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Structure‑based assessment 
and druggability classification 
of protein–protein interaction sites
Lara Alzyoud1,2, Richard A. Bryce3, Mohammad Al Sorkhy4, Noor Atatreh1,2 & 
Mohammad A. Ghattas1,2*

The featureless interface formed by protein–protein interactions (PPIs) is notorious for being 
considered a difficult and poorly druggable target. However, recent advances have shown PPIs to 
be druggable, with the discovery of potent inhibitors and stabilizers, some of which are currently 
being clinically tested and approved for medical use. In this study, we assess the druggability of 
12 commonly targeted PPIs using the computational tool, SiteMap. After evaluating 320 crystal 
structures, we find that the PPI binding sites have a wide range of druggability scores. This can be 
attributed to the unique structural and physiochemical features that influence their ligand binding 
and concomitantly, their druggability predictions. We then use these features to propose a specific 
classification system suitable for assessing PPI targets based on their druggability scores and 
measured binding-affinity. Interestingly, this system was able to distinguish between different PPIs 
and correctly categorize them into four classes (i.e. very druggable, druggable, moderately druggable, 
and difficult). We also studied the effects of protein flexibility on the computed druggability scores and 
found that protein conformational changes accompanying ligand binding in ligand-bound structures 
result in higher protein druggability scores due to more favorable structural features. Finally, the 
drug-likeness of many published PPI inhibitors was studied where it was found that the vast majority 
of the 221 ligands considered here, including orally tested/marketed drugs, violate the currently 
acceptable limits of compound size and hydrophobicity parameters. This outcome, combined with the 
lack of correlation observed between druggability and drug-likeness, reinforces the need to redefine 
drug-likeness for PPI drugs. This work proposes a PPI-specific classification scheme that will assist 
researchers in assessing the druggability and identifying inhibitors of the PPI interface.

Nearly every biological function within our body is mediated by proteins. Proteins do not function in isolation; 
they are powered by the interactions they form with other proteins and molecules1. Protein interactions within 
cells modulate various physiological and pathological processes associated with health, constituting the human 
interactome network2. Moreover, anomalous protein–protein interactions (PPIs) and disordered proteins disrupt 
these intricate interactions, resulting in diseases like cancer and CNS, infectious or autoimmune disorders3. PPIs 
make up some of the most interesting yet challenging biological targets for drug discovery projects.

The core of any successful drug discovery project targeting a PPI lies within the nature of its interface and the 
druggability of associated binding pockets4. In this context, druggability refers to the likelihood of a drug-like 
compound to modulate or inhibit an interaction between two proteins5. According to Cheng et al.6, an estimated 
60% of drug discovery projects failed due to the undruggability of the target binding site and consequent inability 
to bind small drug-like molecules. PPIs are often considered as undruggable or difficult targets due to their large, 
shallow binding interface which lacks distinct, tractable concave pockets7. In addition, while traditional drug 
targets like enzymes, G protein-coupled receptors and ion channels, fortunately have endogenous ligands that 
act as a starting point for these drug discovery projects, this however is not the case for PPI targets8. With this in 
mind, designing inhibitors for PPI targets can carry a substantial risk of failure. The research program Illuminat-
ing the druggable genome9 (IDG) has aided the deciphering of the human genome, allowing for identification of 
some high-potential molecular targets for drug discovery. So far only 30% of screened PPIs have been found to 
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have potentially druggable binding sites4,10. This, combined with the myriad of unsuccessful attempts at develop-
ing orally available inhibitors, has prompted an argument that these potentially high-value targets are difficult11.

Over the last decade, numerous small molecule ligands have been developed to bind directly onto the PPI 
interface, proving that certain PPIs can accommodate small molecule inhibitors4 as shown in Fig. 1. Some of 
the aforementioned inhibitors have advanced into human clinical trials: for example, Bcl-2 inhibitor Venetoclax 
(ABT-199) was the first PPI drug to receive FDA approval and is now widely used in the treatment of chronic 
lymphocytic leukemia12. This suggests that once notoriously undruggable PPI interfaces have revealed a certain 
ability to accommodate drug-like ligands. It was shown that hydrophobic grooves on the PPI interface, where the 
partner proteins bind and form stable interactions, can be utilized as hot spots in the design of small molecule 
PPI inhibitors13.

Another approach for modulating PPI interactions is through PPI stabilizers14. These small molecules stabilize 
the protein–protein complex by targeting the pocket formed at the interface of two proteins15. In 2021, approxi-
mately 15 targeted protein degraders and molecular glues have entered the market including orally bioavailable 
protein degrader CFT745516. CFT7455 is a novel degrader of the IKZF1/3 complex used in the treatment of 
Multiple myeloma and non-Hodgkin’s lymphoma17. So far, PPI stabilizers have shown to be successful in modu-
lating PPIs with high selectivity, allowing us to target otherwise undruggable protein complexes18. Nonetheless, 
the development of novel PPI stabilizers is impeded by the lack of knowledge of the mechanisms and principles 
of these three-body systems18.

In recent years, multiple in silico approaches have been developed to predict the druggability of PPI 
interfaces5. Pock-etQuery19, SiteMap20, fPocket21, DoGSiteScorer22 and SiteFinder23 are some of the most popular 
druggability assessment servers. Despite the fact that these methods have shown an ability to successfully identify 
druggable pockets, the majority of them do not provide a ranking or classification system for those identified 
pockets. SiteMap20 stands out as one of the most reliable algorithms to assess the druggability of biological targets, 
having previously been used to evaluate the druggability of protein families such as NUDIX hydrolases, Human 
DNA Glycosylases and bromodomains24–26. Here, the druggability of the site is quantified by assigning a Drug-
gability score (Dscore), hence evaluating its potential from a drug discovery perspective.
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Figure 1.   Examples of potent small molecule protein–protein interaction inhibitors that reached the clinical 
trials.
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To interpret Dscores, Halgren27 developed a classification system for SiteMap20, suggesting a cutoff point to 
distinguish druggable sites from difficult sites. Based on a validation set of 538 protein complexes, sites with a 
Dscore less than 0.8 were classified as difficult sites while protein sites with a Dscore greater than 1 were consid-
ered very druggable. However, the majority of these complexes were protein–ligand complexes, with MDM2/p53 
being the only PPI included. Considering the need for a larger sample of PPIs and the numerous structural dis-
tinctions between PPI and protein–ligand interaction binding sites, it is unclear whether Halgren’s classification 
system27 can adequately describe the druggability of PPI interfaces. Modification of Dscore has been attempted 
previously, leading to Dscore+11, a score optimized based on a set of PPIs; however, this again only sets a cutoff 
for druggability scoring and does not offer a PPI-specific classification system. Moreover, Dscore+11 was not 
implemented within the SiteMap module. In this study, we rather focus on the direct application of Dscore to 
PPIs, proposing a PPI-focused classification system.

