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Malignant ascites is an abnormal accumulation of fluid within the peritoneal cavity, caused
by metastasis of several types of cancers, including colorectal cancer (CRC). Cancer cells in
ascites reflect poor prognosis and serve as a good specimen to study tumour heterogeneity,
as they represent a collection of multiple metastatic sites in the peritoneum. In the present
study, we have employed single-cell RNA-sequencing (scRNA-seq) to explore and charac-
terise ascites-derived cells from a CRC patient. The samples were prepared using mechan-
ical and enzymatic dissociations, and obtained before and after a chemotherapy treatment.
Unbiased clustering of 19,653 cells from four samples reveals 14 subclusters with unique
transcriptomic patterns in four major cell types: epithelial cells, myeloid cells, fibroblasts,
and lymphocytes. Interestingly, the percentages of cells recovered from different cell types
appeared to be influenced by the preparation protocols, with more than 90% reduction in
the number of myeloid cells recovered by enzymatic preparation. Analysis of epithelial cell
subpopulations unveiled only three out of eleven subpopulations with clear contraction af-
ter the treatment, suggesting that the majority of the heterogeneous ascites-derived cells
were resistant to the treatment, potentially reflecting the poor treatment outcome observed
in the patient. Overall, our study showcases highly heterogeneous cancer subpopulations at
single-cell resolution, which respond differently to a particular chemotherapy treatment. All
in all, this work highlights the potential benefit of single-cell analyses in planning appropri-
ate treatments and real-time monitoring of therapeutic response in cancer patients through
routinely discarded ascites samples.

Introduction
Colorectal cancer (CRC) is one of the most common cancers globally. CRC exhibits high mortality rate
[1] and high risk of metastasis [2]; it can progress and metastasise to several body sites, including the
peritoneum. Approximately 7–26% of the CRC patients had peritoneal metastasis, resulting in malignant
ascites, and this poses a poorer prognosis and higher risk of recurrence [3]. Metastasis and chemoresis-
tance in cancer are often correlated [4,5]. However, it is challenging to accurately assess how the cancer

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

1

http://orcid.org/0000-0002-3651-3575
http://orcid.org/0000-0001-6655-1700
http://orcid.org/0000-0003-0101-4386
http://orcid.org/0000-0002-2199-4126
http://orcid.org/0000-0002-3437-4698
mailto:varodom.cha@mahidol.ac.th
mailto:natini.jin@mahidol.ac.th
mailto:jnatini@hotmail.com


Bioscience Reports (2021) 41 BSR20212093
https://doi.org/10.1042/BSR20212093

cells respond to chemotherapy treatments and thus determine an appropriate regimen [6]. When the direct assess-
ment of primary tumour cells is not practical, most clinical investigations rely on known blood markers to evaluate
cancer status [7–9]. Alternatively, malignant ascites, which represents another biofluid source for liquid biopsy, can
serve as an important biological material for molecular characterisation of solid tumours. It is readily available in large
volume when cancer patients undergo intermittent abdominal paracentesis to relieve abdominal discomfort, which
is part of symptomatic treatment. However, so far there are only a few studies that characterise the potential use of
malignant ascites. Some of those studies aim to find biomarkers for cancer diagnosis [10,11] or study the molecu-
lar phenotype of ascites-derived cells [12]. Furthermore, ascites is gaining recognition as a unique form of tumour
microenvironment responsible for cancer progression and treatment resistance. Since there are multiple cell types in
malignant ascites including tumour cells, stromal cells and immune cells [13], the ability to simultaneously analyse
each cellular population and subpopulation should help clarify the roles of ascites samples in cancer progression and
its potential usage as a liquid biopsy specimen.

In the era of high-throughput molecular technologies such as massively parallel sequencing, transcriptomics has
been intensively applied to study the gene expression characteristics of different types of cancers. One of the most com-
prehensive examples of high-throughput gene expression profiling of cancers is The Cancer Genome Atlas (TCGA)
project (https://www.cancer.gov/tcga) and Consensus Molecular Subtype (CMS) classification systems [14]. Both
demonstrate the benefits of harnessing the gene expression signatures and clinical features to classify patients based on
treatment responses and the disease outcomes. However, overall progress is still largely hindered by the limitations
of resolving intratumoural heterogeneity, and hence the majority of the expression profiles represent the ‘average’
molecular characteristics of highly heterogeneous cancer cells [15,16].

Single-cell RNA-sequencing (scRNA-seq) is a powerful tool that enables transcriptomic profiling of individual
cancer cells, and empowers clinical implementation of more tailored treatments [17–19]. It has been proposed that
characterisation of transcriptomic profiles of the CRC samples using scRNA-seq would be an important step to un-
derstand the carcinogenesis and progression mechanisms of this cancer [20,21], as well as to develop personalised
treatment against it [17]. In the past 5 years, several studies have employed scRNA-seq to investigate the genomic het-
erogeneity of CRC in several aspects. Li and co-workers, for instance, investigated the intratumoural heterogeneity of
CRC cells at primary site, as compared with adjacent normal mucosal tissues [22]. Dai and co-workers investigated
the heterogeneity of CRC tissue at primary site [23]. Despite being a practical source of patient samples for biomolec-
ular analysis, to the best of our knowledge, no study so far has described intratumoural heterogeneity of malignant
ascites in CRC patients. Indeed, the promising prospect of using ascites-derived cells to investigate the cancer’s molec-
ular profile was demonstrated by Tang-Huau and co-workers, who successfully utilised scRNA-seq to dissect cellular
heterogeneity and myeloid cells cross-presentation in ovarian cancer [24].

