allostatic load
scores were generated first in 1988 and again in 1991. The
mortality status of these individuals was determined 4.5 years
later in 1995. This study found that individuals with increased
allostatic load in 1991 compared to 1988 had increased risk of
all-cause mortality (15% vs. 5%, respectively, p =.47).
Further analysis revealed that each incremental increase in
allostatic load score was associated with a mortality odds ratio
of 3.3 (95% confidence interval 1.1–9.8)(Karlamangla et al.,
2006).

A study by Castagne et al. (2018), took another significant
step towards establishing allostatic load as a predictor of
biological age. This study examined the relationship between

14 biomarkers across four physiological systems and their
relationship to mortality in a UK birth cohort study of 8113
adults (Castagné et al., 2018). The hazard ratio for partici-
pants with a high allostatic load score was found to be 3.56
(2.2-5.3) and was significantly higher than in participants
with a low allostatic load score (Castagné et al., 2018). Their
data suggests that those with a high allostatic load score at age
44 are approximately 3 times more likely to die by age 55
(Castagné et al., 2018). The authors also analyzed the relative
contribution of each of the 14 biomarkers that comprised the
allostatic load score. Interestingly, after adjusting for various
risk factors and adverse childhood experiences, 5 of the 14
biomarkers stood out as being significantly related to mor-
tality (C-Reactive Protein, fibrinogen, glycated hemoglobin,
heart rate, and peak expiratory flow) (Castagné et al., 2018).
This highlights one potential challenge and opportunity for
the future use of allostatic load indices as BA prediction tools.
The challenge is the general lack of consensus regarding the
relative contribution of each marker or combination of
markers, and the opportunity is the potential to develop even
simpler yet more accurate composite age biomarkers. Future
validation studies examining a variety of different indices will
be helpful in making these determinations. As it stands, al-
lostatic load appears to be significantly correlated with
mortality-risk, and allostatic indices will serve as valuable
tools for aging research (Table 2).

DNA Methylation “Epigenetic Clocks”

The term epigenetic “clock” refers to tools that analyze DNA
methylation levels within a set of Cytosine-Phosphate-

Table 1. Studies selected for review pertaining to telomere length and its role as an aging biomarker.

Telomere Length

Study Title BA Predictor Used
Cohort Name (If
Applicable) N Results

Telomere length and all-cause
mortality: A meta-analysis

Telomere length Multiple cohorts 121,749 One standard deviation reduction of
leukocytic telomere length
corresponded to 13% increased all-
cause mortality risk (95% confidence
interval 7–19%) (Wang et al., 2018)

Longitudinal trajectories,
correlations, and mortality
associations of nine biological
ages across 20-year follow-up

Telomere length, DNAm age (4
types), physiological age,
cognitive function, functional
aging index, and frailty index

Swedish
population-based
cohort

636 No evidence that telomere length
associated with mortality risk (Li
et al., 2020)

Leukocyte telomere length is not
associated with mortality in
older men

Telomere length Prospective
population-based
MrOS-Sweden
study

2744 Using Cox proportional hazards
regression, tertile of LTL did not
associate with all-cause mortality
[tertile 1 (shortest) or 2 (middle)
versus tertile 3 (longest); hazard ratio
(HR) = 1.05, 95% confidence interval
(CI) 0.85–1.28 and HR = 0.97, 95%
CI 0.79–1.19, respectively]
(Svensson et al., 2014)

