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ABSTRACT 

Coronary artery disease (CAD) and atrial fibrillation (AF) share common risk factors, such as hypertension and 
diabetes. The patients with CAD often suffer concomitantly AF, but how two diseases interact with each other at 
cellular and molecular levels remain largely unknown. The present study aims to dissect the common differentially 
expressed genes (DEGs) that are concurrently associated with CAD and AF. Two datasets [GSE71226 for CAD) 
and GSE31821 for AF] were analyzed with GEO2R and Venn Diagram to identify the DEGs. Signaling pathways, 
gene enrichments, and protein-protein interactions (PPI) of the identified common DEGs were further analyzed 
with Kyoto Encyclopedia of Gene and Genome (KEGG), Database for Annotation, Visualization and Integrated 
Discovery (DAVID), and Search Toll for the Retrieval of Interacting Genes (STRING). 565 up- and 1367 down-
regulated genes in GSE71226 and 293 up- and 68 down-regulated genes in GSE31821 were identified. Among 
those, 21 common DEGs were discovered from both datasets, which lead to the findings of 4 CAD and 21 AF 
pathways, 3 significant gene enrichments (intracellular cytoplasm, protein binding, and vascular labyrinthine 
layer), and 3 key proteins (membrane metallo-endopeptidase (MME), transferrin receptor 1 (TfR1), and Lyso-
some-associated membrane glycoprotein 1 (LAMP1)). Together, these data implied that these three proteins may 
play a central role in development of both CAD and AF. 
 
Keywords: Coronary artery disease, atrial fibrillation, differentially expressed gene, signaling pathway, bioinfor-
matics 
 
 
 

INTRODUCTION 

Cardiovascular disease is the leading 
cause of death in the developed countries 
(Virani et al., 2020). Of all cardiovascular dis-
eases (e.g., acute myocardial infarction, heart 

failure, valvular heart disease, cerebrovascu-
lar accident, transient ischemic attack, periph-
eral arterial disease, sudden cardiac arrest, 
ventricular arrhythmia, venous thromboem-
bolism, and pulmonary embolism), coronary 
artery disease (CAD) is the most common 
type and contributes the highest rate of death 
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(Michniewicz et al., 2018; Virani et al., 
2020); whereas of all cardiac arrhythmia (e.g., 
supraventricular tachycardia, ventricular 
tachycardia, sinus-node dysfunction, and 
heart block), atrial fibrillation (AF) is the 
most typical disorder, and it affects about 37.6 
million individuals globally in 2017 (Go et 
al., 2001; Michniewicz et al., 2018; Virani et 
al., 2020).  

Interestingly, studies found that AF is 
highly associated with the increased risk of 
many other diseases, such as CAD, stroke, 
heart failure, diabetes, sudden cardiac death, 
and mortality, especially within the aging 
populations (Motloch et al., 2017; Murakami 
et al., 2017; Virani et al., 2020). In the case of 
CAD, it was demonstrated that both AF and 
CAD share the same risk factors and impact 
on each other (Kristensen et al., 2020; Lieder 
et al., 2018; Motloch et al., 2017). A system-
atic review and meta-analysis of 15 cohort 
studies, for example, demonstrated that AF 
was associated with a 1.54-fold increased risk 
of myocardial infarction induced by CAD 
(Ruddox et al., 2017). Overall, about 17-
46.5 % patients with AF suffer concomitantly 
CAD while the patients with CAD have a low 
prevalence rate (0.2 % to 5 %) of AF, sug-
gesting the significant effects of AF on pro-
moting morbidity and mortality of concomi-
tant diseases (Michniewicz et al., 2018). 

Meanwhile, the outcomes of the patients 
with CAD is modulated by AF; however, it’s 
still unclear whether the presence of CAD 
simply increases the risk of AF or changes the 
impact of other risk factors (Mehta et al., 
2003; Pilgrim et al., 2013). The management 
of AF with concomitant CAD is still a huge 

clinical challenge (Gladding et al., 2020). 
Fully understanding the similarities in the 
pathogenesis of AF and CAD may reveal the 
mechanisms underlying both diseases and fa-
cilitate discovery of new therapy targets.  

Bioinformatic analysis of gene profiles 
offers a novel approach to explore the under-
lying mechanisms of disease at the molecular 
level. This technique has been widely utilized 
in basic and clinical studies (Kumar et al., 
2016), yet only limited data is reported re-
garding interlinkages of critical genes and sig-
naling molecules between CAD and AF 
(Kertai et al., 2015). In this paper, we aimed 
to profile the common differentially ex-
pressed genes (DEGs) of CAD and AF by us-
ing the sequencing databases of these two dis-
eases and identified potential pathways mod-
ulating the development of CAD and AF.  