We use SiteMap to assess the protein binding interface of 320 crystal structures from 12 protein–protein 
interaction targets, and we introduce a new PPI-focused druggability ranking system based on Dscore. We also 
investigate the influence of Dscore parameters, drug-likeness, and protein flexibility on PPI druggability. The 
new classification system highlights the characteristic attributes of protein–protein interfaces and uses them to 
provide improved druggability predictions of novel PPI targets.

Results and discussion
Compiling a dataset of protein–protein interaction targets.  The majority of druggability predic-
tion tools, including popular servers SiteMap20 and Fpocket21, rely on Cheng et al.’s data set6 for validation and 
assessment. Nonetheless, Cheng et al.’s data set included only one PPI (HDM2, PDB code 1RV1), making it is 
rather unrepresentative of PPIs as a class of targets.

The Wells28 set has long been used to validate PPI-focused computational programs like PocketQuery19 and 
PPIMpred29. It does, however, have a relatively small number of targets. Recent discoveries have resulted in the 
identification of novel PPIs as well as orthosteric PPI inhibitors/stabilizers. Hence, new PPI databases have been 
curated to include additional PPI targets of high importance. The 2P2Idb30 database expands on the Wells set to 
include additional PPI targets with documented clinical implications.

As our goal was to define the parameters that guide the druggability assessment of binding sites on the PPI 
interface, we had to tailor the selection criteria for our data set to include high-resolution X-ray crystallographic 
structures of PPIs with established clinical implications. Given the unique nature of proteins, the availability 
of both (i) ligand-bound and (ii) protein/peptide-bound or apo-form crystal structures of a protein target is 
crucial for comprehensive and accurate assessment of druggability. Structures that exist as homodimers or bind 
covalent inhibitors were excluded from our analysis since they were beyond the scope of our research. Finally, 
each complex was visually inspected to ensure that the ligands bind directly to the PPI interface rather than 
distal locations on the protein.

The final PPI dataset included 320 hand-curated protein crystal structures belonging to 12 PPI targets: DCN1, 
Bcl-xL, HDM2, XDM2, Bcl-2, MDMX, VHL, HPV E2, Menin, ZipA, IL-2, and XIAP (Table 1). While the major-
ity of these targets are associated with cancer pathogenesis, such as Bcl-xL, HDM2, XDM2, Bcl-2, MDMX, HPV 
E2, Menin, and XIAP; others, such as DCN1, IL-2, VHL, and ZipA, play major roles within disease pathways, 
resulting in the growth of non-cancerous tumors, autoimmune diseases and bacterial infections3,31–33.

Our final dataset contains twice as many PPI targets and a significantly larger number of crystal structures 
than Well’s28 and Loving’s11 datasets used to study and assess PPIs. Rather than using a single representative 
example of ligand- and protein/peptide-bound structures to assess each target, we attempted to include as many 
high-resolution crystal structures as possible34. Expanding on commonly used PPI targets ensures that our final 
dataset represents a wide range of PPIs and minimizes bias when comparing in silico models.

Table 1.   The final PPI dataset containing 320 hand-curated protein crystal structures belonging to 12 PPI 
targets. NA Not available.

PPI complex Protein

Number of crystal structures

Total Ligand-bound Protein/peptide-bound Apo

DCN1/UBC12 DCN1 10 NA 2 8

Bcl-xL/BAD/BAK Bcl-xL 24 4 4 16

HDM2/p53 MDM2 87 1 22 64

XDM2/p53 XDM2 11 NA 1 10

Bcl-2/Bax/BAD Bcl-2 26 NA 9 17

MDMX/p53 MDMX 21 NA 11 10

HPV E2/HPV E1 HPV E2 2 1 NA 1

Menin/MLL Menin 34 1 4 29

VHL/HIF-1A VHL 36 NA 5 31

IL-2/IL-2Rα IL-2 14 4 4 6

XIAP/Caspase-9/Smac XIAP 49 2 15 32

ZipA/Fitz ZipA 6 1 1 4
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Druggability assessment of PPI targets using SiteMap.  Druggability is a difficult concept to define 
because different approaches can classify sites differently. According to Cheng et al.’s definition of druggability6, 
it is the likelihood of modulating a target by drug-like molecules. To date, numerous prediction programs have 
been developed to aid in the identification of protein binding sites at the PPI interface; some go a step further 
and assess their druggability; only a few assign scores to each identified pocket. However, the majority of these 
tools do not provide or suggest a classification system based on their resultant scores.

To assess the druggability of PPIs, we required a tool that is readily available, reliable and allows for ligand-
guided druggability estimation. More importantly, it must allow the classification and ranking of molecules 
included in the dataset with high accuracy27. This is necessary as we have identified PPI-specific druggabil-
ity assessment tools that do not allow us to reach a definitive decision on which crystal structure is superior. 
SiteMap20 is one of few tools capable of identifying, assessing, scoring and classifying binding sites. In 2009, 
Halgren27 developed a robust classification system using SiteMap druggability scores (Dscore), which correctly 
predicted the druggability of 86% of Cheng et al.’s data set6. This classification system is now widely used to 
analyze SiteMap results. Halgren’s classification was later adopted and modified to accommodate other protein 
families, such as Human DNA Glycosylases25 and bromodomains26. For instance, a new class was introduced 
to address the marginal targets that obtain a Dscore of just less than 0.8, in order to describe those targets with 
marginal druggability (i.e., Moderately druggable = 0.7–0.8).

To sum up, Halgren’s classification system seems to be reasonable and robust for categorizing different targets 
based on their druggability; yet it needs to be refined further to address the characteristic nature of PPI interfaces, 
especially given that PPIs were not well-represented in the current system.

After deciding on SiteMap for druggability assessment, 320 protein crystal structures, representing a dataset 
of 12 PPI targets, were acquired from the Protein Data Bank (PDB). The approach adopted in this work is a 
ligand-guided estimation approach. Accordingly, the “evaluate single binding region” option was used to define 
binding pockets and direct druggability assessment towards the PPI interface. Ligand-bound structures had 
co-crystalized ligands, whereas apo and protein/peptide bound structures were individually superimposed to 
a ligand-bound structure to include a drug-like molecule as a pocket identifier. The PDB with a co-crystalized 
ligand that best satisfies Lipinski’s drug-like rules was chosen as the reference ligand-bound structure (Supple-
mentary Table S5). Afterward, each structure was run through SiteMap, which identified the ligand-binding site 
on the PPI interface and subsequently assessed its druggability. As shown in Table 2, the findings revealed that 
the PPI interface conveys a broad range of median Dscores (0.52–1.20). While the target DCN1 had the highest 
Dscore value, the protein XIAP had the lowest druggability scores among all tested PPIs; and ZipA was unable 
to be assessed by SiteMap since it possesses a flat interface with no well-defined pocket (Table 2).

