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Abstract: Cyanidin-3-O-glucoside (C3G), the predominant anthocyanin in haskap berries
(Lonicera caerulea L.), possesses antioxidant and many other biological activities. This study
investigated the impact of temperature and pH on the degradation of the C3G-rich haskap fraction.
The effect of the thermal degradation products on the viability of hepatocellular carcinoma HepG2
and breast cancer MDA-MB-231 cells was also studied in vitro. Using column chromatography,
the C3G-rich fraction was isolated from acetone extracts of haskap berries. The C3G stability in
these fractions was studied under elevated temperatures (70 ◦C and 90 ◦C) at three different pH
values (2.5, 4, and 7) by monitoring the concentration of C3G and its major degradation products,
protocatechuic acid (PCA) and phloroglucinaldehyde (PGA), using liquid chromatography mass
spectrometry. Significant degradation of C3G was observed at elevated temperatures and at neutral
pH. Conversely, the PCA and PGA concentration increased at higher pH and temperature. Similar to
C3G, neutral pH also has a prominent effect on the degradation of PGA, which is further accelerated
by heating. The C3G-rich fraction exhibited dose-dependent inhibitory effects on cell metabolic
activity when the HepG2 cells were exposed for 48 h. Interestingly, PGA but not PCA exhibited
cytotoxic effects against both MDA-MB-231 and HepG2 cells. The results suggest that thermal food
processing of haskap could influence its biological properties due to the degradation of C3G.
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1. Introduction

Haskap (Lonicera caerulea L.) berries, also known as blue honeysuckle and honeyberry,
are a relatively new crop in North America. Berries of this genus have been used for medicinal
purposes in Russia and some Asian countries for thousands of years [1,2]. There are three major
cultivars of this berry being produced in Canada, and they have attracted interest due to their relatively
high concentration of health-promoting anthocyanins when compared with other commonly consumed
fruit [1,3,4]. Many studies have indicated that anthocyanins have the potential to be effective in cancer
chemoprevention. Anti-proliferative effects on multiple cancer cell types in vitro, pro-apoptotic
effects on cancer cell lines, reduction in inflammatory pathway expression, anti-angiogenesis
effects, and induced differentiation have been observed [5–12]. Anthocyanins administered in vivo
have reduced cancer development in animals treated with carcinogens, and in animals with the
common hereditary development of colon, lung, skin and esophageal cancers [13–15]. Anthocyanins,
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which degrade rapidly, are the least stable class of flavonoids. The stability of anthocyanins is affected
by pH, light exposure, oxidation, enzymatic action, and the presence of metal ions [16]. Under acidic
conditions (pH < 3), anthocyanins exist in their most stable form, red flavylium cations. When the
pH is between four and five, anthocyanins undergo hydroxylation and form a colorless pseudo base.
At a higher pH (pH > 6), anthocyanins exist as a quinoidal base and exhibit a blue color. Under alkaline
conditions, anthocyanins can also form chalcones, which exhibit a yellow color, and can degrade to
produce phenolic acids [17].

Cyanidin-3-O-glucoside (C3G), which is the predominant anthocyanin in haskap berries [18,19],
thermally degrades into protocatechuic acid (PCA) and phloroglucinaldehyde (PGA) [20]. PCA has
exhibited anti-inflammatory and anti-oxidative effects and has reduced liver toxicity in vivo [21].
PCA may also possess anti-tumoral properties, inducing apoptosis in human leukemia cells,
as well as in human salivary gland carcinoma (HSG1) cells [22]. Conversely, PCA has also been
shown to increase proliferation in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin
tumors [23]. Currently, limited studies are showing the antiproliferative effects of PGA, with only two
studies suggesting anti-proliferative effects against colon cancer cells Caco-2 [24,25]. Recent studies
investigating the pharmacokinetics of C3G in humans have identified the presence of both PCA and
PGA in the blood serum of individuals who have ingested labeled C3G [26,27]. Therefore, this study
aims to characterize C3G degradation, PCA and PGA formation in the haskap extract, and the
antiproliferative properties of C3G and its major degradation products against hepatocellular
carcinoma HepG2 and breast adenocarcinoma MDA-MB-231 cells.

2. Materials and Methods

2.1. Plant Material

Haskap berries of the Tundra cultivar (TN) were obtained from LaHave Natural Farm, Blockhouse,
Nova Scotia, Canada and stored at −20 ◦C.