Here, we characterised intratumoural heterogeneity from ascites-derived cancer cells using a droplet-based
scRNA-seq method. To investigate whether different single cell dissociation methods may alter cell population size
and gene expression, the samples were prepared using different cell preparation protocols: mechanistic or enzymatic
dissociation. We observed intratumoural heterogeneity and population dynamic changes between a cycle of mod-
ified FOLFIRI (mFOLFIRI) chemotherapy regimen, which corresponded well to the clinical outcome observed in
our patient. Taken together, we have provided evidence of how the single-cell technology can be employed to dissect
molecular complexity of intratumoural heterogeneity, the key insight required to improve the accuracy of molecular
markers and the efficacy of the treatments against cancers.

Materials and methods
Patient information and clinical diagnosis
A 62-year-old female patient with underlying hypertension presented with weight loss, constipation, and haema-
tochezia. CT colonoscopy showed polypoid polyps at distal rectum. Sigmoidoscopy showed 50% circumferential
mass at 5–15 cm from anal verge with partial obstruction. Pathology report of the biopsy sample showed moder-
ately differentiated adenocarcinoma. Molecular study of the tumour showed KRAS codon 12 (G12C) mutation. CT
scan of whole abdomen revealed two small (7 and 8 mm) hypodense lesions at hepatic segments VII and VIII, circum-
ferential irregular enhancing wall of rectum 5.6 cm from anal verge, perirectal fat extension, and multiple perirectal
lymphadenopathy. Chest CT scan showed multiple lung nodules (2–4 mm). The patient was diagnosed with advanced
rectal cancer (cT3N2bM1) with lung and liver metastases.
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Clinical course and treatment history
A palliative chemotherapy, modified FOLFOX6 (mFOLFOX6), was started in November 2017. After the fourth cycle,
MRI showed a decrease in size of liver nodule in segment VIII from 8 to 4 mm, and disappearance of segment VII
nodule. The patient received two more cycles of mFOLFOX6, then requested to change the regimen due to intolerable
side effects, and thus was switched to capecitabine/oxaliplatin (CapeOx). Due to thrombocytopenia and neuropathy,
oxaliplatin dose was reduced and finally omitted. After the fourth cycle of CapeOx, she developed abdominal dis-
tension from massive ascites. CT scan showed peritoneal metastasis but rectal mass size was decreased and no liver
nodule was found. Progressive disease was diagnosed. She underwent abdominal paracentesis. The ascites cytology
showed adenocarcinoma. She then received a second-line palliative chemotherapy, mFOLFIRI, in May 2018. Ascitic
fluid samples were collected before and after the first cycle of mFOLFIRI. Carcinoembryonic antigen (CEA) slightly
changed from 6.8 to 6.4 ng/ml after the treatment. Later, the patient developed new pleural effusion after the second
cycle of mFOLFIRI and required frequent thoracocentesis and abdominal paracentesis procedures. Bevacizumab was
added to mFOLFIRI in the third cycle in July 2018. Finally, her performance status declined gradually, she could not
receive any further palliative chemotherapy and best supportive care was given. All samples were obtained with in-
formed consent after the approval from the Institutional Review Board at Faculty of Medicine Ramathibodi Hospital,
Mahidol University under certificate number COA.MURA2018/1067. Detailed clinical timeline can be found in Sup-
plementary Figure S1.

Patient sample collection and single cell preparation
Approximately 500 ml of ascitic fluid was collected from the patient and was transferred to the laboratory for pro-
cessing immediately. Ascites was pre-filtered by 70-μm cell strainers (Corning, cat. no. 431751, U.S.A.) with gentle
mechanical motorisation using pipette tips to assist cell clumps to pass through filters. The filtered ascitic fluid was
collected in 50-ml falcon tubes. Cells in the filtered ascites were then subjected to centrifugation at 100 rcf for 10 min
at 25◦C and the clear supernatant was carefully removed. Next, the sedimented cells were treated with the RBC lysis
buffer (Qiagen, cat. no.158902, Germany) to remove the red blood cells (RBCs). One millilitre of pre-chilled RBC
lysis buffer was gently mixed with the cells, and incubated at room temperature for 5–10 min depending on the ob-
served amount of RBCs in the cell pellets. Ten millilitres of pre-chilled Dulbecco’s phosphate-buffered saline (DPBS,
calcium- and magnesium-free) was later added and cells were again collected by centrifugation at 300 rcf for 10 min at
25◦C. For mechanical dissociation, the cells were assessed again under the microscope; if many cell clumps were still
visualised, another round of filtering with 70-μm cell strainers was applied. For enzymatic dissociation, after RBC
removal, we treated the cells with 2 ml of Accumax (Innovative Cell Technologies, Inc., U.S.A.) and incubated the cells
at 37◦C for 10 min, after which the cells were quickly assessed under the microscope. If there were still many visible
cell clumps, another 10–20-min incubation was applied. Accumax reaction was terminated by the addition of 10-ml
fresh culture medium, followed by centrifugation at 300 rcf for 10 min at 25◦C to collect cell pellets. Finally, viable
cell numbers after the completion of both dissociation methods were assessed by haemocytometer using Trypan Blue.
The single cells were then resuspended in 90% FBS+10% DMSO at a concentration of 107 cells/ml per tube, kept in a
slow-cooling freezing container at −80◦C, and cryopreserved in the vapour phase of liquid nitrogen the next day for
long-term storage.

scRNA-seq library preparation
Frozen cells were thawed and processed according to the recommended protocol for human PBMCs (10x Genomics,
U.S.A.). Cell quantity and viability were checked with the haemocytometer under the microscope. Dead Cell Removal
Kit (Miltenyi Biotec, cat. no. 130-090-101, Germany) was applied according to the manufacturer’s protocol. Cells were
resuspended in phosphate-buffered saline (PBS) supplemented with 0.04% bovine serum albumin (BSA) (Merck, cat.
no. 12659, Germany) before undergoing single-cell preparation protocol using the Chromium Single Cell 3′ v2 (10x
Genomics, cat. no. PN-120267, U.S.A.). scRNA-seq libraries were sequenced with the Illumina HiSeq platform by
Macrogen Inc. (South Korea).