If, Halgren’s classification system27 was applied to this dataset. Proteins DCN1 and Bcl-xL fall into the very 
druggable category with median Dscores of 1.20 and 1.01 respectively. Druggable proteins such as HDM2, 
XDM2, Bcl-2 and MDM4 had median Dscores ranging from 0.99 to 0.86. The next four most druggable proteins, 
Menin, HPV E2, IL-2 and XIAP, would all be considered difficult targets by Halgren’s system as their Dscore 
values were shown to be less than 0.8. Based on these results, 46% of proteins in the dataset would be classified 
as difficult targets.

These findings raise some concerns about the appropriateness of Halgren’s27 classification in systems outside 
Cheng et al.‘s dataset, particularly when applied to PPIs. The application of this system can potentially underesti-
mate the druggability of high-value targets protein targets. For instance, many of these PPIs proposed as difficult 
by the current SiteMap druggability system (Table 2) have been successfully targeted and co-crystallized with 
small organic molecules, and some of those have reached the clinical trials (e.g. XIAP inhibitors; ASTx-660, 
GDC-0917 and LCL161). Therefore, further consideration is needed to propose a new druggability classifica-
tion system for PPI targets, with the aim of assisting researchers to evaluate their targets in the early stages of 
the drug discovery process.

Table 2.   SiteMap property and Dscore values for the 12 PPIs studied. Range in parentheses. ND: binding site 
was not detected by SiteMap.

PPI complex Protein Number of crystal structures Median Dscore Median pocket size (n) Median enclosure factor (e)
Median hydrophilicity 
factor (p)

DCN1/UBC12 DCN1 10 1.20 (1.14–1.25) 98 (85–110) 0.75 (0.71–0.83) 0.53 (0.46–0.66)

Bcl-xL/BAD/BAK Bcl-xL 24 1.01 (0.38–1.17) 46 (9–194) 0.71 (0.62–0.94) 0.49 (0.12–1.17)

HDM2/p53 MDM2 87 1.00 (0.82–1.33) 54 (20–105) 0.66 (0.55–0.82) 0.28 (0.10–0.52)

XDM2/p53 XDM2 11 0.93 (0.83–1.08) 49 (27–57) 0.64 (0.62–0.73) 0.35 (0.12–0.41)

Bcl-2/Bax/BAD Bcl-2 26 0.92 (0.74–1.19) 46 (20–104) 0.67 (0.58–0.78) 0.32 (0.15–0.53)

MDMX/p53 MDMX 21 0.86 (0.76–1.19) 40 (28–109) 0.64 (0.58–0.72) 0.33 (0.06–0.56)

HPV E2/HPV E1 HPV E2 2 0.77 (0.70–0.84) 44 (41–46) 0.68 (0.66–0.70) 0.79 (0.59–0.99)

Menin/MLL Menin 34 0.77 (0.43–1.02) 48 (17–100) 0.72 (0.64–0.79) 0.97 (0.71–1.13)

VHL/HIF-1A VHL 36 0.68 (0.33–0.79) 38 (8–52) 0.60 (0.56–0.64) 0.82 (0.57–1.19)

IL-2/IL-2Rα IL-2 14 0.60 (0.35–0.80) 24 (10–55) 0.59 (0.51–0.80) 0.67 (0.43–1.15)

XIAP/Caspase-9/Smac XIAP 49 0.52 (0.23–0.93) 27 (17–80) 0.6 (0.50–0.67) 1.01 (0.72–1.59)

ZipA/Fitz ZipA 6 ND ND ND ND
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Proposed druggability classification system for the PPI interface.  Consequently, we propose 
to adapt Halgren’s druggability scheme in a way that takes into account the characteristic nature of the PPI 
interface. Our proposed classification system has been validated across the 12 different protein–protein bind-
ing interfaces (Fig. 2). This system groups proteins into four main classes based on their druggability scores 
(Dscore): very druggable (Dscore 1.0), druggable (Dscore = 0.75 and < 1.0), moderately druggable (Dscore = 0.50 
and < 0.75), and difficult (Dscore < 0.50).

Although the revised ranking is primarily based on the computed Dscore, factors such as the availability of 
published inhibitors and their respective binding affinity (IC50) were also considered in proposing the ranges 
for this PPI classification system. Out 139 co-crystallized protein structures, 109 ligands bind in the nanomolar 
levels, while another 11 ligands bind in the subnanomolar level (Supplementary Table S6). We proposed that the 
target should be classified based on their placement in the pIC50/Dscore plot (Fig. 2). This plot classifies targets 
similar to Halgren’s27, but with a slightly altered range for the druggable class and with the introduction of a new 
class that describes moderately druggable targets.

As shown in Fig. 3, the first class ‘very druggable’ represents targets that possess a mean Dscore value of 
greater than 1.0 (i.e. Bcl-xL, HDM2, and DCN1) and have PPI inhibitors with a mean IC50 value in the low 
nanomolar range (except DCN1, which has recently been targeted and seems to need some more time for 
its inhibitors to reach the nanomolar inhibition range). The second class ‘druggable’ represents targets with a 
Dscore range of 0.75 and less than 1.0. Interestingly, all of these PPIs showed to have inhibitors in the medium 
to high nanomolar inhibition range, namely Menin, MDMX, and HPVE2. The third class ‘moderately druggable’ 
describes targets with Dscore values ranging from 0.5 to less than 0.75 along with inhibitors in the micromolar 
range (i.e. IL-2, VHL, and XIAP). XIAP is an exception here as it has got a mean IC50 value in the nanomolar 
range, however, it has the least druggable pocket at all which makes it classified as moderately druggable and as 
challenging as the other two PPIs in this category. Finally, the ‘difficult’ category includes targets with a Dscore 
of less than 0.5 along with inhibitors in the millimolar (mM) range (i.e., ZipA).

Figure 4 and Table 2 depict several distinctions in the binding interfaces between classes. The highest-ranking 
protein, DCN1, possesses a large pocket (n = 98 spheres) which is well-defined (e = 0.71) and with moderate 
hydrophilicity (p = 0.53). Similarly, another “very druggable” proteins, Bcl-xL and HDM2, have a smaller (n = 46 
and 54 spheres), less defined cavity (e = 0.644 and 0.72) and lower hydrophilicity (p = 0.49 and 0.28). Note that 
regardless of the variation between proteins in this class, they all have inhibitors in the subnanomolar and low 
nanomolar ranges. The second class includes “druggable” proteins like Menin, which has a slightly smaller 
(n = 47.5), and more well defined pocked (e = 0.72) than HDM2, but its remarkably high hydrophilicity (p = 0.97) 
shifted it to a lower class than HDM2. Protein MDMX is of a smaller size (n = 40), but maintains enclosure 
(e = 0.64) and hydrophilicity (p = 0.33) factors within range, making it druggable. Targets with higher hydrophi-
licity, such as HPV E2 and Menin, have lower Dscores than more hydrophobic proteins in the same class. This is 
seen in the druggable proteins Bcl-2 and HPV E2, which have different hydrophilic properties (p = 0.32 and 0.79, 
respectively), yet both belong to the same class of proteins. The next class includes marginal targets classified as 
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“moderately druggable” such as VHL, IL-2, and XIAP. These targets feature remarkably small pockets (n = 23–38 
spheres) that are moderately enclosed (e = 0.59–0.6) and highly hydrophilic (0.67–1.01). Despite having a very 
small pocket (n = 27 spheres), and a shallow cavity (e = 0.6) that seems to be hydrophilic in nature (p = 1.01), 
several compounds have been reported to inhibit XIAP. Inhibitors ASTX660 and LCL-161 have successfully 
completed phase I of clinical trials, demonstrating that although this PPI target has been initially seen as chal-
lenging, it is a promising target3. In fact, nearly all reported inhibitors for moderately druggable targets are in 
the high nanomolar to micromolar ranges. No well-defined pocket was detected by SiteMap for protein ZipA, 
which is known for having a distinctive flat interface. As a result, ZipA was classified as a “difficult” target. This 
protein has a few inhibitors known in the literature; however, these do not bind to a cavity in the PPI interface, 
but rather to high energy hotspots on the protein11, which explains why efforts over the last 20 years have failed 
to generate a ZipA inhibitor that can reach clinical trials13.