4 Gerontology & Geriatric Medicine



Guanine (CpG) sites and are generally acknowledged as
accurate measures of biological age (Bell et al., 2019;
Fransquet et al., 2019; Jylhävä et al., 2017; Lu et al., 2019;
Perna et al., 2016). In fact, one study we examined made the
claim that DNA methylation clocks are the current best
predictors of mortality (Unnikrishnan et al., 2019). While this
may be true, it is important to realize that the term DNA
methylation age or epigenetic clock can refer to many dif-
ferent tools. While all of these “clocks” analyze methylation
in specific CpG sites, they all do so in different ways. For
example, two clocks that were among the first to generate
widespread interest are the Horvath clock (Horvath, 2013)
and Hannum clock (Hannum et al., 2013). The Horvath clock
is based on methylation levels of 353 CpG sites using the
Illumina 27k or 450k array (Horvath, 2013), while the
Hannum clock uses 71 CpG sites and utilizes data from the
Illumina 450k array (Hannum et al., 2013). Epigenetic
clocks’ ability to predict biological and chronological age can
also be tissue dependent. For example, the Horvath clock
performs similarly among various tissue types (Horvath,
2013) (“whole blood, peripheral blood mononuclear cells,
cerebellar samples, occipital cortex, buccal epithelium, colon,
adipose, liver, lung, saliva, uterine cervix as well as in in-
dividual cell types such as CD4 Tcells and CD14 monocytes,

and immortalized B cells”), while the Hannum clock per-
forms best using peripheral whole blood samples (Hannum
et al., 2013; Jylhävä et al., 2017). These clocks also vary in
terms of their ability to predict biological and chronological
age (chronological age r2 values = 0.96 for Horvath and 0.91
for Hannum) (Jylhävä et al., 2017). Accessibility is also
highly variable; as property of the specific inventor or in-
stitution that created the algorithm capable of converting
array-based methylation data into other useful data (such as
biological age estimation in years or mortality risk among
others), some of these tools may be commercial. While other
clocks such as the Horvath clock or GrimAge marker created
by Steve Horvath and Ake Lu are freely available online.

The clocks mentioned so far are just a few examples of
DNA methylation biomarkers of aging. This is to illustrate
that the term “epigenetic clock” is broad and not a specific
marker.With this in mind, we can say generally that one of the
most interesting and unique features of epigenetic clocks is
their ability to predict mortality risk, also referenced as time-
to-death. A 2016 meta-analysis of 13 cohorts representing a
combined sample size of 13,089 showed that epigenetic age
acceleration (a measure of the difference between chrono-
logical age and epigenetic age) was predictive of mortality
independent of chronological age (p ≤ to 8.2 × 10�9)(Chen

Table 2. Studies selected for review pertaining to allostatic load indices and composite biomarkers of aging.

Allostatic Load/Composite Biomarkers

Study Title
BA Predictor
Used

Cohort name (if
applicable) n Results

Reduction in allostatic load in older
adults is associated with lower all-
cause mortality risk: MacArthur
studies of successful aging.

Allostatic load
index

171 Adjusted for age and baseline allostatic load,
each unit increment in the allostatic load
change score was associated with
mortality odds ratio of 3.3 (95%
confidence interval, 1.1–9.8) (Karlamangla
et al., 2006)

Allostatic load and subsequent all-cause
mortality: Which biological markers
drive the relationship? Findings from a
UK birth cohort

Allostatic load
index

1958 British birth cohort 8113 Hazard ratios for participants with a mid
(3 ≤ AL < 5) and high AL (≥5) were 1.98
(1.25–3.13) and 3.56 (2.2–5.53),
respectively, and were found to be
significantly greater than in participants
with a low AL (<3) (Castagné et al., 2018)

An epigenetic biomarker of aging for
lifespan and healthspan

Phenotypic age
estimator

Third and fourth National
Health and Nutrition
Examination Survey

9926,
6209

A one-year increase in phenotypic age is
associated with a 9% increase in the risk of
all-cause mortality (HR = 1.09, p = 3.8E-
49), a 9% increase in the risk of mortality
from aging-related diseases (HR = 1.09, p
= 4.5E-34), a 10% increase in the risk of
CVD mortality (HR = 1.10, p = 5.1E-17),
a 7% increase in the risk of cancer
mortality (HR = 1.07, p = 7.9E-10), a 20%
increase in the risk of diabetes mortality
(HR = 1.20, p = 1.9E-11), and a 9%
increase in the risk of chronic lower
respiratory disease mortality (HR = 1.09,
p = 6.3E-4) (Levine et al., 2018)
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et al., 2016). This was still found to be true after adjusting for
additional risk factors, but at a significance of p < 5.4 ×
10�4(Chen et al., 2016). When epigenetic age estimates in-
corporated additional information pertaining to blood cell
composition, the resulting time-to-death predictions were
highly significant (p = 7.5 × 10�43). (Chen et al., 2016).