 

MATERIALS AND METHODS 

Data sources 
The datasets of gene of interest with se-

quence number GSE71226 and GSE31821 
were downloaded from the Gene Expression 
Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/). In 
GSE71226 microarray dataset, 3 samples 
from the patients with CAD and 3 samples of 
healthy subjects were included; while in 
GSE31821 dataset, 4 samples from the pa-
tients with AF and 2 samples of healthy sub-
jects were enrolled. Both datasets were col-
lected from GPL570 Platforms ((HG-
U133_Plus_2) Affymetrix Human Genome 
U133 Plus 2.0 Array). The detail information 
is shown in Table 1. 

 
 
 

Table 1: Basic information of datasets used in the study 

Items GSE71226 GSE31821
Platform GPL570 GPL570 
Diseases CAD AF 
Research subjects Asian  Caucasian  
Samples Peripheral blood Cardiac (atrial) tissue 
Number of subjects 6 (3 patients + 3 controls) 6 (4 patients + 2 controls) 
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Identifications of differentially expressed 
genes  

DEGs between patients and healthy sub-
jects were identified via GEO2R online tools 
(log2FC > 1 or log2FC < -1, p value <0.05) 
(Davis and Meltzer, 2007). The row data were 
then run in Venn Diagram (http://bioinfor-
matics.psb.ugent.be/webtools/Venn/) to iden-
tify the common DEGs between 2 datasets. 
The DEGs with log2FC < -1 were considered 
as down-regulated genes, while the DEGs 
with log2FC > 1 were regarded as up-regu-
lated genes. Heatmap of gene expression was 
made by R package ggplot2 as described pre-
viously (Aibar et al., 2015; Walter et al., 
2015). 
 
Gene ontology enrichment analysis 

The Gene ontology (GO) analysis has be-
come a common way to analyze large scale 
genomic data (Zheng et al., 2008). Kyoto en-
cyclopedia of genes and genomes (KEGG) 
(https://www.genome.jp/kegg/) is a biologi-
cal genomic database that focuses on comput-
erization of molecular linkage among ge-
nomes, gene functions, and biochemical (met-
abolic and regulatory) pathways of all organ-
isms under normal and disease conditions 
(Ogata et al., 1999). Database for Annotation, 
Visualization and Integration Discovery (DA-
VID) (https://david.ncifcrf.gov/) and Cys-
toscape software (https://cytoscape.org/) 
were used for the GO enrichment and KEGG 
pathway analysis of integrated differential 
genes. DAVID (v6.8) is an online bioinfor-
matic tool that is designed to identify gene 
and protein functions and visualize different 
signaling pathways. In these analyses, bar 
plots were made by R package heatmap to 
show the ten most significant enriched GO 
terms (Aibar et al., 2015; Walter et al., 2015)  
 
Protein-protein interaction network  
mapping  

The online Search Tool for the Retrieval 
of Interacting Genes (STRING) 
(https://string-db.org/) was used to analyze 

the protein-protein interaction (PPI) network 
of the DEGs as described in the previously 
published study (Szklarczyk et al., 2015). 
Since PPI is known to modulate a variety of 
biological process, such as cellular metabo-
lisms, development processes, and cell-to-cell 
interactions, thus, it could be used to predict 
key protein(s) that regulate cellular specific 
functions or to be screened as potential thera-
peutic target(s) (Rao et al., 2014).  

 

RESULTS 

Up- and down-regulated genes that were 
concurrently expressed in the patients with 
CAD and AF 

To outline the profiles of DEGs, two da-
tasets were analyzed with GEO2R software. 
From GSE71226 dataset of the patients with 
CAD patients and healthy subjects, a total of 
1932 DEGs was identified, among which 565 
genes were up-regulated (p < 0.05, log2FC > 
1) and 1367 genes were down-regulated (p < 
0.05, log2FC < -1) (Supplementary Table 2 
and Figure 1). Similarly, from GSE31821 da-
taset of the patients with AF and healthy sub-
jects, a total of 361 genes were extracted, 
among which 293 genes were up-regulated (p 
< 0.05, log2FC > 1) and 68 genes were down-
regulated (p < 0.05, log2FC < -1) (Supple-
mentary Table 3 and Figure 1), suggesting 
significantly differential expressions of mul-
titudinous genes in the patients with CAD and 
AF. 