Having proposed this classification system, it is still important to exercise caution when designing small 
molecule inhibitors for PPI targets. We believe that the druggability of a PPI target cannot be confined to an 
assessment of the interface alone. When thoroughly evaluating a protein binding site, several factors must be 
considered, including the effect of ligand binding; the flexibility of the protein; and the drug discovery history 
of the PPI of interest.

Effect of Dscore parameters: size, enclosure and hydrophilicity on druggability.  SiteMap com-
putes descriptors other than Dscore to provide further insight into the physiochemical properties of a binding 
site. Given that PPI targets have distinct structural features, it would be interesting to see which descriptors have 
the strongest correlation with the Dscore values of the PPI studied (Supplementary Fig. S1). When computing 
druggability via Dscore, the descriptors employed are pocket size, enclosure, and hydrophilicity. A moderate 
positive correlation between both pocket size, enclosure and Dscore value is observed (Fig. 5) (R2 = 0.74 and 
0.58, respectively). In different protein binding sites, a directly proportional relationship between pocket size 
and Dscore is observed in Fig. 5a, with larger pockets reflecting higher druggability scores and smaller pockets 
reflecting lower druggability scores. Additionally, pocket enclosure is directly related to Dscore values as shown 
in Fig. 5b; but it has a subtle influence on druggability scores when compared to the pocket size parameter.

The degree of hydrophilicity is another parameter used in the Dscore druggability equation. It differentiates 
between druggable and difficult pockets by penalizing highly polar sites that are less likely to bind drug-like 
ligands. Figure 5c depicts an inverse relationship between pocket hydrophilicity and Dscore values (R2 = 0.46). 
This subtle effect becomes more evident as the protein shifts from one class to another; thus, as the hydrophilicity 
of the identified pocket increases, the Dscore decreases.
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Overall, the observed correlation suggests that larger, well-defined hydrophobic pockets are more likely to 
bind drug-like ligands, which is reasonable (Supplementary Fig. S1). The shallowness of the pockets on the PPI 
interface greatly compromises its size and enclosure, and to a slightly lesser extent the hydrophilicity of the 
pocket.

Druggability of apo, ligand‑bound and protein/peptide bound forms of PPIs.  Having assessed 
the druggability of the PPI dataset, we next investigate the influence of protein flexibility on the active site. Since 
the nature of the available crystal structures can influence binding site assessment, we separated structures into 
apo, ligand-bound and protein/peptide bound groups and then compared them to the overall median, median 
Dscore and pocket size values reported for each protein (Table 2); this provides a better understanding of the 
extent of conformational effects within the dataset39. It is worth noting that only small molecules are represented 
in the ligand-bound group. Whereas peptide inhibitors molecules, which bind at the PPI interface as a second-
ary structure, have been included in the protein/peptide bound groups. Table 3 breaks down the median drug-
gability score (Dscore) and pocket size values for the PPI studied in this way, based on the nature of the crystal 
structure.

Protein–ligand complexes dominated the dataset, with a total of 230 crystal structures across the 12 PPIs. 
We aimed to incorporate as many ligand-bound structures as possible in an effort to minimize potential errors 
caused by varied estimations of different pockets. With a few exceptions, analyses of peptide/protein-bound 
complexes yielded similar results to those of ligand-bound complexes. Proteins XIAP and XDM2 showed almost 
no deviation from the ligand-bound median Dscore and pocket size values (Table 3), while proteins DCN1, 
HDM2, Bcl-2, MDMX, and VHL deviated by less than 10%. In contrast, Menin, Bcl-xL and IL-2 were the only 
exceptions here, demonstrating substantial deviations from their respective ligand-bound medians. The drug-
gability of protein Menin was increased as a result of its large pocket size in the protein-bound form (n = 71 
spheres), which was significantly larger than the ligand-bound median value (n = 46 spheres). Conversely, the 
pocket size of both Bcl-xL and IL-2 was substantially reduced upon protein/peptide binding (n = 33 and 19.5 
spheres, respectively) compared to the ligand-bound peers (n = 138 and 31 spheres, respectively), preventing 
them from having adequate Dscores compared to the ligand-bound median Dscores (20% and 33% reductions). 
For the most part, these results imply that protein/peptide bound complexes tend to yield comparable induced-fit 
conformational changes in the PPI interface to what we see in the ligand-bound complexes.

Figure 4.   The binding sites of the four classes of PPI illustrated on the surface of a representative example. 
Surface colored generated using MOE Pocket coloring: green = hydrophobic, yellow = hydrophilic, and 
grey = neutral. (a) The crystal structure of DCN-1 with NAcM-HIT (PDB: 5V8335). (b) The crystal structure of 
Menin with MI-273 (PDB: 5DDF36). (c) The crystal structure of XIAP with compound 20 (PDB: 5C8437). (d) 
The crystal structure of ZipA with inhibitor DB03916 (PDB: 1Y2F38).



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7975  | https://doi.org/10.1038/s41598-022-12105-8

www.nature.com/scientificreports/

Apo structures were the least abundant, accounting for less than 5% of the PPI dataset. The apo structures 
exhibited the greatest percentage of deviations from the ligand-bound Dscore median. Interestingly, Bcl-xL 
and XIAP showed a pronounced reduction in druggability, with decreases in median Dscore of 33% and 40% 
respectively. This is mainly attributed to their very small pocket size (of 17 and 19 spheres, respectively), which 
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Figure 5.   The correlation between the druggability of studied PPI and their (a) pocket size (b) enclosure and 
(c) hydrophilicity. ZipA values were undefined and hence assigned a value of zero.
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are unlikely to accommodate drug-like small molecules. IL-2 exhibited a pocket structure similar to its peptide/
protein bound structure, but yet again a 33% smaller Dscore than the ligand-bound form because of the large 
variation in the pocket size. Lastly, apo HDM2, Menin and HPV E2 structures deviated from the overall median 
by less than 10%, indicating that they have comparable Dscores and pocket size values. To sum up, crystal struc-
tures should be analyzed carefully especially if they have no ligand bound to the PPI interface, as they tend to 
show poorly druggable pockets and hence can give false conclusions about the druggability of the tested target.