Bioinformatics analyses
Sequenced reads were checked for overall sequencing qualities using FastQC [25], and then mapped, and unique
molecular identifiers (UMIs) quantified using Cell Ranger version 3.0.1 (10x Genomics, U.S.A.), using 10x human
genome GRCh38 version 1.2.0 as the reference. Seurat [26] package v3.1.0 was mainly used for further analysis, in-
cluding discarding low-quality cells in the case that the number of expressed genes is less than 200 genes per cell, or
the percentage of mitochondrial genes is higher than 20% in a cell. Genes that were detected in less than five cells
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were also removed. SoupX [27] was applied to regress out the ambient RNAs. Doublets were determined using Dou-
bletFinder [28], and removed from further downstream analysis. Dimensionality reduction, principal component
analysis (PCA), with the top 2000 highly variable genes (default settings) as input, was performed on each library
individually. The results were then normalised with sctransform [29] using 30 principal components (PCs). The data
from different samples were then integrated using Seurat [26] package v3.1.0. Uniform Manifold Approximation and
Projection (UMAP) [30] was used for data visualisation. Populations of cells with similar transcriptomic profiles
were clustered using the Leiden algorithm [31]. A total of 14 clusters were identified (Supplementary Figure S2), and
annotated according to known marker genes for epithelial cells (EPCAM, KRT18), fibroblasts (SPARC, COL3A1),
myeloid cells (CD14, S100A8, CD68), and lymphocytes (PTPRC, CD3D, CD79A). Differentially expressed genes
(DEGs) were determined using Wilcoxon’s rank sum test with Bonferroni correction for multiple tests. Complex-
Heatmap was used to generate heatmaps for gene expression visualisation [32]. The epithelial cells were further ex-
tracted, re-normalised, and re-integrated. Cell clustering and dimensionality reduction were performed as described
above. Gene set enrichment analysis (GSEA) [33] was done using the fgsea package [34] with default parameters. In-
put for GSEA was ranked by average log2 fold change derived from the findmarker function, comparing each cluster
and other cells with parameter logfc.threshold = 0, min.pct = 0, and min.diff = −Inf, in order to keep all genes as
the input. Hallmark gene sets were used to assess biological process and state of gene expression [35]. In addition,
publicly available data of normal gastrointestinal tract obtained from GSE125970 [36], were re-processed using the
same pipeline as described above, and integrated with the single-cell data from this study.

Results
Collection of ascites from a CRC patient and cell preparation
Ascites-derived cells were collected from a CRC patient and processed as described in ‘Materials & methods’ section.
Briefly, a 62-year-old woman had been diagnosed with advanced CRC (cT3N2bM1) with lung and liver metastases,
and was under a course of first-line chemotherapy. However, the patient condition worsened due to intolerable side
effects and she developed malignant ascites. Treatment regimen was then changed to mFOLFIRI. To investigate the
treatment responsiveness of metastasised cancer cells, the ascites fluid samples, which were tapped and collected
twice, before and after the first cycle of mFOLFIRI, were subjected to scRNA-seq profilings (see complete treatment
scheme in Supplementary Figure S1). The samples were prepared by enzymatic and mechanical protocols, giving rise
to a total of four samples to be further processed by scRNA-seq, namely Pre-tx enzymatic, Pre-tx mechanical, Post-tx
enzymatic, and Post-tx mechanical. Accumax was selected as the enzyme of choice because it is less toxic and gentler
on cells than trypsin and collagenase. Single-cell isolation, RNA extraction, and reverse transcription were carried
out according to the 10x Genomics manufacturer’s protocols. Data analyses to elucidate the effect of different sample
preparation protocols and the effect of chemotherapy on ascites cells were performed (Figure 1).

Overall scRNA-seq profiles of pre- and post-chemotherapy CRC
ascites-derived cells
From the four samples, we were able to profile transcriptional patterns of the total of 19,653 cells, with the number of
cells from each individual sample ranging from 3,176 to 6,809 cells (Figure 2A, Supplementary Table S1). Interestingly,
our scRNA-seq profiling revealed previously unappreciated heterogeneous cell populations comprising multiple cell
types across the samples. In this particular case, the most abundant cell types found in the ascites-derived populations
of cells were epithelial cells (85.84%), myeloid cells (9.11%), fibroblasts (0.67%), and other smaller populations of
cells (4.36%). Figure 2B demonstrates the marker genes and their expression prevalence employed to identify the
main populations (see also figure legend and ‘Materials and methods’ section for data clustering information and cell
type classification). To further verify the cell types assigned, we used the function ‘FindMarker’ in the Seurat toolkits
[26] to unbiasedly extract the most representative set of genes uniquely expressed in different populations, namely
epithelial cells (EPCAM, KRT8, KRT18), fibroblasts (SPARC, COL3A1, COL1A1), and myeloid lineage (S100A8,
CXCL8, IL1B) (Figure 2C). For ‘other’ smaller populations of cells, we observed the expression of CD3E, CD79A
and NKG7, suggesting that this group of cells might contain a mixture of T cells, B cells, and NK cells.