In the time since this 2016 meta-analysis, new DNA
methylation clocks have emerged that are evenmore capable in
terms of their ability to estimate mortality risk. For example, a
2017 study by Zhang et al. proposes a mortality risk score
based on 10 CpG sites that is strongly associated with all-cause
mortality (Zhang et al., 2017). Participants with scores of 1
display a hazard ratio (95% confidence intervals) of 2.16 (1.1–
4.24), compared to those with scores of 2–5 showing a hazard
ratio of 3.42 (1.81–6.46) compared to those with 5+ scores
showing a hazard ratio of 7.36 (3.69–14.68) (Zhang et al.,
2017). Another marker called DNAm PhenoAge was calcu-
lated in a meta-analysis of five large samples (n = 2,016, n =
2,191, n = 2,553, and n = 657). It was found that a 1-year
increase in DNAm PhenoAge is associated with a highly
significant 4.5% increase in all-cause mortality risk (meta p-
value = 7.9 × 10�47) (Levine et al., 2018).

In addition to measuring mortality risk, some markers have
the added capability of predicting the risk of developing specific
disease processes. For example, a metric known as GrimAge
can strongly predict time-to-death (Cox regression p = 2.0 ×
10�75), time-to-coronary heart disease (Cox regression p = 6.2 ×
10�24), and time-to-cancer (p = 1.3 × 10�12) (Lu et al., 2019).
The study authors used large scale validation data from the
Framingham heart study to complete this analysis. By adding a
calculation that quantifies the difference between GrimAge and
chronological age (AgeAccelGrim), other relevant age-related
associations are found to be present. For example, AgeAccel-
Grim is associated with comorbidity count (p = 3.45 × 10�17),
time to congestive heart failure (p = 4.9 × 10�10), time-to-
incident coronary heart disease (p = 6.2 × 10�24), hypertension
(p= 5.1 × 10�13), and type 2 diabetes (p= 0.01) (Lu et al., 2019).
All associations were in the expected direction (increased
AgeAccelGrim=increased likelihood of poor outcome) with
varying odds ratios (Lu et al., 2019) (Table 3).

Transcriptional Predictors of Biological Age

A transcriptional predictor of biological age analyzes genetic
expression in genes associated with aging to make some pre-
diction regarding the biological aging process. One example of
this tool is the Transcriptomic Age Prediction Tool (TRAP)
which is described in the article titled “The transcriptional
landscape of age in human peripheral blood” written by Peters
et al. in 2015. This study performed a whole-blood gene ex-
pression meta-analysis in 14,983 individuals and identified 1497
genes that are differentially expressed with chronological age.
This provided the basis for calculating a “transcriptomic age”
and associating it with various age-related phenotypes including:
blood pressure, fasting glucose, and BMI (Peters et al., 2015).

This was the first large scale meta-analysis to examine age-
related gene expression profiles and build a predictor of bio-
logical age from these data. The correlation between the tran-
scriptomic age predictor and chronological age was significant
(p < 2 × 10�29) (Peters et al., 2015), and observed differences
between the transcriptomic age predictor (TRAP) and chrono-
logical age are thought to reflect altered biological age. This is
supported by consistent associations between increased delta age
(increased TRAP compared to chronological age) and higher
blood pressure, total cholesterol, fasting glucose levels, and BMI
(Peters et al., 2015). Peters et al. identified a subset of 1396
individuals from two studies within their meta-analysis [KORA
(Holle et al., 2005) and Rotterdam studies (Hofman et al., 2007)]
that had both methylation and gene expression data available.
The presence of these two datasets allowed the investigators to
generate a transcriptomic predictor of biological age, in addition
to Horvath (Horvath, 2013) and Hannum (Hannum et al., 2013)
clock values. This gave investigators the opportunity to examine
correlation between three different biomarkers of aging: TRAP,
Horvath Clock, and Hannum Clock. They found TRAP to
correlate positively, albeit weakly, with both clocks (r2=.1 for
Hannum and .33 for Horvath).