To further determine the common DEGs 
that exist in both datasets, we ran two datasets 
on Venn Diagram and confirmed 21 common 
DEGs, which comprises 14 up-regulated 
genes (p < 0.05, log2FC > 1) and 7 down-reg-
ulated genes (p < 0.05, log2FC < -1) (Table 2 
and Figure 1). To unveil the expression pat-
terns of the DEGs among all groups, the top 
100 DEGs were selected based on the p-val-
ues (p < 0.05), and constructed as a cluster 
heatmap to show the cross-correlation of 
those genes among each individual.  

 

https://www.excli.de/vol20/excli2020-3262_supplementary_material.zip
https://www.excli.de/vol20/excli2020-3262_supplementary_material.zip
https://www.excli.de/vol20/excli2020-3262_supplementary_material.zip
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Table 2: Twenty-one common differentially expressed genes (DEGs) identified in two datasets 

Up- or down-regulated genes GSE71226 GSE31831 
Log 
FC 

p-
value 

Log 
FC 

p-
value 

U
p

-r
eg

u
la

ti
o

n
 (

14
) 

Lysosomal associated membrane protein 1 (LAMP1) 1.07 0.0387 1.24 0.0392 
Polycomb group ring finger 5 (PCGF5) 1.7 0.0323 1.26 0.0400 
Glutamate-ammonia ligase (GLUL) 3.1 0.0406 1.03 0.0345 
Ankyrin repeat domain 2 (ANKRD2) 1.03 0.0430 2.02 0.0089 
Transducin beta like 1 X-linked receptor 1 
(TBL1XR1) 

1.81 0.0018 1.41 0.0156 

Membrane metalloendopeptidase (MME) 2.87 0.0041 1.08 0.0387 
Transmembrane p24 trafficking protein 2 (TMED2) 1.16 0.0192 1.34 0.0470 
Hes related family bHLH transcription factor with 
YRPW motif 1 (HEY1) 

1.42 0.0312 1.23 0.0004 

Rho related BTB domain containing 3 (RHOBTB3) 1.51 0.0009 1.26 0.0086 
Cyclin D2 (CCND2) 1.05 0.0409 1.11 0.0018 
Interleukin 13 receptor subunit alpha 1 (IL13RA1) 2.87 0.0116 1.01 0.0428 
Upstream binding transcription factor, RNA polymer-
ase I (UBTF) 

1.16 0.0141 1.05 0.0330 

Transferrin receptor (TFRC) 1.38 0.0191 1.24 0.0463 
Mitogen-activated protein kinase kinase kinase ki-
nase 5 (MAP4K5) 

1.59 0.0447 1.04 0.0232 

D
o

w
n

- 
re

g
u

la
ti

o
n

 (
7)

 Leucine rich repeat neuronal 3 (LRRN3) -1.56 0.0448 -2.40 0.0134 
Family with sequence similarity 208-member B 
(FAM208B) 

-1.22 0.0095 -1.25 0.0339 

Brain expressed X-linked 2 (BEX2) -1.96 0.0342 -2.17 0.0355 
Vacuolar protein sorting 13 homolog D (VPS13D) -1.56 0.0283 -1.54 0.0246 
Zinc finger protein 493 (ZNF493) -2.25 0.0006 -1.03 0.0379 
Zinc finger protein 302 (ZNF302) -1.74 0.0289 -1.27 0.0326 
Phosphatidylinositol transfer protein, cytoplasmic 1 
(PITPNC1) 

-1.35 0.0100 -1.35 0.0188 

 

 
Figure 1: Twenty-one common DEGs from two datasets were identified in Venn Diagram. Panel 
A shows 14 up-regulated DEGs (at the center) from GSE71226 dataset (in blue) and GSE31821 (in 
red). Panel B shows 7 down-regulated genes from GSE71226 dataset (in blue) and GSE31821 (in red). 
DEGs: differentially expressed genes. GSExxxx: gene set enrichment #; Log2FC > 1 or < 1: fold changes 
in logarithms to base 2 between patients and healthy subjects are greater (up-regulated) or lower (down-
regulated) than 1. 
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As shown in Figure 2, there are significant 
differences of gene expression profiles be-
tween healthy subjects and patients. Overall, 
5 healthy subjects from two datasets exhibited 
similar patterns of gene expressions except 
for group 1 (G1), 3, 5, and 9; while significant 
differences of expression levels were ob-
served in all groups (G1-9) between 3 CAD 
patients and 4 AF patients with high expres-
sions in G1, 2, 7 and low expressions in G3, 
4, 5, 6, 8, and 9 in the patients with CAD com-
pared to the same groups of the patients with 
AF. Interestingly, STX17-AS1, BAG1, 
GYPC, STRADB, S100A9, and HBM are the 
mostly expressed genes in the CAD patients 
while ACTA1, FHL2, FABP4, and EGR1 are 
the mostly expressed genes in the AF patients. 
The common DEGs between CAD and AF 
appear in G1 and 2, such as STEAP4, 
SLC6A8, GYPC, and STRADB. Together, 
these data demonstrated that majority of the 
DEGs expressed differently between CAD 
and AF, but a small group of genes expressed 
concurrently. 