Choice of cell dissociation methods highly influenced scRNA-seq profiles
We next asked if and how the methods of cell dissociation and/or that particular cycle of mFOLFIRI treatment had
effects on the populations of identifiable cell types, as well as their gene expression profiles. Indeed, the most apparent
differences in the percentages of recovered cell populations were between the enzymatic and mechanical dissociation
protocols, especially between the two pre-treatment samples (Figure 3A,B). Strikingly, we observed that a higher pro-
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Figure 1. A summary flowchart showing the clinical course of the patient and study design

Ascitic fluids were collected before and after a course of mFOLFIRI treatment in a patient with rectal cancer. The samples collected

from each time point were prepared for single-cell transcriptomic analysis using either mechanical or enzymatic dissociation meth-

ods. All the samples were subjected to quality control and removal of dead cells, and only viable single-cell suspensions were used

for the scRNA-seq experiment on the 10x Genomics platform (see also ‘Materials and methods’ section and Supplementary Figure

S1 for more details). Subsequent data analysis explored the effect of sample preparation by comparing the fraction of captured

cell types and DEGs between two preparation protocols. Further analyses investigated the effect of chemotherapy by comparing

each fraction of epithelial cell subsets, GSEA, and comparing the expression profile to that of normal gastrointestinal scRNA-seq

data.

portion of myeloid cells were captured using the mechanical dissociation protocol (32.2 and 2.5%; Pre- and Post-tx), as
compared with that of enzymatic preparation (3.1 and 1.6%; Pre- and Post-tx). As a result, the enzymatic preparation
yielded slightly higher relative proportions of epithelial cells and fibroblasts, 95.4/91.7% and 0.8/0.9% respectively, as
compared with 66.2/85.4% and 0.2/0.7% from the mechanical preparation samples.

In addition to the compositions of cell types found in the ascites samples, we also sought to determine whether
the dissociation methods also affected the gene expression profiles. Differential expression (DE) analysis focusing on
the epithelial cells obtained using the two dissociation methods showed that HES1, IER3, JUNB, IER2, SOCS3, and
ID1 were detected at significantly higher levels in the enzymatically dissociated samples than those obtained from
the mechanically dissociated ones (Figure 3C,D and Supplementary Table S2). In addition, several genes encoding
epithelial cell surface proteins and cytoskeletons such as CLDN4 (Claudin 4), SFN (Stratifin), LMNA (Lamin A/C),
KRT17 (Keratin 17), and EMP1 (Epithelial Membrane Protein 1) were also found at higher levels in the enzymat-
ically dissociated samples. On the contrary, we found that CD81 (Tetraspanin) and PPP1CB (Protein Phosphatase
1 Catalytic Subunit β) were under-represented in the enzymatically prepared samples. DE analyses of the myeloid
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(A)

(B)

(C)

Figure 2. Profiling the pre- and post-chemotherapy CRC ascites-derived cells with scRNA-seq reveal heterogeneous cell

populations across the samples

(A) UMAP dimensional reduction plot of integrated data (four samples) overlaid with major cell type annotations. Epithelial cells

accounted for the majority of the cells in the ascitic fluids from the patients. (B) UMAP dimensional reduction plot overlaid with nor-

malised gene expression values of known marker genes of epithelial cells (EPCAM, KRT8), fibroblasts (SPARC, COL3A1), myeloid

cells (S100A8, CD14), and other mixed lymphocytes (PTPRC, CD3E, NKG7). (C) Heatmap showing top ten marker genes for each

of the major cell type (Epi, epithelial cells; Fib, fibroblasts; Mye, myeloid cells; Oth, other cells), as determined unbiasedly using Seu-

rat findmarker function [26]. Yellow indicates relative overexpression as compared with other cell types, whereas purple indicates

relative down-regulation.

cells showed that several chemokines and cytokine genes, such as CCL3, CCL4, CXCL8, IL6, and IL1B were found at
low levels in the samples prepared by the enzymatic dissociation, in accordance with low percentages of myeloid cell
population (Supplementary Figure S3). These results further demonstrate the effects of enzymatic and mechanical
dissociations on not just the relative abundance of cell populations, but also on the gene expression profiles.
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(A) (B) (E)

(C) (D)

Figure 3. The effect of single-cell preparation methods (mechanical versus enzymatic dissociation) on gene expression

(A) Bar graphs showing the fractions of the four major annotated cell types (Epi, epithelial cells; Fib, fibroblasts; Mye, myeloid cells;

Oth, other cells) found in each sample and condition (Pre-tx, pre-treatment; Post-tx, post-treatment; Enz, enzymatic dissociation;

Mech, mechanical dissociation). (B) Line plots showing the effects of sampling time point and preparation protocol on the frequency

of each of the four major cell types. Dots and lines connect the pre- and post-treatment samples with the same preparation methods

to show the trends between the two time points. (C) Volcano plots showing DEGs from the comparison between mechanical and

enzymatic preparations of the epithelial cells, red and blue represent the up-regulated genes appeared in the enzymatic preparation

as compared with mechanical preparation, and vice versa respectively. Coloured dots highlighted genes that have log2 fold change

> 0.5 and adjusted P-value <0.01. (D) Bar plots showing a fraction of cells expressing DEGs from (C). Expressed fraction is

determined by the number of cells having expression level more than quartile 1 (25%) of all the cells expressing that particular

gene. (E) Heatmap showing DEGs from the comparison between the post- and pre-treatment epithelial cells. Red indicates relative

overexpression as compared with other conditions, whereas blue indicates relative down-regulation.