Other transcriptional predictors of biological age exist,
such as the healthy ageing gene score (Sood et al., 2015) and
RNAageCalc (Ren & Kuan, 2020). Like the previously
discussed epigenetic clocks, these measures’ ability to predict
disease process, mortality, and association with age-related
phenotypes varies. At the time of this writing, the literature
seems to indicate that the transcriptome is an age-associated
variable indicating its utility in creating biological age pre-
dictors, but existing transcriptomic clocks are pending
broader validation (Harries et al., 2011; Holly et al., 2013;
Jylhävä et al., 2017) (Table 4).

Functional Age Estimators

Although not blood biomarkers, functional age estimators are
included here due to their ease of use and relevance to aging
research. The term functional age is now commonly found in the
literature, but these tools were initially intended to be a method
for estimating frailty and the likelihood of care entry, not bio-
logical age. More recently, some functional age estimators have
been shown to estimate mortality-risk (Burn et al., 2018; Church
et al., 2020; Finkel et al., 2019; Kojima et al., 2018; Li et al.,
2020) and therefore present as highly practical measures for
lifestyle modification research. The large volume of functional
age estimators merits a standalone review, but some notable
examples will be discussed here. Two of these are the frailty
index (FI) and frailty phenotype (FP). Although they are
sometimes discussed as being interchangeable, they are two
different tools for different purposes. The term frailty index
refers to a method of quantifying frailty in older individuals,
with the underlying mechanism being a measurement of deficit
accumulation (deficits identified/deficits measured). Rather than
a specific tool or metric, it is a method in which various
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measures of frailty and functional capability can be assessed and
from which a scoring system can be derived. Frailty phenotype
on the other hand is based on the presence or absence of five
signs or symptoms (>10 lbs unintentional weight loss in the past
12 mo., self-reported exhaustion, weak grip strength, slow
walking speed, and low physical activity) (Cesari et al., 2014;
Fried et al., 2001). Although both FP and FI are associated with
mortality-risk (Shi et al., 2019), we will focus our discussion on
frailty index. This is not necessarily a comment on either’s
ability to predict biological age, but rather how responsive each
may be to lifestyle interventions. Given the relatively broad
scope and ordinal nature of the 5-item frailty phenotype, it may

be less responsive to intervention and less suited as a research
variable compared to the frailty index (Cesari et al., 2014; Clegg
et al., 2013). The frailty phenotype may be better implemented
as a screening tool, inclusion/exclusion criterion, or stratification
mechanism given that it does not require a full geriatric com-
prehensive assessment like the FI (Clegg et al., 2013).

One of the originally described functional indices, called
the Canadian Study of Healthy Aging (CSHA) frailty index is
validated by the Canadian Study of Healthy Aging and ex-
amines the presence or absence of 70 clinical deficits in order
to quantify fitness and frailty in the elderly (Rockwood et al.,
2005). This list of deficits was not meant to be a fixed index;

Table 3. Studies selected for review pertaining to "epigenetic clocks" or DNA methylation biomarkers of aging.

DNA Methylation “Clocks”

Study Title BA Predictor Used Cohort Name (If Applicable) n Results

DNA methylation GrimAge
strongly predicts lifespan
and healthspan

GrimAge Framingham Heart Study
Offspring Cohort

2356 Predictive ability for time-to-
death (Cox regression p=2.0E-
75), time-to-coronary heart
disease (Cox p=6.2E-24), and
time-to-cancer (p= 1.3E-12)
(Lu et al., 2019)

DNA methylation age of
human tissues and cell
types

DNAm age “Horvath Clock” 82 publicly available datasets 7844 The multi-tissue age predictor
performs remarkably well in
most tissues and cell types.
(Age correlation 0.97, error =
2.9 years) (Horvath, 2013)

Genome-wide methylation
profiles reveal
quantitative views of
human aging rates

“Hannum Clock” 656 Correlation between age and
predicted age of 96% and an
error of 3.9 years (Hannum
et al., 2013)