 
Variable and common GO terms between 
CAD and AF 

To characterize the three critical terms, bi-
ological process (BP), molecular function 
(MF), and cellular component (CC) of the 
DEGs identified above, the GO (i.e., over-
representation or term enrichment) enrich-
ment analysis was performed on two datasets 
and the results (i.e., terms) are presented as 
graph (ontology) structure shown in Figure 3.  

From GSE71226 dataset of the patients 
with CAD and healthy subjects, it was found 
that for the BP term, the DEGs were mostly 
enriched in the regulation of transcription 
(GO: 0006355, p = 1.91E-13); while for MF 
term, they were mostly enriched in the DNA 
binding (GO:0003676, p = 5.75E-12); and 
lastly for CC term, they were mostly enriched 
in the nucleoplasm (GO: 0005654, p = 1.24E-
21) (Table 3 and Figure 3A). Similarly, from 
GSE31821 dataset of the patients with AF and 
healthy subjects, it was found that for the BP 
term, the DEGs were mostly enriched in the 
extracellular matrix (GO:0030198, p = 2.07E-

06); while for MF term, they were mostly en-
riched in the cadherin binding in cell-cell ad-
hesion (GO:0098641, p = 1.62E-06), and 
lastly for CC term, they were mostly enriched 
in the extracellular exosome (GO: 0070062, p 
= 4.89E-11) (Table 3 and Figure 3B). To-
gether, these data demonstrated that the DEGs 
identified from the patients with CAD or AF 
were expressed (enriched) differentially in the 
aspects of the BP, MF, and CC.  

However, when the 21 common DEGs 
were analyzed, the resulting GO terms are dif-
ferent from the above. Specifically, for the 
BP, the common DEGs were particularly en-
riched in the regulation of labyrinthine layer 
in embryonic blood vessel; while for the MF, 
they were remarkably enriched in the protein 
binding, and lastly for the CC, they were sub-
stantially enriched in the intracellular cyto-
plasm (Table 4), implying that those terms 
(BP, MF, and CC) may represent the common 
pathogenesis in the development of CAD and 
AF.  

 
Numerous but not common pathways were 
detected in both CAD and AF 

Next, we used DAVID software to map 
the KEGG pathways of the identified DEGs 
from both datasets. Briefly, from GSE71226 
dataset of the patients with CAD and healthy 
subjects, four key pathways were determined: 
1) mRNA surveillance pathway; 2) eukary-
otic ribosome biogenesis pathway; 3) gluca-
gon signaling pathway; and 4) other types of 
O-glycan biosynthesis (Table 5). However, 
from GSE31821 dataset of the patients with 
AF and healthy subjects, twenty-one key 
pathways were discovered, including 1) Focal 
adhesion; 2) MAPK; 3) Amoebiasis; 4) Can-
cer; 5) PI3K-Akt; 6) Wnt signaling; 7) ECM-
receptor interaction; 8) Platelet activation; 9) 
Toxoplasmosis; and 10) Proteoglycans in 
cancer (see Table 5 for the rest 11 pathways). 
Interestingly, only the hematopoietic cell lin-
eage signaling pathway was enriched by the 
common DEGs, and the statistical test is close 
to significance (p=0.085), implying that the 
hematopoietic cell lineage signaling pathway  
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Figure 2: Cluster heatmap of the top 100 DEGs from both GSE71226 and GSE31821 datasets. 
The colored codes from green to red indicate expression levels from low (in green) to high (in red). The 
sample identification # (GSM….) is listed on the bottom (x-axis). The left gene tree was roughly grouped 
into 9 groups (G1 to 9) for easy reference in text. The right side lists all 100 genes. See Figure 1 and 
Supplementary Table 1 for other abbreviations. 

https://www.excli.de/vol20/excli2020-3262_supplementary_material.zip
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Figure 3: GO enrichment analysis of the DEGs. Panel A shows the results of top 10 GO enrichment 
in GSE71226 dataset. Panel B shows the results of top 10 GO enrichment GSE31821 dataset. In all 
panels, X-axis represents counts of the DEGs and Y-axis refers the enriched GO terms (BP, MF, and 
CC). The colored codes from blue to red indicate significance from low to high. GO: gene ontology; BP: 
biological process; MF: molecular function; CC: cellular components; -lgFDR: Log10 false discovery rate 
(p-value). See Figure 1, 2 and Supplementary Table 1 for other abbreviations. 
 