2.2. Chemicals and Reagents

High performance liquid chromatography (HPLC) grade methanol, ethyl acetate, 88% formic
acid, acetone, phosphate buffered saline (PBS), dimethyl sulfoxide (DMSO), Eagle Minimum Essential
Growth Medium (EMEM), Dulbecco’s Modified Eagle’s Medium (DMEM), penicillin-streptomycin,
fetal bovine serum (FBS), PCA, PGA, doxorubicin (DOX), and all other chemical reagents were
purchased from Sigma-Aldrich (Oakville, ON, Canada). C3G was purchased from Extrasynthese
(Genay Cedrix, France). Trisodium citrate and anhydrous dibasic sodium phosphate were
purchased from Fisher Scientific (Ottawa, ON, Canada). Sorafenib was purchased from Cayman
Chemicals (Cedarlane, Burlington, ON, Canada). 5-[3-(Carboxymethoxy) phenyl]-3-(4,5-dimethyl-
2-thiazolyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS) was purchased from Promega
(Madison, WI, USA).

2.3. Preparation of Extracts

2.3.1. Preparation of Crude Extract

The crude extract (CE) was prepared using frozen haskap berries (500 g) extracted in semi-dark
conditions. Berries were ground in a blender (Model HBB909, Hamilton Beach Brands Inc., Glen Allen,
VA, USA) in a solution of 70:28:2 acetone:deionized water (DI H2O):formic acid. For every 1 g of frozen
berries, 4 mL of solvent was used. The blended berries and solvent were filtered through six layers
of cheese cloth, then vacuum filtered through Whatman # 8 filter paper (Fisher Scientific, Ottawa,
ON, Canada). Samples were subjected to rotary evaporation to remove the solvent, then frozen at
−80 ◦C and freeze-dried. Crude extracts were then stored at −80 ◦C.
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2.3.2. Preparation of C3G-Rich Fraction

C3G-rich fraction (PE) was prepared in the same manner as crude extracts with additional steps,
as described in a previous method [28]. Following rotary evaporation to remove acetone, the resultant
liquid was added to equal volumes of ethyl acetate in a separatory funnel under dark conditions
and was allowed to separate for 12 h before the aqueous phase was collected. Trace amounts of
ethyl acetate were removed from the aqueous phase via rotary evaporation. A column (3.8 × 45 cm,
Sati International Scientific Inc., Dorval, QC, Canada) was packed with 600 g adsorbent (Sorbent
SP207-05 Sepabeads Resin Brominated Styrenic Adsorbent: particle size 250 µm, surface area 630 m3/g,
Sorbent Technologies, Atlanta, GA, USA) and conditioned with methanol followed by DI H2O acidified
to pH 2.5 with hydrochloric acid (HCl). The crude extract was applied to the column and washed
with 1 L DI H2O acidified to pH 2.5 with HCl. C3G-rich fraction was eluted with about 500 mL of
methanol. Methanol was removed using rotary evaporation and then freeze-dried to prepare dried PE,
which was stored at −80 ◦C.

2.4. Degradation Kinetics

2.4.1. Sample Preparation

PE was prepared at a concentration of 40 mg/mL in a citrate–phosphate buffer (0.2 M tri-sodium
citrate, 0.3 M dibasic sodium phosphate). Portions of this solution were acidified to pH 2.5, 4, and 7
with citric acid and stored in 2-mL aliquots in 2-mL sealed amber glass vials. Samples were incubated
in triplicate, in a water bath at either 70 ◦C or 90 ◦C, for periods of 0, 0.5, 1, 2, 4, or 8 h. After incubation,
samples were immersed in an ice bath to limit further degradation. Samples were then stored at
−80 ◦C until analysis. Pure PGA solutions (50 µg/mL, 2 mL) were incubated in a 90 ◦C water bath for
0, 0.5, 1, 2, 4, and 8 h periods in 2-mL sealed amber glass vials at pH of 2.5, 4, and 7. Each of the heated
solutions was diluted with 2 mL MeOH and filtered before HPLC analysis.