An epigenetic biomarker of
aging for lifespan and
healthspan

PhenoAge Women’s Health Initiative
(WHI), the Framingham
Heart Study (FHS), the
Normative Aging Study
(NAS), and the Jackson Heart
Study (JHS)

2016,
2191,
2553,
657,
1747

A one-year increase in DNAm
PhenoAge is associated with a
4.5% increase in the risk of all-
cause mortality (Meta (FE) =
1.045, meta p=7.9E-47 (Levine
et al., 2018)

Longitudinal trajectories,
correlations, and
mortality associations of
nine biological ages across
20-year follow-up

Telomere length, DNAm age
(4 types), physiological
age, cognitive function,
functional aging index, and
frailty index

Swedish population-based
cohort

845 Individually, all BAs except for
telomere length were
associated with mortality risk
independently of CA. The
largest effects were seen for
methylation age estimators
(GrimAge) and the frailty index
(FI) (Li et al., 2020)

DNA methylation-based
measures of biological
age: meta-analysis
predicting time to death

Horvath and Hannum 13 cohorts 13,089 All considered measures of
epigenetic age acceleration
were predictive of mortality (p
≤ 8.2 × 10�9) (Chen et al.,
2016)

DNA methylation signatures
in peripheral blood
strongly predict all-cause
mortality

Zhang 10 CpG clock 1900 Demonstrated that a risk score
based on DNAm of ten
identified CpGs was a very
strong predictor for all-cause,
CVD, and cancer mortality
(Zhang et al., 2017)
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however, in fact it has been reported that indices with as few
as 50 clinical deficits can be highly useful, and some indices
with as few as 20 items have been explored (Rockwood &
Mitnitski, 2012). Other tools related to the frailty index have
been developed such as the Edmonton Frailty scale (Clegg
et al., 2013; Rolfson et al., 2006) and Clinical Frailty Scale
(Rockwood et al., 2005). The Clinical Frailty Scale is a 7-
point scale that is highly correlated to the original 70-point
index (r2 = .90) (Rockwood et al., 2005). More importantly
given an aging research context, each 1 point increase in the
scale was found to correspond with a 21.2% increased risk
of death in the next 70 months (Rockwood et al., 2005). In a
study of 1788 community-dwelling elders, frailty as defined
by the FI was associated with a 2.31-fold increased risk of
all-cause death compared to those who scored robust on the
index (Shi et al., 2019). Another study of 5536 community-
dwelling elderly found the relationship between FI and
mortality to be significant (p < .0001). Interestingly, a meta-

analysis examining frailty index scores between men and
women found what the authors described as a “male-female
health-survival paradox” (Gordon et al., 2017). The paradox
was that at all ages females displayed higher FI scores,
despite males having higher mortality rates at each level of
the frailty index (Gordon et al., 2017). Frailty sex differ-
ences extended to diet as well. A study examining older
adults found that low meat consumption (less than 2x/wk.)
was associated with increased frailty in men only. Increased
frailty in women was associated with decreased fish, meat,
vegetables, and potatoes (Shibasaki et al., 2019). Perhaps
most relevant to the aim of this article, one study comparing
nine different biological age predictors, found frailty index
[42-item Rockwood (Jiang et al., 2017)] to have one of the
strongest associations with mortality risk among the nine
markers examined, being exceeded only by GrimAge (Li
et al., 2020). Given these results, some frailty indices may
serve lifestyle intervention research well alongside other

Table 4. Studies selected pertaining to biomarkers of aging based on genetic expression.

Transcriptomics

Study Title BA Predictor Used Cohort Name (If
Applicable)

n Results

The transcriptional landscape
of age in human peripheral
blood

Transcriptomic age
prediction tool

The Rotterdam
Study

14,926 The correlation between chronological age and
transcriptomic age was significant in all cohorts (P <
2E�29)

A positive delta age, interpreted as reflecting more rapid
biological aging, was consistently associated with
higher systolic and diastolic blood pressure, total
cholesterol, HDL cholesterol, fasting glucose levels,
and body mass index (BMI)

Transcriptomic age and epigenetic age (both Hannum
and Horvath) were positively correlated, with r2

values varying between 0.10 and 0.33 (Peters et al.,
2015)

Table 5. Studies selected pertaining to functional age estimators and their roles as biomarkers of aging.