Table 3: GO analysis of the top 10 genes in two datasets 

 Category GO-ID Description Count % p-value FDR

G
S

E
71

22
6

 

GOTERM_CC 0005654 nucleoplasm 386 20.348 1.24E-21 1.89E-18 

GOTERM_CC 0005634 nucleus 617 32.525 2.69E-14 4.10E-11 
GOTERM_BP 0006355 regulation of transcription, 

DNA-templated 
221 11.650 1.91E-13 3.57E-10 

GOTERM_MF 0003676 nucleic acid binding 155 8.1708 5.75E-12 9.44E-09 
GOTERM_MF 0005515 protein binding 919 48.445 3.14E-11 5.16E-08 
GOTERM_MF 0044822 poly(A) RNA binding 167 8.8034 1.21E-10 1.99E-07 
GOTERM_BP 0006351 transcription, DNA-templated 252 13.284 3.32E-09 6.18E-06 
GOTERM_MF 0003677 DNA binding 217 11.439 2.42E-08 3.98E-05 
GOTERM_CC 0016607 nuclear speck 41 2.1613 9.40E-07 0.001433 
GOTERM_MF 0003700 transcription factor activity, se-

quence-specific DNA binding 
128 6.7475 7.01E-06 0.011501 

G
S

E
31

82
1

 

GOTERM_CC 0070062 extracellular exosome 111 29.365 3.47E-14 4.89E-11 
GOTERM_CC 0031012 extracellular matrix 27 7.1429 1.29E-10 1.82E-07 
GOTERM_CC 0005829 cytosol 114 30.158 1.31E-10 1.84E-07 
GOTERM_CC 0042470 melanosome 16 4.2328 9.18E-10 1.29E-06 
GOTERM_MF 0005515 protein binding 226 59.788 2.26E-08 3.34E-05 
GOTERM_CC 0005913 cell-cell adherent junction 23 6.0847 3.35E-07 4.72E-04 
GOTERM_CC 0005925 focal adhesion 25 6.6138 6.46E-07 9.08E-04 
GOTERM_MFT 0098641 cadherin binding involved in 

cell-cell adhesion 
21 5.5556 1.62E-06 0.002393 

GOTERM_BP 0030198 extracellular matrix organiza-
tion 

17 4.4974 2.07E-06 0.003603 

GOTERM_CC 0043209 myelin sheath 14 3.7037 7.93E-06 0.011153 

  

https://www.excli.de/vol20/excli2020-3262_supplementary_material.zip
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Table 4: GO analysis of the 21 common DEGs 

Category GO-ID Description Count % p-value FDR 
GOTERM_MF_DIRECT 0005515 protein binding 15 78.95 0.0034 3.3369 
GOTERM_BP_DIRECT 
 

0060716 labyrinthine 
layer blood ves-
sel development 

2 10.53 0.0191 20.1842 

GOTERM_CC_DIRECT 
 

0005622 intracellular 5 26.32 0.0314 28.6846 

 
 
Table 5: KEGG pathways identified in two datasets 

 Terms  Count % p-value FDR 

G
S

E
71

22
6 hsa03015: mRNA surveillance pathway 21 1.1071 4.24E-05 0.0558 

has03008: Ribosome biogenesis in eukaryotes 16 0.8434 5.01E-03 6.3225 
has04922: Glucagon signaling pathway 17 0.8962 7.20E-03 9.0472 
has00514: Other types of O-glycan biosynthe-
sis 

7 0.3690 7.60E-03 9.5031 

G
S

E
31

82
1 

hsa04510: Focal adhesion 20 5.2910 7.58E-07 9.6949 
hsa04010: MAPK signaling pathway 19 5.0265 5.55E-05 0.0709 
hsa05146: Amoebiasis 12 3.1746 6.15E-05 0.0787 
hsa05200: Pathways in cancer 25 6.6138 3.82E-05 0.0489 
hsa04151: PI3K-Akt signaling pathway 22 5.8201 1.27E-04 0.1628 
hsa04310: Wnt signaling pathway 13 3.4392 1.61E-04 0.2052 
hsa04512: ECM-receptor interaction 10 2.6455 2.98E-04 0.3803 
hsa04611: Platelet activation 12 3.1746 3.83E-04 0.4889 
hsa05145: Toxoplasmosis 11 2.9100 3.99E-04 0.5086 
hsa05205: Proteoglycans in cancer 15 3.9683 4.53E-04 0.5786 
hsa04921: Oxytocin signaling pathway 12 3.1746 1.27E-03 1.6187 
hsa04974: Protein digestion & absorption 9 2.3810 1.52E-03 1.9285 
hsa05140: Leishmaniasis 8 2.1164 1.87E-03 2.3664 
hsa04810: Regulation of actin cytoskeleton 14 3.7037 2.23E-03 2.8134 
hsa04670: Leukocyte transendothelial migra-
tion 