2.4.2. Quantification of Total Monomeric Anthocyanins, C3G, PCA, and PGA

Total monomeric anthocyanin concentration (TAC) was determined using a spectrophotometric
pH differential method [29]. The TAC is expressed as milligrams (mg) C3G equivalent with
a molar extinction coefficient 26,900 and a molecular weight of 449.2 g/mol. C3G, PGA, and PCA
were quantified as described before by [28] using ultra HPLC electrospray ionization tandem
mass spectrometry (UPLC-ESI-MS/MS) on a Waters H-class UPLC separations module (Waters,
Milford, MA, USA) coupled with a Micromass Quattro micro API MS/MS system and MassLynx
V4.0 control software (Micromass, Cary, NC, USA). The column used was an Aquity BEH C18
(100 mm × 2.1 mm × 1.7 µm) (Waters, Milford, MA, USA). PCA and PGA were analyzed using single
ion monitoring mode (SIM) with electrospray ionization in negative mode (ESI−) with a capillary
voltage of 3000 V, a nebulizer gas temperature (N2) of 375 ◦C, and a flow rate of 0.35 mL/min. C3G was
analyzed using electrospray ionization in positive ion mode (ESI+), with a capillary voltage of 3500 V,
a nebulizer gas temperature (N2) of 375 ◦C, and a flow rate of 0.35 mL/min. Samples were diluted 1:1
with methanol, then filtered through 0.22 µm nylon filters into amber glass UPLC vials.

2.4.3. Statistical Analysis

Repeated measures analysis (p ≤ 0.05) was performed using the statistical analysis system
software (SAS Institute, Cary, NC, USA). The data for C3G incubated at 90 ◦C was normalized using
a log10 transformation.



Antioxidants 2018, 7, 24 4 of 13

2.5. Antiproliferative Activity

2.5.1. Preparation of Extracts

PE was prepared for cell-based assays by dissolving freeze-dried PE to a concentration of
60 mg/mL in deionized water (DI H2O). Degraded extracts were prepared by subjecting aliquots of
this PE solution to thermal degradation at 90 ◦C in a shaking water bath for 2 h (HPE2) or 8 h (HPE8).
The crude extract (CE) was prepared by dissolving freeze-dried CE to a concentration of 60 mg/mL
in DI H2O.

2.5.2. Cell Culture

Breast adenocarcinoma (MDA-MB-231; American Type Culture Collection (ATCC) # HTB 26)
cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA) and
cultured at 37 ◦C with 5% CO2, in DMEM with 2 mM L-glutamine, 10% heat-inactivated FBS,
1% 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and 1% penicillin–streptomycin.
Hepatocellular carcinoma (HepG2; ATCC # 8065) cells were also obtained from the ATCC and cultured
in EMEM with 2 mM L-glutamine, 10% FBS, and 1% penicillin-streptomycin at 37 ◦C with 5% CO2.

2.5.3. Cell Viability MTS Assay

A CellTiter 96® AQueous One Solution Cell Proliferation Assay (Promega, Madison, WI, USA)
was used to determine cell viability. Cells were seeded in 96-well plates at a density of 5 × 103 cells
per well and incubated for 24 h to promote cell adhesion. Cells were treated with PE, HPE2, HPE8,
or CE. For HepG2 cells, treatments were added at concentrations of 75, 150, and 300 µg/mL with
a positive control of sorafenib in DMSO with a final concentration of 10 µg/mL and negative controls
consisting of either EMEM with: 0.5% DI H2O for PE, HPE2, HPE8, or CE treatments, or 0.5% DMSO
for PCA or PGA treatments. For MDA-MB-231 cells, treatments were added at concentrations of 50,
100, and 200 µg/mL with a positive control of doxorubicin in DMSO at a final concentration of 50 µM,
and negative controls of DMEM with either 0.5% DI H2O (PE, HPE2, HPE8, or CE) or 0.5% DMSO
(PCA, PGA). After either a 24 or 48 h incubation, 20 µL of MTS was added to each well. Plates were
incubated for three hours at 37 ◦C in a 5% CO2 atmosphere before absorbance was measured at 490 nm
using a FLUOstar Optima microplate reader (BMG Labtech, Ortenberg, Germany). Cell viability
calculated with treated cells being expressed as a percent of cells treated with vehicle only.

2.5.4. Acid Phosphatase Assay

Acid phosphatase buffer was prepared with 0.1 M sodium acetate (NaAc), 0.1% v/v Triton
X-100, and 4 mg/mL phosphatase substrate (Sigma-Aldrich, Oakville, ON, Canada), adjusted to
a pH of 5.5 with HCl, and stored at 4 ◦C. HepG2 cells were treated with PE, PCA, and PGA at
concentrations of 75, 150, and 300 µg/mL with a positive control of sorafenib in DMSO with a final
concentration of 10 µg/mL, and negative controls consisting of EMEM with either: 0.5% DI H2O
for PE treatments, or 0.5% DMSO for PCA or PGA treatments. After incubation for a period of 48
h, plates were centrifuged at 2000 rpm for 10 min before the supernatant was removed and 100 µL
of PBS added to each well. Plates were again centrifuged before PBS was removed and 100 µL of
assay buffer was added to each well. Plates were then incubated for two hours at 37 ◦C in a 5% CO2

atmosphere. After incubation, 10 µL of 1 N sodium hydroxide was added to each well, and absorbance
was measured at 405 nm using a FLUOstar Optima microplate reader (BMG Labtech, Ortenberg,
Germany). Cell viability was calculated as described in Section 2.5.3.