The influence of protein interface flexibility on the PPI druggability.  PPIs are notorious for their 
high flexibility and chain movement40, which might explain the aforementioned data regarding the druggabil-
ity variation found for different types within a PPI structure. Notably, several studies have analyzed the chain 
flexibility in the Bcl-xL family of proteins and its effect on predicted druggability2,41,42. When the druggability 
score of each conformational sample is compared, significant differences can be observed between the apo (PDB: 
1R2E43, Dscore = 0.55), peptide-bound (PDB: 2BZW44, Dscore 0.85) and ligand-bound structures (PDB: 4C5245, 
Dscore = 1.08). Therefore, the analysis of the Bcl-xL apo form does not predict grooves and cavities in the protein 
interface which are able to bind small molecules, whereas the assessment of peptide- and ligand-bound Bcl-xL 
structures are successful in predicting cavities of varying features (Fig. 6). To explain this, Loving et al.11 pro-
posed that Phe105 and Leu130 adopt different conformations, causing the helix surrounding Leu108 to become 
disordered and form a ligand binding pocket (Fig. 6). This implies that ligand binding induces conformational 
changes, resulting in the formation of a druggable pocket that would not occur otherwise. Another example 
is IL-2 which exhibited a varied druggability scoring depending on its structural state (Table 3). While there 
is a distinction between apo and bound structures, ligand- and peptide-bound structures might be expected 
to undergo similar structural changes. However, because the IL-2 protein binding interface has a highly adap-
tive region (Fig. 7), it is susceptible to unpredictable structural changes and thus exists in a number of different 
conformations46,47. This explains why ligand binding can produce a pocket that is 30% larger than peptide/PPI 
binding (Fig. 7). This adaptive interface provides an advantage because it exposes binding sites for small mol-
ecules and opens up new opportunities in drug discovery.

Examining the variation in druggability scores between different crystal structures of HDM2 and MDMX 
finds that all apo, protein/peptide- and ligand-bound proteins yield similar scores, with less than 10% variation. 
This is noteworthy because the protein interface of HDM2 and MDMX consists of a flexible N-terminal region 
that interacts with several proteins, including p5348,49. Hence, one would expect a greater variation in druggabil-
ity scores between different conformations, particularly in the apo structure. However, in this case, the flexible 
N-terminal does not significantly open pockets on the PPI interface. This shows that, for a small number of 
targets, protein flexibility has a minimal effect on the final druggability score.

Moreover, the topology of the PPI interface seems to not only influenced by whether it binds a ligand or 
not, but also the type, size and nature of that ligand. Table 3 shows that the Dscores of the ligand-bound form 
of IL-2 that ranges from 0.44 to 0.80, and for the XIAP target that ranges from 0.39 to 0.93. In the latter case, 
the obtained scores widely varies to the extent that it spans the four druggability classes (from “difficult” to 
“very druggable”). Hence, selecting an appropriate crystal structure is a critical factor in obtaining accurate and 
representative druggability predictions, especially when dealing with a PPI target that is known for its dynamic 
structure and highly adaptive interface.

In addition, we note that as an alternative to sampling multiple crystal structures, molecular dynamics simula-
tions can be used to study protein flexibility and in particular the dynamic topology of potential protein binding 
sites on its surface. Therefore, as a test case, we examine the change in pocket size of apo HPV protein (PDB: 
1R6K50) over 100 ns MD simulations (Fig. 8a). We find that the size of the binding cavity ranged from 14 to 45 
spheres with an average value of 32.1 ± 9.8 spheres. As shown in Fig. 8b, the largest pocket was observed at 10 ns 
(n = 45 spheres), with a Dscore of 0.76; moreover, the pocket shares the same druggability classification as the 

Table 3.   Median druggability score (Dscore) and pocket size values for the 12 PPIs studied. ND indicates no 
data.

Number of crystal structures Median Dscore (± SD) Median pocket size (± SD)

Apo Protein/peptide-bound Ligand-bound Apo Protein/peptide-bound Ligand-bound Apo Protein/peptide-bound Ligand-bound

DCN1 NA 2 8 NA 1.15 (0.01) 1.21 (0.03) NA 96 (4.24) 98 (7.87)

Bcl-xL 4 4 16 0.73 (0.29) 0.87 (0.10) 1.09 (0.09) 19 (8.73) 32.5 (5.94) 140 (63.82)

HDM2 1 22 64 0.93 0.97 (0.06) 1.03 (0.11) 42 52 (11.11) 55 (16.35)

XDM2 NA 1 10 NA 0.85 0.93 (0.08) NA 27 50.5 (7.84)

Bcl-2 NA 9 17 NA 0.84 (0.06) 0.97 (0.10) NA 30 (11.86) 50 (17.00)

MDM4 NA 11 10 NA 0.90 (0.07) 0.85 (0.13) NA 40 (7.27) 36.5 (24.70)

HPV E2 1 NA 1 0.70 NA 0.84 41 NA 46

Menin 1 4 29 0.79 0.88 (0.10) 0.76 (0.10) 45 71 (19.16) 46 (17.20)

VHL NA 5 31 NA 0.62 (0.13) 0.69 (0.10) NA 29 (13.20) 39 (10.62)

IL-2 4 4 6 0.48 (0.19) 0.48 (0.07) 0.72 (0.12) 21.5 (6.85) 19.5 (6.70) 30.5 (13.02)

XIAP 2 15 32 0.31 (0.11) 0.52 (0.04) 0.52 (0.14) 17 (0) 26 (4.26) 28 (16.35)

ZipA 1 1 4 ND ND ND ND ND ND
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only ligand-bound HPV crystal structure (n = 46 spheres; Dscore = 0.84, Table 2). The smallest pocket, on the 
other hand, was observed at 90 ns (Fig. 8c) and it is nearly three times smaller (n = 14 spheres) than the 10 ns-
pocket. This structure showed as low Dscore as 0.45, which is far less than the Dscore values obtained by the 
ligand-bound and apo structures of 0.84 and 0.70 respectively. This example demonstrates how the pocket size 
and conformation could change substantially, influencing its druggability score and final classification (shifted 
from ‘druggable’ to ‘difficult’ in this case). The consequent caveat is that one may need to examine multiple crystal 
structures of the same target in different conformations or conduct a MD simulation where several conforma-
tions can be considered, making druggability assessments more comprehensive.

Correlating between pocket druggability and ligand drug‑likeness.  It is well-known that the con-
cept of drug-likeness applies to small drug molecules that are able to show pharmacological activity when given 
orally; the extent to which a biological target can bind such compounds can in turn define the extent of the pro-
tein’s druggability14. In recent years, a number of small organic molecule inhibitors have been reported to disrupt 
certain classes of PPI; nonetheless, not all of them were able to show an acceptable oral activity4.