Effect of the chemotherapy regimen, mFOLFIRI, on cellular heterogeneity
and gene expression of ascitic cells
We observed that the proportions of the cells assigned to the epithelial cluster were largely unchanged before and
after the treatment, as compared with the effect from the dissociation methods. Looking in more detail; however, the
relative fractions of myeloid cells appeared to shrink slightly; whereas those of fibroblasts and the ‘others’ showed
slightly increasing numbers in the samples from both dissociation methods (Figure 3A,B). We noted that, due to
the limitation of the number of samples analysed here, these trends should be regarded as observations rather than
confirmation, and thus would require further validation in additional patients.
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Next, we sought to get an overview of transcriptomic profile changes of the epithelial cancer cells found in the
ascites samples, before and after the mFOLFIRI treatment, by comparing the gene expression of epithelial cells as a
whole, also known as ‘pseudo-bulk’ RNA-seq. DEGs are visualised using a heatmap (Figure 3E). After looking at genes
that pass the selection threshold (log2 fold change > 0.5 and adjusted P-value <0.001), several ribosomal proteins
encoded genes (e.g., RPL36, RPL36A, RPL37, RPL38, RPL41, RPS21, and RPS29) along with interferon-stimulated
genes (ISG15 and IFI6) are found to be lower expressed after the treatment. However, Gene Ontology (GO) term
enrichment analyses of either up- or down-regulated genes did not result in any statistically significant gene set.

scRNA-seq revealed treatment-susceptible and -resistant subpopulations
As the pseudo-bulk analysis cannot fully demonstrate the changes of gene expression profiles of highly heteroge-
neous malignant ascitic cells, we therefore further analysed the epithelial cells in a greater depth by subsetting and
re-clustering them based on their distinct transcriptomic profiles. In total, 11 transcriptionally distinct epithelial cell
subclusters were annotated (Figure 4A,B). In the majority of the subclusters, the fractions of cells detected from
different samples pre- and post-treatment, were largely comparable, except for the subclusters Epi 3, Epi 9, Epi 10,
and Epi 11. The cells in Epi 3 were mainly from the post-treatment samples, regardless of the dissociation meth-
ods; whereas the cells in Epi 9, Epi 10, and Epi 11 were mainly found in the pre-treatment samples. This suggested
possible differences in the degree of response to the treatment, as Epi 3 might be a relatively resistant population or
clone that was able to expand after the treatment; whereas Epi 9, Epi 10, and Epi 11 might represent the clones that
responded relatively well to that particular round of treatment.

As different epithelial cell subclusters possessed unique transcriptional characteristics, we next investigated the
gene expression profiles of these subclusters, by obtaining the top five ‘marker genes’, or the most highly expressed
genes in each cluster, as compared with the rest of the epithelial subclusters (Figure 4C). Among the diverse groups
of marker genes identified, Epi 3 uniquely expressed a high level of genes encoding heat shock protein and pro-
teasome (e.g., HSP90AB1, PSMA4). Epi 9’s marker genes include the members of matrix metalloproteinase and
tetraspanin families (e.g., MMP3, TSPAN8), whereas Epi 10’s marker genes are related to DNA damage (e.g., DDIT3,
GADD45B). Epi 11’s marker genes include the members of the insulin-like growth factor-binding protein fam-
ily, IGFBP6 and IGFBP7, both of which are expressed in vascular endothelial cells and mesenchymal stromal cells
[37–39]. The complete list of representative genes from each of the 11 clusters is shown in Supplementary Table S3.

Possible biological mechanisms underlying the chemotherapy treatment
susceptibility and resistance
We next investigated the putative functional profile of each subcluster based on the GSEA of the hallmark gene set
collection from MSigDB [35] (Figure 5A). The signature genes of unfolded protein responses were highly represented
in Epi 6, as several heat shock protein-coding genes including HSPA6, HSPA1A, and HSPA1B, were highly expressed
in Epi 6. Whereas Epi 2, Epi 3, and Epi 4 were significantly enriched in the gene sets involved in cell cycling (mi-
totic spindle, G2/M checkpoint, E2F targets, MYC targets) and metabolism (oxidative phosphorylation, fatty acid
metabolism). Only Epi 3 was uniquely enriched in protein secretion and peroxisome pathways. Epi 3, Epi 4, and
Epi 6 were also enriched with the MTORC1 signaling pathway. The mammalian target of rapamycin (mTOR) is
known to be involved in regulation of cell survival, tumour progression, and anti-cancer drug resistance in many
types of cancer, including CRC [40]. Interestingly, the subclusters that appeared to respond to mFOLFIRI treatment,
Epi 9, Epi 10, and Epi 11, did not show any statistically significant enrichment of the hallmark gene sets.

To further explore potential functions and biological relevances of these epithelial cell subclusters, we also
compared our ascitic-derived scRNA-seq data from the CRC patient with the publicly available normal intestine
scRNA-seq profiles [34] (Figure 5B). Among all the subclusters, we found that Epi 11 showed the most closely re-
lated expression profile to the normal enteroendocrine cells, of which are determined by close proximity coordination
on the UMAP plot of integrated data. Epi 11 might potentially possess the most sensitive phenotype to the treatment,
and thus it was almost completely eradicated from the post-treatment samples. Epi 9’s expression profile was closely
related to normal enterocytes, whereas Epi 10’s expression profile is closely related to progenitor cells. The Epi 2 clus-
ter showed close proximity to transit amplifying (TA) cells. TA cells are normally divided from normal stem cells and
later differentiated into enterocytes [41,42]. Presence of gene expression profile of TA cells might reflect the stemness
phenotype of cancer cells. Notably, the expression profiles of Epi 3 and Epi 4 only showed minimal similarity when
compared with the public dataset; therefore, they appeared to represent the cell populations that were unique in ma-
lignant ascites samples. This suggested that Epi 3 and Epi 4 might be highly mutated cancer cells that did not share
gene expression profiles with those of normal intestinal cells, as the other subclusters of ascites-derived cells did.