Functional Age Estimators

Study Title
BA Predictor
Used

Cohort name (if
applicable) n Results

Frailty index as a predictor
of all-cause and cause-specific
mortality in a Swedish population-
based cohort

42-Item
Rockwood

Swedish Adoption/
Twin Study of Aging

1477 The categorized FI levels demonstrated a dose-
response increase in mortality risk with increased
frailty in both men and women (Jiang et al., 2017)

Frailty phenotype, frailty
index, and risk of mortality in
Chinese elderly population-Rugao
longevity and ageing study

Frailty index Ageing arm of Rugao
Longevity and
Ageing Study

1788 Frailty defined by the frailty index was associated with
a 2.31-fold (95% CI 1.16–4.6) risk of all-cause death
compared with robust elderly (Shi et al., 2019).

Frailty index as a predictor of mortality:
A systematic review and meta-
analysis

Frailty index 18 cohorts All meta-analyses suggested that higher FI was
significantly associated with higher mortality risk
(Kojima et al., 2018)
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biomarkers, or perhaps even as stand-alone outcome vari-
ables (Table 5).

Discussion

No statement in this article is intended to make a recom-
mendation regarding the use of a specific biological age
predictor; neither is this review an exhaustive list. In addition
to less investigated biological age predictors like proteomics
and metabolomics, there are multitudes of individual markers
associated with accelerated biological aging such as glycated
hemoglobin, triglycerides, blood pressure, resting heart rate,
waist-to-hip ratio, fibrinogen, albumin, crp, interleukin-6, and
many others (Jylhävä et al., 2017; Kane & Sinclair, 2019).
Our aim is to compile relevant information pertaining to
various promising predictors of biological age validated in
large cohorts to assist future researchers interested in using
them as outcomemeasures. There is also no implication that all
biomarkers of aging are equally valid. A compelling com-
parison of nine biological age estimators that examined lon-
gitudinal trajectories, correlations, and mortality associations
across 20 years was performed by Li et al. (2020) Their study
examined data from a Swedish-based cohort of 845 men and
women aged 63.6 (8.6) at baseline and compared the validity
of four different DNA methylation age estimators, Horvath
(Horvath, 2013), Hannum (Hannum et al., 2013), PhenoAge
(Levine et al., 2018), and GrimAge (Lu et al., 2019), three
different functional age estimators [functional aging index
(Finkel et al., 2019), frailty index (Jiang et al., 2017), and
cognitive function (Reynolds et al., 2005)], telomere length
(Berglund et al., 2016), and a composite biomarker called
physiological age that included various biomarkers and
measures of body composition. All four DNAmethylation age
estimators, physiological age, and all three functional age
estimators were associated with mortality risk independent of
chronological age, while telomere length was not. Of the nine
biomarkers of aging examined, GrimAge and the frailty index
stood out as being most associated with mortality risk.

The information presented here sheds light on the large
variety of biomarkers of aging available, each with its own
specific capabilities. Even still, the markers discussed are just a
small portion of the available biomarkers of aging in existence.
Like any other biomarker, the predictor used in future ex-
perimental studies should be based on the specific aims and
needs of those studies. A study that aims to assess the effects of
a vegan diet on coronary heart disease risk may benefit from
utilizing the GrimAge marker since it has been shown to
predict time-to-coronary heart disease (Lu et al., 2019). In-
vestigators could obtain a baseline GrimAge value, implement
an intervention protocol, and obtain a GrimAge value at the
conclusion of the trial. When compared to a control group, the
difference in GrimAge values could be analyzed to determine
if biological age was slowed or reversed. An example of this
methodology was implemented in the 2019 Fahy et al. study,
Reversal of Epigenetic Aging and Immunosenescent Trends in