A few attempts have been made to investigate the relationship between pocket druggability and ligand drug-
likeness using SiteMap and QED, respectively, which provide quantitative indicators for these parameters51. 
However, in these studies, Sitescore was used to describe druggability rather than the more relevant function, 
Dscore. In addition, the previously studied dataset included both small molecule PPI inhibitors and antibodies, 
which are beyond the scope of this study. Therefore, to clarify the possible correlation between QED score and 
the Dscore, we examine a set of ten clinically tested oral drugs/candidates.

Figure 6.   The protein binding interface of three Bcl-xL crystal structures aligned on each other. (a) The apo 
structure is shown as pink ribbons, the peptide-bound structure as blue ribbons and the ligand-bound structure 
as green ribbons. (b) Residues Phe105, Leu108 and Leu130, shown in sticks, represent conformational changes 
in three Bcl-xL structures. The Bcl-xL interface is clearly showing different topology when comparing (c) the 
apo form (PDB: 1R2E40) with (d) the peptide-bound form (PDB: 2BZW41) and (e) the ligand-bound form (PDB: 
4C5242), where the latter demonstrates the most well-defined pocket, particularly when compared to the apo 
structure. Notes: Surface color generated using MOE Pocket coloring: green = hydrophobic, yellow = hydrophilic, 
and grey = neutral.



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7975  | https://doi.org/10.1038/s41598-022-12105-8

www.nature.com/scientificreports/

Up to our knowledge, these ten compounds (Venetoclax, Navitoclax, ABT-737, GCD-0917, ASTX660, LCL161, 
AMG-232, CGM097, SAR405838 and RO5045337) are the only clinically available oral PPI drugs. Drug candi-
dates in the preclinical stages were omitted from the analysis, as the goal is to assess the progress and current 
status of PPI medication development beyond the initial drug discovery phase.

As shown in Fig. 9, the scatterplot indicates for a very poor correlation between the QED scores of these 
ligands and the Dscore values of their PPI targets (R2 of 0.11). This is consistent with the findings in Table 4, 
where a higher Dscore is not always associated with a higher number of inhibitors obeying the current drug-like 
rules defined by Lipinski and others52,53. With QED scores of less than 0.5 and multiple violations of Lipinski’s 
rules, nearly all these reported PPI drugs were classified as non-drug-like. The only exception here is the XIAP 
inhibitor ASTX660, an oral anticancer agent that is currently in phase I/II clinical trials54. Despite violating 
Lipinski’s size requirements, ASTX660 has a QED score of 0.55, indicating that it has more favorable drug-like 
properties than any currently approved or tested oral PPI drugs.

Ligand drug‑likeness of PPI drugs.  Recent breakthroughs in PPI Inhibition have featured a series of 
small molecules that modulate protein function and act as new therapeutics. However, as the mode of action 
and common features of these inhibitors remain unclear, it is crucial to understand the distinctive features of 
PPI drugs3,55. To do so, we need to examine published PPI drugs in terms of drug-likeness and see where they 
deviate from conventional drugs.

Amongst all drug-like rules, Lipinski’s rule of 5 (Ro5)52 is the most well-known. Moreover, the Quantitative 
Estimate of Drug-likeness (QED)53 has recently become a more extensively utilized technique for characterizing 
drug-likeness, particularly because it allows us to quantitatively assess and rank various compounds based on 
their score. Therefore, employing Lipinski’s Ro552 and QED53 would provide insight into the structural features 
of published orthosteric PPI inhibitors, and can also describe any correlation with the druggability of their PPI 

Figure 7.   The protein binding interface of three IL-2 crystal structures aligned on each other. (a) Structural 
representation of the adaptive binding region at protein Interleukin 2 (IL-2) binding site. Apo structure is 
shown as pink ribbons, the peptide-bound structure as blue ribbons and the ligand-bound structure as green 
ribbons. It is evident that (b) the IL-2 apo form (PDB: 1M4743) and (c) the protein-bound form (PDB: 2ERJ44) 
completely lack the targeted binding cavity when compared to (d) the ligand-bound form (PDB: 1M4843). The 
co-crystallized IL-2 inhibitor, (R)-N-[2-[1-(Aminoiminomethyl)-3-piperidinyl]-1-oxoethyl]-4-(phenylethynyl)-
l-phenylalanine methyl ester (orange sticks), was aligned on the apo and protein bound structures to emphasize 
the change happening in the topology of the IL-2 interface. Surface color generated using MOE Pocket coloring: 
Green = hydrophobic, Yellow = hydrophilic, and Grey = neutral.
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targets. These two were applied together to our data set of 221 different small molecules that inhibited 12 PPI 
complexes from different druggability classes, all of which directly interact with the binding interface of one 
protein partner.

Unsurprisingly, only 30% of these inhibitors (66 out of 220) seem to follow the conventional Lipinski’s Ro552 
(Table 4), the remaining 154 compounds exhibited one or more violations52. For the QED metric, only 29% of 
the studied inhibitors (64 out of 220) demonstrated drug-like properties, with a QED score of 0.5 or higher. 
This is to be expected because QED is a more rigorous assessment tool that extends the number of considered 
parameters to eight53. Inhibitors with QED scores of less than 0.5 demonstrated unfavorable chemical proper-
ties, thereby reducing their drug-likeness. Regardless of the tool used, violations predict potential bioavailability 

Figure 8.   (a) The RMSD values of the protein backbone of HPV (PDB: 1R6K36) over the 100 ns MD simulation, 
(b) The HPV interface is clearly showing different topologies at the clustered structure at 10 ns compared to (c) 
the cluster at 90 ns.
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issues; thus, as the number of violations increases, the compound is more likely to have low cell permeability 
and poor overall oral activity.

According to the Ro5 (Table 5), only three PPI targets have more than 50% of their respective inhibitors 
possessing drug-like properties, mainly violating the molecular weight and polarity parameters. It is well docu-
mented that PPI-targeting ligands violate the Ro5, due to their large size and hydrophobic nature4,13,55–57. Morelli 
et al.55 have studied many of them and they accordingly proposed the Rule-of-Four which expands the limits of 
the Ro5 to consider a higher molecular weight (Mwt > 400 Da), hydrophobicity (ALogP > 4), unsaturation index 
(HBA > 4) and ring complexity (Rings > 4) observed in PPI drugs compared to non-PPI drugs. For instance, 
HDM2 inhibitor ABT-737 exhibited a very high oral bioavailability in phase II trials despite being large in size 
(Mwt = 813.43 Da)13,58. This is because PPI inhibitors may bind to multiple high energy hots spots rather than 
binding to a well-defined pocket, which requires them to have special characteristics in order to do so14,59.