8 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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(A)

(B)

(C)

Figure 4. Epithelial cell clusters found in the CRC ascites were highly heterogeneous

(A) UMAP of reclustered epithelial cells overlaid with subcluster annotations, showing gene expression heterogeneity even within

the epithelial cells. (B) Bar plots showing sample composition of each subcluster in (A). (C) Heatmap showing the top five marker

genes for each subcluster. Yellow indicates relative overexpression as compared with other subclusters, whereas purple indicates

relative down-regulation.

Discussion
Single-cell transcriptomics has been used extensively to investigate several biological problems, cancer biology in-
cluded, in the past decade [43]. Previous studies have investigated CRC at the single-cell resolution [22,44–48], and
they have demonstrated the intratumoural heterogeneity and lineage development. In the present study, we have
comprehensively investigated a case of advanced CRC using the ascites-derived cells, which can serve as a practical
proxy for disease monitoring as it can be routinely collected from the patients undergoing abdominal paracentesis
as part of the treatment. Through the gene expression analysis at single-cell resolution, we have showcased the intra-
tumoural heterogeneity of cancer cells, the influence from cell preparation methods, and the changes of the cancer
subpopulation landscape after a cycle of chemotherapy.

Ascites-derived cells have been used to study molecular mechanisms of cancers, including ovarian and gastroin-
testinal cancers, particularly to investigate disease progression and treatment responsiveness [49–55]. However, iden-
tification of biomarkers can be complicated by the heterogeneous cellular compositions. Using scRNA-seq profiling

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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(A) (B)

Figure 5. Functional gene set analysis of ascites-derived epithelial cells

(A) Heatmap showing the normalised enrichment score from GSEA of hallmark gene sets from MSigDB [35] (*, adjusted P-value

<0.05). Up-regulated genes in Epi 2, Epi 3, and Epi 4 were associated with hallmark gene sets in cell cycling, metabolism, and

MTORC1 signaling pathways. (B) UMAP plot of integrated data between our malignant ascites single cell dataset and the normal

gastrointestinal tract single cell dataset. Upper panel shows cells from normal gastrointestinal tract overlaid by original annotations.

Lower panel shows epithelial subsets annotated as in Figure 4A. Epi 3 and Epi 4 showed slightest similarity when compared with

normal gastrointestinal dataset.

in conjunction with cell type identification based on characterised molecular markers, we were able to identify differ-
ent cell types in ascites as well as their relative abundances. While epithelial cells were the most abundant populations
(66–95% of all the cells retrieved from the ascites samples, depending on the cell dissociation methods, and the sam-
ple collection time points in relation to the chemotherapy treatment), we also observed fractions of myeloid cells
(1–33%), fibroblasts (0.2–0.9%), as well as other subpopulations that were present at lower abundance.

One of the most striking findings of this work is the extent to which the cell preparation methods, enzymatic and
mechanical cell dissociation, affected not just the relative proportions of cell types in the ascites samples, but also on
the transcriptomic profiles of these subpopulations. As shown in muscle stem cells, van den Brink and co-workers
found that a widely used cell preparation protocol [56], which involves tissue dissociation by collagenase type II
followed by fluorescence-activated cell sorting (FACS), could significantly induce transcriptional changes. The ‘im-
mediate early genes’ (IEGs) appeared to be specifically up-regulated in a subset of enzymatically treated cells, which
might reflect the artifacts from the dissociation protocol. Other studies that compared the effects of different enzy-
matic dissociation methods also observed the expression of the same IEGs when performing dissociation at 37◦C
[57–59]. Consistent with these earlier studies, we observed highly represented genes in the ascites samples prepared
using enzymatic dissociation, e.g., HES1, IER3, JUNB, IER2, SOCS3, and ID1, which had been previously identified
by van den Brink co-workers [56] and O’Flanagan co-workers [58]. In addition, we observed that the myeloid cells
in our samples were markedly susceptible to enzymatic dissociation by Accumax, which contains proteolytic and
collagenolytic enzymes, especially in the pre-treatment samples. To the best of our knowledge, there is no previous
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report about the direct effect of enzymatic preparation on myeloid cells. Generally, this might be due to reduced cell
viability after enzymatic treatment, plus cryopreservation.

Since our patient had been treated with mFOLFOX6 and CapeOx regimens before her ascites developed, this might
have affected the viability of ascites-derived myeloid cell populations, resulting in more cell death after various ma-
nipulations. Moreover, as we observed the overall lower myeloid cell frequencies in the post-treatment ascites samples
collected right after the first cycle of mFOLFIRI than in the pre-treatment samples regardless of preparation protocol,
it is possible that this was the effect of cytotoxic chemotherapy-induced leukopenia. However, more careful investi-
gations including further in-depth dissociation protocol comparisons for malignant ascites-derived cells are required
to pinpoint the cause of this effect.

We compared the expression profiles of ascites-derived cells before and after a cycle of mFOLFIRI, comprising
fluorouracil (5-FU), leucovorin, and irinotecan, which kill cancer cells via the inhibition of thymidylate synthase and
topoisomerase I enzymes. However, due to the limitation of the sample size and sampling time points, it would be
difficult to confidently investigate the specific impact of this chemotherapy regimen on the transcriptional changes
and molecular pathways involved in the survival and progress of the cancerous cells. In spite of that, we have demon-
strated the power of scRNA-seq in dissecting the heterogeneous subpopulations of metastasised cancer cells with
distinct transcriptomic profiles. We have discovered that among the eleven epithelial subclusters, only three, namely
Epi 9, Epi 10, Epi 11, seemed to be responsive to mFOLFIRI treatment, and one particular subcluster, Epi 3, could
be considered a treatment-resistant population. This finding potentially reflects the poor outcome observed over this
course of mFOLFIRI treatment in our patient.