10 2.6455 2.25E-03 2.8373 

hsa04062: Chemokine signaling pathway 13 3.4392 2.29E-03 2.8997 
sa04612: Antigen processing & presentation 8 2.1164 2.77E-03 3.4863 
hsa04915: Estrogen signaling pathway 9 2.3810 3.21E-03 4.0328 
hsa04014: Ras signaling pathway 14 3.7037 4.21E-03 5.2515 
hsa04145: Phagosome 11 2.9101 4.22E-03 5.2649 
hsa05166: HTLV-I infection 15 3.9683 4.41E-03 5.4975 

 
 
 
“may be” an interactive linkage between 
CAD and AF that involves membrane 
metallo-endopeptidase (MME, also known as 
Neprilysin or Neutral endopeptidase 24.11) 
(Sankhe et al., 2020), and TfR1. 
 
Protein-protein interaction network and 
molecular analysis 

PPIs, either via strong or weak physical or 
functional interactions, play fundamental 

roles in cellular functions and biological pro-
cesses of all organisms under normal condi-
tion and disease development (Rao et al., 
2014). In this respect, the present study used 
STRING to mine all proteins coded by the 
DEGs for potential interactions within and be-
tween the datasets from the patients with 
CAD and/or AF. 
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Figure 4: Protein-protein-interaction analysis of the DEGs in GSE71226 dataset. Panel A shows 
the overall network in GSE71226 dataset. Panel B shows the derived modules from the network. The 
rectangles stand for DEGs and the lines stand for their interactions. U2SURP, LUC7L and DDX42 in 
Module A (on the left side) and GYPC, EPB41 and ALAS2 in Module B (on the right side) are the most 
important nodes. See Supplementary Table 1 for all abbreviations. 

 
 

https://www.excli.de/vol20/excli2020-3262_supplementary_material.zip
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Specifically, from GSE71226 dataset of 
the patients with CAD and healthy subjects, 
an intricate PPI network was recognized by 
STRING analysis. Since the network is so 
complex as shown in Figure 4A, it is unlikely 
to decode network(s) of interest; thus, we 
screened 2 functional modules with the help 
of Cystoscape software in the network. The 
results showed that Module A (Figure 4B, the 
left side) and Module B (Figure 4B, the right 
side) contain 13 and 12 nodes, respectively. 
Among them, U2 snRNP-associated SURP 
motif-containing protein (U2SURP, a RNA 
binding protein (De Maio et al., 2018)), Luc7-
like protein 3 (LUC7L3, a DNA/RNA bind-
ing protein (Tufarelli et al., 2001)), and Pinin 
(PNN, a DNA/RNA binding protein (Hsu et 
al., 2020)) are the most important nodes in 

Module A; while in Module B, it was found 
that Glycophorin-C (GYPC, an erythrocyte 
regulatory protein (Jaskiewicz et al., 2018)), 
Protein 4.1 (EBP41 or Beatty’s protein, an 
erythrocyte structural and regulatory protein 
(Kiyomitsu and Cheeseman, 2013)), and Al-
pha-hemoglobin-stabilizing protein (ALAS2, 
a hemoglobin regulatory protein (Che Yaacob 
et al., 2020)) are the most important nodes. 

On other hand, when the same approach 
was used in GSE31821 dataset of the patients 
with AF and healthy subjects, a relatively 
simple PPI network (containing 2 clusters 
with 9 nodes) was identified by STRING 
analysis (Figure 5). Further, Cystoscape anal-
ysis found that Module A (Figure 5B, the left 
side) and Module B (Figure 5B, the right side)  

 

 

Figure 5: Protein-protein-
interaction analysis of the 
DEGs in GSE31821 da-
taset. Panel A shows the 
overall network in GSE31821 
dataset. Panel B shows the 
derived modules from the 
network. The rectangles 
stand for DEGs and the lines 
stand for their interactions. 
PDK4, FABP4, SCD and 
GPAM in Module A (on the 
left side) and CYR61, TF and 
VCAN in Module B (on the 
right side) are the most im-
portant nodes. See Supple-
mentary Table 1 for all abbre-
viations.  