Table 4.   Published PPI inhibitors classified as drug-like based on standard drug-like rules (Lipinski`s rule of 5 
(Ro5) and QED scores); and relaxed PPI drug-like rules (Ro5-1).

DCN1 
(n = 8)

Bcl-xL 
(n = 16)

HDM2 
(n = 62)

XDM2 
(n = 10)

Bcl-2 
(n = 14)

MDM4 
(n = 8) HPV E2 (n = 1)

Menin 
(n = 29)

VHL 
(n = 31)

IL-2 
(n = 6)

XIAP 
(n = 31)

ZipA 
(n = 4)

Standard drug-like rules (Ro5 or QED)

Number of 
drug-like 
inhibitors 
(Ro5)

6 0 7 0 0 1 0 12 20 2 14 4

Percent-
age of 
drug-like 
inhibitors 
(Ro5)

75% 0% 11.3% 0% 0% 12.5% 0% 41.4% 64.5% 33.3% 45.2% 100%

Number of 
drug-like 
inhibitors 
(QED)

5 0 10 3 0 2 0 13 16 1 11 3

Percent-
age of 
drug-like 
inhibitors 
(QED)

62.5% 0% 16.1% 30% 0% 25% 0% 44.8% 51.6% 16.7% 35.5% 75%

Relaxed drug-like rules (Ro5-1)

Number of 
drug-like 
inhibitors 
(Ro5-1)

7 6 28 6 1 4 1 28 29 2 26 4

Percent-
age of 
drug-like 
inhibitors 
(Ro5-1)

87.5% 37.5% 45.2% 60% 7.1% 50% 100% 96.6% 93.5% 33.3% 82.9% 100%

Table 5.   Calculated physiochemical properties of published inhibitors based on Lipinski’s rule of 5 (Ro5) and 
QED scores. Data represents mean ± standard deviation.

Lipinski’s (Ro5)

QEDHBA HBD LogP Molecular weight

DCN-1 2.63 ± 1.30 2.00 ± 0.95 4.00 ± 1.33 469.92 ± 62.34 0.54 ± 0.16

Bcl-xL 3.76 ± 1.52 1.52 ± 0.8 6.21 ± 1.65 632.03 ± 165.62 0.21 ± 0.20

HDM2 3.35 ± 1.66 1.11 ± 1 5.55 ± 1.28 549.59 ± 100.41 0.37 ± 0.14

XDM2 3.20 ± 1.69 1.4 ± 1.43 1.34 ± 6.25 537.70 ± 114.85 0.58 ± 0.19

Bcl-2 5.46 ± 1.51 1.85 ± 0.99 5.64 ± 1.57 847.86 ± 132.18 0.14 ± 0.10

MDMX 3.25 ± 1.98 1.25 ± 0.89 5.49 ± 1.32 568.20 ± 147.03 0.37 ± 0.24

HPV E2 6.00 1.00 6.25 607.44 0.23

Menin 3.64 ± 1.28 1.04 ± 1.04 4.40 ± 1.54 501.04 ± 103.45 0.45 ± 0.22

VHL 5.29 ± 1.55 2.97 ± 0.91 1.66 ± 1.45 486.37 ± 138.57 0.51 ± 0.21

IL-2 3.33 ± 1.63 1.67 ± 1.02 2.72 ± 0.93 495.51 ± 208.22 0.22 ± 0.20

XIAP 3.60 ± 2.67 1.39 ± 1.65 2.97 ± 1.51 477.98 ± 215.31 0.44 ± 0.20

ZipA 3 ± 1.41 2.25 ± 2.06 2.70 ± 0.41 353.80 ± 83.76 0.62 ± 0.14
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The rule of four serves as a descriptive tool that describes the overall physicochemical properties of currently 
known PPI inhibitors. Hence, it becomes more clear that PPI drugs tend to be larger in size, more hydrophobic 
and contain a large number of aromatic rings55,60. Alternately, we here propose relaxing Lipinski’s parameters by 
allowing one violation within the Ro552 and we called it “Ro5-1”. This rule has been optimized to allow for some 
deviation from conventional drug-like molecules, and validated by PPI inhibitors showing oral bioavailability 
in clinical settings. According to the relaxed drug-like rules (Ro5-1), 142 of published PPI inhibitors are drug-
like, which is more than double the number of inhibitors suggested by standard drug-like rules (Ro5 and QED). 
This would greatly expand the chemical space for PPI targets, allowing for more successful hits with favourable 
ADMET properties.

Applying the Ro5-1 to a set of ten clinically tested oral drugs/candidates, shown in Fig. 10, would further 
confirm this, as all listed PPI drugs violate Lipinski’s Ro5 and only one (ASTX-600) has a QED score in the 
drug-like range. In contrast, the Ro5-1 would classify 4 out of the 10 PPI drugs as drug-like, 40% higher than 
the conventional Lipinski’s rules. Taking this into account, it is clear that poor chemical-biological candidates 
can have promising therapeutic properties and that such compounds should not be dismissed due to their low 
likelihood of being developed as marketed drugs55.

To summarize, it seems that the current drug-like rules do not necessarily apply on the PPI inhibitors as no 
correlation was found between the ligand drug-likeness and the pocket druggability parameters. This informs 
researchers about the importance of proposing a PPI-specific drug-likeness rules similar to what has been sug-
gested in this study for PPI interface druggability assessment and classification.

Conclusion
In this study, we assessed the druggability of 12 commonly targeted PPIs using SiteMap, revealing a range of 
druggability scores to their respective binding sites. We attribute these differences to their unique structural 
and physiochemical features. Interestingly, these features were used to propose a new druggability classification 
system geared towards PPI targets. The newly suggested system classifies PPIs into four categories based on their 
druggability score (Dscore) as well as the inhibition activity of their respective inhibitors. The analysis of the 
different Dscore parameters shows that the pocket size and hydrophilicity have the strongest correlation with 
Dscore values of the studied PPIs. This is readily detected in the moderately druggable proteins, for which bind-
ing pockets are small in size and hydrophilic in nature, such as IL-2 and XIAP. We also studied the importance 
of protein flexibility on calculated druggability score, and found that protein conformational changes accom-
panying ligand binding in proteins such as Bcl-xL and IL-2 resulted in significantly higher druggability scores 
and more favorable structural features than observed for the apo form or, to a lesser extent, the protein/peptide 
bound structures MD simulations were in favor of this too as it showed significant variations in the pocket size 
and Dscore values throughout the course of the simulations. Finally, published PPI inhibitors were studied to 
determine their “drug-likeness” using Lipinski’s rule of 5 (Ro5) and QED score. Our findings revealed that the 
vast majority of PPI drugs, including those that have been orally tested/marketed, exceeded the typically accept-
able size and hydrophobicity parameters. This made us propose relaxing the drug-like rules and allow at least 
on violation (Ro5-1) which had a considerable impact on preventing the exclusion of many important PPI drug 
candidates that have already shown clinical value and could have been eliminated by the conventional drug-like 
rules. This work proposes a PPI-specific classification scheme that will assist researchers in assessing druggability 
and identifying PPI inhibitors with a potential oral activity.