We have also shown that these transcriptionally distinct cell populations also possessed unique functional char-
acteristics, as the treatment-tolerant subpopulation, Epi 3, displayed the most divergent transcriptomic profile from
that of any normal intestinal tissues. The cluster may represent a subclone with massive mutational events resulting
in altered gene expression, which consequently allowed it to escape the chemotherapy treatment and became highly
proliferated. Additionally, Epi 3 was uniquely enriched with genes in peroxisome pathways. Peroxisomes, which are
reactive oxygen species (ROS)-degrading organelles, are known to play a role in therapeutic resistance in cancer when
drugs inducing ROS-mediated apoptosis are involved [60], which is the case for both 5-FU and irinotecan [61,62]. On
the contrary, the population of cells appeared to be the most susceptible to the treatment, Epi 9, Epi 10, and Epi 11,
have relatively similar expression profiles as the normal enterocytes, progenitor cells, and normal enteroendocrine
cells, respectively, which may explain why they are the most responsive to the cytotoxic treatment.

Taken together, we have provided one of the earliest studies where the groundbreaking scRNA-seq technology has
been applied to explore the heterogeneity of the cells retrieved from malignant ascites. We have specifically demon-
strated the cellular compositions of cell types found in the ascites samples, and showcased the under-appreciated im-
pact of cell preparation protocols on the transcriptomic profiles of different cell types. Our results highlight the impor-
tance of using the optimised protocols in the scRNA-seq studies, and also emphasise the benefit of using scRNA-seq
over the traditional bulk RNA-seq experiments, where the contributions to the overall expression from different cell
types cannot be traced, in cancer research. Finally, we have provided an example of how scRNA-seq can be applied
to routinely discarded ascites samples and resolve distinct subpopulations of cancer cells, in terms of both transcrip-
tomic patterns, as well as cellular characteristics. Since malignant ascites is associated with advanced cancer and a
poor prognosis, the potential usage of scRNA-seq to monitor real-time treatment response after chemotherapy initi-
ation might help clinicians adjust or switch the regimens in a timely manner, which might extend the patients’ overall
survival. Also, the collective interpretation of gene expression profiles of each subcluster should provide a more accu-
rate prognosis for the cancer patients than the currently used bulk RNA-seq data. Further studies will be required to
comprehensively validate the applications of scRNA-seq to discover new predictive and prognostic biomarkers from
malignant ascites and other specimen types, as well as explore new molecular mechanisms and treatment options of
complex diseases such as cancers.
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2 Riihimäki, M., Hemminki, A., Sundquist, J. and Hemminki, K. (2016) Patterns of metastasis in colon and rectal cancer. Sci. Rep. 6, 29765,

https://doi.org/10.1038/srep29765
3 Jacobson, R., Sherman, S.K., Dadaleh, F. and Turaga, K.K. (2018) Peritoneal metastases in colorectal cancer. Ann. Surg. Oncol. 25, 2145–2151,

https://doi.org/10.1245/s10434-018-6490-x
4 Acharyya, S., Oskarsson, T., Vanharanta, S., Malladi, S., Kim, J., Morris, P.G. et al. (2012) A CXCL1 paracrine network links cancer chemoresistance and

metastasis. Cell 150, 165–178, https://doi.org/10.1016/j.cell.2012.04.042
5 Kim, S., Lee, M., Dhanasekaran, D.N. and Song, Y.S. (2018) Activation of LXRα/β by cholesterol in malignant ascites promotes chemoresistance in

ovarian cancer. BMC Cancer 18, 1232, https://doi.org/10.1186/s12885-018-5152-5
6 Walker, A.S., Zwintscher, N.P., Johnson, E.K., Maykel, J.A., Stojadinovic, A., Nissan, A. et al. (2014) Future directions for monitoring treatment response

in colorectal cancer. J. Cancer 5, 44–57, https://doi.org/10.7150/jca.7809
7 Vogel, J.D., Eskicioglu, C., Weiser, M.R., Feingold, D.L. and Steele, S.R. (2017) The American Society of Colon and Rectal Surgeons Clinical Practice

Guidelines for the treatment of colon cancer. Dis. Colon Rectum 60, 999–1017, https://doi.org/10.1097/DCR.0000000000000926
8 Van Cutsem, E., Cervantes, A., Nordlinger, B. and Arnold, D. (2014) Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis,

treatment and follow-up. Ann. Oncol. 25, iii1–iii9, https://doi.org/10.1093/annonc/mdu260
9 Chiorean, E.G., Nandakumar, G., Fadelu, T., Temin, S., Alarcon-Rozas, A.E., Bejarano, S. et al. (2020) Treatment of patients with late-stage colorectal

cancer: ASCO Resource-Stratified Guideline. JCO Glob. Oncol. 6, 414–438, https://doi.org/10.1200/JGO.19.00367
10 Song, S.E., Choi, P., Kim, J.H., Jung, K., Kim, S.E., Moon, W. et al. (2018) Diagnostic value of carcinoembryonic antigen in ascites for colorectal cancer

with peritoneal carcinomatosis. Korean J. Gastroenterol. 71, 332–337, https://doi.org/10.4166/kjg.2018.71.6.332
11 Choi, D.-S., Park, J.O., Jang, S.C., Yoon, Y.J., Jung, J.W., Choi, D.-Y. et al. (2011) Proteomic analysis of microvesicles derived from human colorectal

cancer ascites. Proteomics 11, 2745–2751, https://doi.org/10.1002/pmic.201100022

12 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

https://doi.org/10.18203/2320-6012.ijrms20174914
https://doi.org/10.1038/srep29765
https://doi.org/10.1245/s10434-018-6490-x
https://doi.org/10.1016/j.cell.2012.04.042
https://doi.org/10.1186/s12885-018-5152-5
https://doi.org/10.7150/jca.7809
https://doi.org/10.1097/DCR.0000000000000926
https://doi.org/10.1093/annonc/mdu260
https://doi.org/10.1200/JGO.19.00367
https://doi.org/10.4166/kjg.2018.71.6.332
https://doi.org/10.1002/pmic.201100022