https://www.excli.de/vol20/excli2020-3262_supplementary_material.zip
https://www.excli.de/vol20/excli2020-3262_supplementary_material.zip
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have 4 and 3 nodes, respectively. Among 
these, Acyl-CoA desaturase (SCD, an enzyme 
involving biosynthesis of monounsaturated 
fatty acids (Vanhercke et al., 2011)), Fatty 
acid-binding protein (FABP4, a fatty acid 
transport protein (Rezar et al., 2020)), and 
Glycerol-3-phosphate acyltransferase 1 
(GPAM, an enzyme involving glycerolipids 
biosynthesis (Mitka et al., 2019)) were the 
mostly critical nodes in Module A; while 
Serotransferrin (TF, an iron transport protein 
(Jamnongkan et al., 2019)), Protein CYR61 
(CYR61, a cellular growth regulatory protein 
(Huang et al., 2017)), and Versican core pro-
tein (VCAN, an extracellular matrix proteo-
glycan (Gardela et al., 2020)) are the most 
critical nodes in Module B. 

Interestingly, when the common DEGs 
from two datasets were analyzed using the 
same approach, it was found that only three 
proteins, MME, Transferrin receptor protein 1 
(TfR1), and Lysosome-associated membrane 
glycoprotein 1 (LAMP1, an integral mem-
brane protein with unknown function 
(Kirschner et al., 2016)), interacted each other 
while the remaining 18 proteins had no signif-
icant influencing characteristics (Figure 6).  

 
Figure 6: Protein-protein-interaction analysis 
of the 21 common DEGs in both datasets. 
Among 21 common DEGs, MME, TFRC and 
LAMP1 are the most significant nodes from the 
PPI network. 

 
 

Taken together, these data suggested that 
although the PPI within and between two da-
tasets are complex and most (if not all) func-
tional interactions remain largely unknown, 
three proteins (MME, TfR1, LAMP1) may be 
concurrently involved in the development of 
CAD and AF. 

 

DISCUSSION 

In the present study, we investigated the 
common DEGs and molecular networks of 
two datasets consisting of the healthy subjects 
and the patients with CAD or AF using vari-
ous bioinformatic tools. Overall, 565 up-reg-
ulated and 1367 down-regulated genes were 
discovered in the dataset from the patients 
with CAD, while 293 up-regulated and 68 
down-regulated genes were revealed in the 
dataset from  the patients with AF. From these 
genes, 21 common DEGs were highly en-
riched in the intracellular cytoplasm, protein 
binding, and labyrinthine layer of vessel in 
both CAD and AF patients. These common 
DEGs are involved in 4 pathways in the CAD 
dataset and 21 pathways in the AF dataset. 
Further analysis of those pathways identified 
three important proteins (MME, TfR1, 
LAMP1) that highly co-expressed in the CAD 
and AF patients. To the best of our know-
ledge, this is the first study to investigate the 
cross-correlation of all DEGs between the 
CAD and AF datasets. The findings may fa-
cilitate a better understanding of the mecha-
nisms underlying the pathogenesis of CAD 
and AF. 

The close relationship between CAD and 
AF has been well recognized in literature, in-
cluding the fact such as patients with AF de-
velop a high prevalence of CAD 
(Michniewicz et al., 2018). It is known that 
genetic factors contribute importantly to both 
CAD and AF and studying the genetic basis 
of cardiovascular disease has made signifi-
cant contribution to understand disease biol-
ogy and promote cardiovascular therapy (Yla-
Herttuala and Baker, 2017). Numerous stud-
ies have identified a number of key genes and 
critical modules that are associated with CAD 
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and AF by analyzing the microarrays data us-
ing bioinformatic tool and platform (Wang et 
al., 2016; Zhang et al., 2014). However, the 
genomic correlations between two diseases 
have not been fully investigated.  

Our studies found that there are signifi-
cant number of up- and down-regulated genes 
in each disease, but these genes may not be 
directly correlated each other within two dis-
eases. However, among those were 21 com-
mon DEGs identified from two datasets, in-
cluding 14 up- and 7 down-regulated genes 
that could be involved in the pathogenesis of 
CAD and AF. At the protein levels, three ma-
jor candidates of MME, TfR1, and LAMP1 
that were encoded by the corresponding genes 
in those 21 common DEGs, were revealed by 
PPI network analysis, suggesting that these 
proteins may play a critical role in the devel-
opment of two diseases.  

MME is a 100 kD type II transmembrane 
glycoprotein and plays an important role by 
enzymatically modulating the metabolism of 
glucagon, enkephalins, substance P, neuro-
tensin, oxytocin, bradykinin, and atrial natri-
uretic peptides (ANP) (Roques, 1998). 
Among these, ANP is a key peptide synthe-
sized by the heart and contributes critical reg-
ulatory roles in normal cardiovascular home-
ostasis and cardiovascular disease (Munagala 
et al., 2004). It was reported that MME is up-
regulated in the heart of patients with heart 
failure and in the neutrophils of patients with 
early phase of acute myocardial infarction 
(Fielitz et al., 2002; Knecht et al., 2002). 
MME also controls local antifibrotic peptide 
bradykinin through the degradation of brady-
kinin in the extracellular space of heart tissue 
(Fielitz et al., 2002). Our results indicated that 
MME is one of the common genes concur-
rently expressed in both CAD and AF, sug-
gesting that MME could become a therapy 
target for the AF patients with CAD.  