Methods
Selection of a dataset of protein–protein interaction targets.  The Wells28 set and the 2P2I 
database61 are commonly used data sets for the validation of in silico PPI assessment tools. Accordingly, 12 pro-
tein–protein interaction targets have been derived from both lists and included in our PPI dataset: these proteins 
are Defective in cullin neddylation protein 1 (DNC1), Menin, Human double minute 2 (HDM2), Xenopus dou-
ble minute 2 (XDM2), Protein MDM4 (MDMX), Interleukin-2 (IL-2), Regulatory protein E2 (HPV E2), Bcl2-
associated agonist of cell death (Bcl-2), Apoptosis regulator Bc-X (Bcl-xL), Von Hippel Lindau protein (VHL), 
E3 ubiquitin-protein ligase XIAP (XIAP) and Cell division protein ZipA (ZipA). A search was then conducted 
on the protein data bank (PDB)62 to obtain all ligand-bound, protein/peptide bound and apo structures for each 
PPI from the aforementioned set. PPI structures containing a covalent inhibitor or an inhibitor not bound to 
the PPI interface, or with mutated residues, were excluded from the PPI dataset. Overall, a total of 320 crystal 
structures were included in the study.

Preparation of protein–protein interaction crystal structures.  Each crystal structure had solvent 
atoms and co-crystalized heteroatoms removed using Molecular Operating Environment (MOE)23. If multiple 
chains were present for the same protein, they were manually removed so that only the chain bound to the inhib-
itor remained. After that, all structures were corrected to add missing atoms, residues, chains or loops. Protona-
tion states were assigned to each atom using Protonate3D in MOE. These protein crystal structures were then 
imported into Maestro63 to ensure the structural correctness of prepared structures, proteins were refined using 
the Protein Preparation wizard64 module where hydrogens were added through hydrogen bond optimization 
and subsequently underwent restrained minimized to a lower energy state with a maximum RMSD of 0.30 Å.

Sequence alignment and structural superposition of inhibitor‑bound protein with apo and 
protein/peptide bound structures.  For protein/peptide bound complexes, secondary structure assign-
ments were manually removed from each complex. Given both apo and protein/peptide complexes contained 
one chain of the desired protein, they underwent sequence alignment and structural superimposition with an 
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inhibitor-bound protein from the same family, using the align/superimpose feature in MOE23. Only the inhibi-
tor-bound protein was then removed, keeping its bound inhibitor in the PPI pocket of the apo structure or the 
protein/peptide bound complexes. Consequently, the aligned inhibitor was used to identify the respective pocket 
in the PPI interface.

Druggability assessment of PPI interface using sitemap.  Proteins were then processed through the 
SiteMap20 module with all settings kept to default. To define protein binding pockets, the “Evaluate single bind-
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Figure 10.   A subset of orally tested/approved PPI drugs assessed using standard drug-like rules (Lipinski’s and 
QED), and relaxed PPI drug-like rules (Ro5-1). Note: ✓ for Drug-like; ✕ for nondrug-like.
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ing region” option was selected. SiteMap generates various physiochemical descriptors including size, volume, 
and degree of enclosure, hydrophobicity and hydrophilicity. Most importantly, it scores a protein binding pocket 
by calculating its Dscore:

where n is the number of site points, e is the enclosure factor and p is the hydrophilic factor.

Molecular dynamics simulations.  Molecular dynamics (MD) simulation studies were conducted to 
investigate the dynamic nature of protein by generating numerous conformations of the protein for druggability 
assessment. The AMBER18 package65 was used to run MD simulations of the apo form of HPV protein (PDB 
code 1R6K50). Partial charges and other parameters were assigned to the protein structure using the ff19SB force 
field. The protein system was built using the xleap module of AmberTools, where it was neutralized by the addi-
tion of Na + counter ions and solvated by a truncated octahedral box of TIP3P water. The energy of the system 
was subsequently minimized in two steps using the pmemd program in the AMBER 18 package65 first, all solute 
atoms were constrained with a force constant of 500 kcal mol−1 (− 2) during minimization, and then the entire 
system was subjected to minimization without any constraints. The system was then gradually heated from 0 
to 300 K in the NVT ensemble. Using the Langevin thermostat, the SHAKE algorithm was applied to all bonds 
containing hydrogen atoms with a collision frequency of ps-166. Finally, the protein was subjected to a 100 ns 
MD simulation in the NPT ensemble, with the system temperature and pressure set to 300 K and 1.01 × 105 Pa, 
respectively.

Clustering analysis of MD trajectories.  After completion of MD runs, trajectories were analyzed using 
DBSCAN67 via the cpptraj module of AmberTools68. Every tenth frame (10 ns) was used in clustering. Ions and 
solvent molecules were removed from each system. The distance cutoff between points for forming a cluster, ε, 
was set to 3.0 (default value). The trajectory files were evaluated by extracting the graph of root-mean-square 
deviation (RMSD) using centering utilities. The size of the binding site on the protein interface was computed 
for each structure using the Sitemap20 module of the Schrodinger’s Maestro63.

Assessing the drug‑likeness of PPI‑targeting ligands using the Ro5 and QED.  To evaluate the 
drug-likeness of published PPI inhibitors, these ligands were isolated from their protein complexes and compiled 
into databases. Recent review articles were used to obtain orally tested/approved PPI drugs and their respective 
structures3,51. Their structural features were then studied using Lipinski’s rule of 5 (Ro5)52 and the Quantitative 
Estimate of Drug-likeness (QED)53. Individual physiochemical parameters were calculated for each inhibitor, 
including the number of hydrogen bond donors (HBD), number of hydrogen bond acceptors (HBA), molecular 
weight (Mwt) and LogP to estimate their drug-likeness in accordance with the Ro552. Ligands were then repro-
cessed using QED53 which classifies and ranks ligands according to their QED score. The QED score takes into 
account 8 parameters: molecular weight (Mwt), number of rotatable bonds (nRotB), number hydrogen bond 
donors (HBD), number of hydrogen bond acceptors (HBA), octanol–water partition coefficient (ALogP), num-
ber of aromatic rings (Arom), number of structural alerts (Alerts) and molecular polar surface area (PSA). The 
QED score ranges from 0 to 1; a QED score of 0 indicates unfavorable non-drug-like properties, whereas a score 
of 1 indicates favorable drug-like properties.

MOE23 descriptors Lip_drug-like and Lip_violations were calculated for each inhibitor to estimate their 
drug-likeness using the relaxed drug-like rules (Ro5-1). A drug-like inhibitor is expected to have a Lip_drug-like 
score of 1 if it has no more than one violation. Inhibitors with more than one violation will have a Lip_drug-like 
score of 0 and therefore are classified as non-drug-like.

Data availability
All data generated or analysed during this study are included in this published article (and its supplementary 
information files). Requests for material should be made to the corresponding authors.
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