Bioscience Reports (2021) 41 BSR20212093
https://doi.org/10.1042/BSR20212093

12 Latifi, A., Luwor, R.B., Bilandzic, M., Nazaretian, S., Stenvers, K., Pyman, J. et al. (2012) Isolation and characterization of tumor cells from the ascites of
ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors. PLoS ONE 7, e46858, https://doi.org/10.1371/journal.pone.0046858

13 Kim, S., Kim, B. and Song, Y.S. (2016) Ascites modulates cancer cell behavior, contributing to tumor heterogeneity in ovarian cancer. Cancer Sci. 107,
1173–1178, https://doi.org/10.1111/cas.12987

14 Guinney, J., Dienstmann, R., Wang, X., de Reyniès, A., Schlicker, A., Soneson, C. et al. (2015) The consensus molecular subtypes of colorectal cancer.
Nat. Med. 21, 1350–1356, https://doi.org/10.1038/nm.3967

15 Molinari, C., Marisi, G., Passardi, A., Matteucci, L., De Maio, G. and Ulivi, P. (2018) Heterogeneity in colorectal cancer: a challenge for personalized
medicine? Int. J. Mol. Sci. 19, 3733, https://doi.org/10.3390/ijms19123733

16 Punt, C.J.A., Koopman, M. and Vermeulen, L. (2017) From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat. Rev. Clin.
Oncol. 14, 235–246, https://doi.org/10.1038/nrclinonc.2016.171

17 Shalek, A.K. and Benson, M. (2017) Single-cell analyses to tailor treatments. Sci. Transl. Med. 9, eaan4730,
https://doi.org/10.1126/scitranslmed.aan4730

18 Levitin, H.M., Yuan, J. and Sims, P.A. (2018) Single-cell transcriptomic analysis of tumor heterogeneity. Trends Cancer 4, 264–268,
https://doi.org/10.1016/j.trecan.2018.02.003

19 Valdes-Mora, F., Handler, K., Law, A.M.K., Salomon, R., Oakes, S.R., Ormandy, C.J. et al. (2018) Single-cell transcriptomics in cancer immunobiology:
the future of precision oncology. Front. Immunol. 9, 2582, https://doi.org/10.3389/fimmu.2018.02582

20 Tieng, F.Y.F., Baharudin, R., Abu, N., Mohd Yunos, R.-I., Lee, L.-H. and Ab Mutalib, N.-S. (2020) Single cell transcriptome in colorectal cancer—current
updates on its application in metastasis, chemoresistance and the roles of circulating tumor cells. Front. Pharmacol. 11, 135,
https://doi.org/10.3389/fphar.2020.00135

21 Kyrochristos, I.D., Ziogas, D.E., Goussia, A., Glantzounis, G.K. and Roukos, D.H. (2019) Bulk and single-cell next-generation sequencing: individualizing
treatment for colorectal cancer. Cancers 11, 1809, https://doi.org/10.3390/cancers11111809

22 Li, H., Courtois, E.T., Sengupta, D., Tan, Y., Chen, K.H., Goh, J.J.L. et al. (2017) Reference component analysis of single-cell transcriptomes elucidates
cellular heterogeneity in human colorectal tumors. Nat. Genet. 49, 708–718, https://doi.org/10.1038/ng.3818

23 Dai, W., Zhou, F., Tang, D., Lin, L., Zou, C., Tan, W. et al. (2019) Single-cell transcriptional profiling reveals the heterogenicity in colorectal cancer.
Medicine (Baltimore) 98, e16916

24 Tang-Huau, T.-L., Gueguen, P., Goudot, C., Durand, M., Bohec, M., Baulande, S. et al. (2018) Human in vivo-generated monocyte-derived dendritic cells
and macrophages cross-present antigens through a vacuolar pathway. Nat. Commun. 9, 2570, https://doi.org/10.1038/s41467-018-04985-0

25 Andrews, S. (2010) FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
26 Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M. et al. (2019) Comprehensive integration of single-cell data. Cell 177,

1888.e21–1902.e21, https://doi.org/10.1016/j.cell.2019.05.031
27 Young, M.D. and Behjati, S. (2020) SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. GigaScience 9,

giaa151, https://doi.org/10.1093/gigascience/giaa151
28 McGinnis, C.S., Murrow, L.M. and Gartner, Z.J. (2019) DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest

neighbors. Cell Syst. 8, 329.e4–337.e4, https://doi.org/10.1016/j.cels.2019.03.003
29 Hafemeister, C. and Satija, R. (2019) Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial

regression. Genome Biol. 20, 296, https://doi.org/10.1186/s13059-019-1874-1
30 McInnes, L., Healy, J. and Melville, J. (2018) UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv,

http://arxiv.org/abs/1802.03426
31 Traag, V.A., Waltman, L. and van Eck, N.J. (2019) From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233,

https://doi.org/10.1038/s41598-019-41695-z
32 Gu, Z., Eils, R. and Schlesner, M. (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32,

2847–2849, https://doi.org/10.1093/bioinformatics/btw313
33 Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A. et al. (2005) Gene set enrichment analysis: A knowledge-based

approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102, 15545–15550,
https://doi.org/10.1073/pnas.0506580102

34 Korotkevich, G., Sukhov, V. and Sergushichev, A. (2016) Fast gene set enrichment analysis. bioRxiv., https://doi.org/10.1101/060012
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