TRFC gene encodes a cell surface recep-
tor, termed transferring receptor 1 (TfR1), 
necessary for cellular iron uptake via the re-
ceptor-mediated endocytosis and it is essen-
tial for the function of red blood cell and de-
velopment of the nervous system (Levy et al., 

1999). Both iron overload and iron defi-
ciency, which are directly controlled by trans-
ferring receptor, were found to cause cardio-
myopathy and heart failure (Anand and 
Gupta, 2018; Kremastinos and Farmakis, 
2011). The present finding of highly ex-
pressed TfR1 in both CAD and AF provides 
additional evidence regarding the potential 
role of TfR1 in the pathogenesis of cardiovas-
cular diseases.  

LAMP1 is a member of membrane glyco-
protein family, and LAMP1/2 are major com-
ponents of lysosomal membrane (Eskelinen, 
2006). Studies demonstrated LAMP1 is in-
volved in autophagy process via mediating  
fusion between autophagosome and lyso-
somes; but the detailed mechanism is not fully 
understood. It was reported that the excessive 
autophagy by intracellular stress devoted sig-
nificantly negative impacts on the develop-
ments of various cardiovascular diseases, in-
cluding CAD and heart failure (Martinet et 
al., 2007). Our study found a remarkable up-
regulation of LAP1, supporting the possible 
involvement of LAMP1 in both CAD and AF. 
Surprisingly, mice with LAMP1 deficiency 
manifest normal lysosomal morphology and 
function (Andrejewski et al., 1999). The dis-
crepancy could be due to different species or 
experimental condition that need further in-
vestigation.  

The BP, MF, and CC are three terms com-
monly used in the GO enrichment analysis to 
reveal the involvement of genes of interest at 
different biological levels (Walter et al., 
2015). The present study found that the com-
mon DEGs for CAD and AF that were en-
riched mostly in the intracellular cytosol ap-
pear to be involved in the development of the 
labyrinthine layer during embryonic vessel 
development. Rinkenberger and Werb (2000) 
demonstrated that the CC is involved in the 
labyrinthine layer of the placenta blood vessel 
progression and connected with cardiovascu-
lar system development; but future investiga-
tion is needed to address the biological role of 
the vascular labyrinthine layer in cardiovas-
cular abnormalities, such as CAD and AF.  
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Signaling pathway (or signaling cascade 
or biochemical cascade) is a series of cellular 
and molecular reactions that always take 
place in cells under normal and diseases con-
ditions, including the development of CAD 
and AF. By running KEGG pathway analysis, 
Pocai (2019) found that mRNA surveillance 
pathway, ribosome biogenesis, and glucagon 
signaling pathway were the major pathways 
that affect CAD. In the case of glucagon path-
way, Ali et al. (2015) demonstrated that glu-
cagon administration impairs survival follow-
ing ischemia in non-diabetic mouse and pro-
mote cardiomyocytes apoptosis. The present 
study identified 4 signaling pathways that 
were likely associated with CAD, supporting 
the above findings. By contrast, 21 pathways, 
such as Focal adhesion and MAPK pathways 
(see Table 5), were generated out of the AF 
dataset using the same approach. Among 
these, MAPK pathway is probably the most 
important signaling pathway related to the 
pathogenesis of cardiovascular disease, in-
cluding AF (Zhang et al., 2003). A study 
found that the MAPK pathway is involved in 
occurrence of AF in patients with rheumatic 
heart disease after cardiac surgery through 
promoting atrial fibrosis (Zhang et al., 2017), 
which is consistent with our present finding 
on MAPK pathway. 

In conclusion, the present study identified 
21 common DEGs out of thousands of genes 
in the two datasets collected from the patients 
with CAD or AF. These common DEGs were 
highly enriched in the intracellular cytoplasm, 
protein binding, and vascular labyrinthine 
layer in patients. Three important protein can-
didates (MME, TfR1, and LAMP1) may play 
crucial roles in the disease development of 
both CAD and AF. We realized that the study 
comes with limitations. The subjects between 
the CAD and the AF have different ethnic 
background and medical history. The sample 
source and size should also be improved. Fu-
ture studues using animal models with CAD 
and AF should be conducted to validate the 
hypothesis. 
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