Humans, in which investigators reported a 2.5 year reversal in
mean epigenetic age following a 1-year Human growth hor-
mone and metformin treatment protocol (Fahy et al., 2019). A
study that aims to determine the transcriptional basis for any
observed changes in biological age resulting from lifestyle
modification may find a transcriptomic predictor most ap-
propriate due to the ability to obtain a biological age estimation
and gene expression profile from a single blood sample. If an
investigator is limited in terms of their capability to analyze
gene expression profiles, DNA methylation of CpG sites, or
blood biomarkers, perhaps a functional age estimator such as a
frailty index could provide relevant data on biological aging
changes in an intervention group. If feasibility allows it, the
combination of various predictors of biological age could yield
even more robust results. Various factors will dictate the most
appropriate selection for future lifestyle modification research,
not the least of which being accessibility, cost, applicability to
multiple tissue types, and conversely, specificity to a study’s
specific tissue of interest. A possible limitation to this review
may be that only articles written in English were included.
Additionally, this is an emerging field with many potential
biological age predictors to consider. We selected five of the
most investigated biological age predictors with large-scale
cohort validation; and therefore, there may be promising new
predictors that were not included in this review.

Conclusion

This article highlights an inherent challenge in searching for
the “best” biomarker(s) of aging. Any researcher seeking to
utilize one of these biomarkers must first clearly define their
aims. They must also seek to understand and explain how
they are using the term biological age or biomarker(s) of
aging. It may be preferable to instead use more descriptive
terminology such as DNA methylation age/Epigenetic age
(BA as measured by an epigenetic clock), transcriptomic age
(BA as measured by a transcriptomic age predictor), or
functional age (BA as measured by a deficit accumulation
index such as a frailty index). These terms go further to
explain the nature of the data, how it is obtained, and how it
may be best interpreted. They also help to add some clarity
given the array of emergent terminology used in biological
age prediction research.

Our aim at the outset of this article was to view these
markers in the context of their ability to predict healthspan
and lifespan. Telomere length is certainly the most exten-
sively studied biomarker of age-related disease. Conse-
quentially, many conclusions have been made regarding the
association between telomere length, age, disease, stress, and
multiple other health outcomes. While no study that we know
of has sought to produce an easy-to-use telomere length
biological age prediction tool, TL has been used to predict
mortality risk, albeit with mixed results. Epigenetic clocks
appear to have the upper hand in terms of accessibility (many
are freely accessed online), and they also appear to best
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predict time-to-death, time-to-cancer, and other age-related
processes (Li et al., 2020; Lu et al., 2019; McCrory et al.,
2020). It also seems that they may have the greatest degree of
large-scale cohort validation. Perhaps the only area where
epigenetic clocks are not the apparent “leader” of the bio-
logical age prediction discussion is in their ability to identify
the mechanism behind differences in chronological and bi-
ological aging, although discovery is taking place rapidly
(Zhang et al., 2020). It is in this domain that transcriptional
predictors of biological aging may add value as they rely on
gene expression data to estimate biological age. A researcher
could potentially examine changes in both biological age and
genetic expression to make an inference regarding the
mechanism behind the observed biological age acceleration/
deceleration from a single blood sample. A “best of both
worlds” scenario may involve the inclusion of a more vali-
dated DNA methylation marker like GrimAge, alongside a
genetic expression profile of relevant genetic pathways. This
would allow an investigator to report an intervention’s effect
on biological age, as well as an analysis of the specific
changes in gene expression that may have contributed to that
change.

Each of these tools has unique capabilities and limitations.
For this reason, the most robust option for a future researcher
is likely the inclusion of multiple biomarkers of aging based
on those unique features.

A central goal of lifestyle modification is to reduce disease
risk and promote healthy, successful aging. The ability of
biological age predictors to assess an intervention’s contri-
bution to mortality/morbidity risk makes them highly relevant
measures for studies examining the effects of lifestyle
modification on age-related disease. Future studies examin-
ing the effects of diet, supplementation, exercise, stress-
reduction techniques, sleep quality/quantity, or any number
of other lifestyle modification interventions could benefit
greatly from the inclusion of a biological age predictor.
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