2.5.5. Adenosine Triphosphate (ATP) Assay

The CellTiter-Glo® Luminescent Cell Viability Assay (Promega, Madison, WI, USA) was used
to determine cell viability and ATP levels. HepG2 cells were treated under the same conditions as
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those in the acid phosphatase assay. The CellTiter-Glo® reagent was prepared as directed by the
manufacturer from CellTiter-Glo® substrate and the CellTiter-Glo® buffer, and 100 µL of reagent was
added to each well. Plates were shaken for 2 min at 60 rpm using a VWR orbital shaker (Troemner
LLC, Mini Shaker, Thorofare, NJ, USA) to induce cell lysis followed by a 10-min room-temperature
incubation. Luminescence was measured using a FLUOstar Optima microplate reader (BMG Labtech,
Ortenberg, Germany). Cell viability was calculated as described in Section 2.5.3.

2.5.6. Statistical Analysis

All experiments were designed using completely randomized design. Assays were performed
in triplicate (n = 3), and all results were expressed as the mean ± standard deviation (SD). Analyses
were compared using one-way analysis of variance (ANOVA) and Tukey’s test (p ≤ 0.05). Statistical
analyses were carried out using the Minitab v.17 software (Minitab, State College, PA, USA) package.

3. Results

3.1. C3G Degradation

Monomeric anthocyanins’ degradation was more pronounced in extracts incubated at 90 ◦C
than at 70 ◦C (Figure 1A,E). Also, extracts incubated at the pH of 7.0 exhibited significantly greater
anthocyanin degradation than extracts incubated in acidic pH conditions. As demonstrated in
Figure 1B,F, at incubation temperatures of 70 ◦C and 90 ◦C, the breakdown of C3G in haskap PE
was significantly affected (p ≤ 0.05) by both incubation time and pH.
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Figure 1. Total monomeric anthocyanin (TAC), cyanidin-3-O-glucoside (C3G), protocatechuic acid
(PCA) and phloroglucinaldehyde (PGA) content at 70 ◦C (A–D) and 90 ◦C (E–H). TAC was measured
using pH differential spectrophotometric assay and quantification of C3G, PCA, and PGA by ultra
HPLC electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS).
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As the pH increased, C3G degraded more readily, with extracts incubated at 90 ◦C degrading
more quickly than those incubated at 70 ◦C. Extracts incubated for 8 h at pH 2.5, lost 21% of the initial
C3G content at 70 ◦C, and lost 95% of the initial C3G content at 90 ◦C. Extracts at pH 4.0 followed
a similar trend losing 53% of the C3G content at 70 ◦C versus a 98% loss at 90 ◦C. At pH 7.0, C3G was
almost completely lost at both 70 ◦C and 90 ◦C. C3G is the least stable at pH 7 when compared to pH
2.5 and pH 4.0 (Figure 1B,F).

3.2. Formation of PCA

The accumulation of PCA, one of C3G’s major breakdown products, was quantified in the
thermally degraded purified extracts. PCA concentration increased as C3G degraded under all tested
conditions. Time and pH both significantly (p ≤ 0.05) affected the accumulation of PCA as C3G
degraded. The highest concentration of accumulated PCA, 50.0 mg/L, was observed over an 8-h
incubation at pH 4 and 90 ◦C. As with C3G degradation, at 70 ◦C the largest differences in PCA
concentrations were found when comparing pH 7.0 to an acidic pH of 2.5 or 4.0. At 90 ◦C variations
were less dramatic, suggesting that the presence of PCA in C3G-rich extracts is an indicator of C3G
degradation (Figure 1C,G).

3.3. Formation of PGA

PGA concentration (Figure 1D,H) showed less of an association to C3G degradation than PCA
concentration. At 70 ◦C and 90 ◦C, and pHs of 2.5 and 4.0, extracts showed an increase in PGA
concentration, with most of the accumulation occurring during the first 2 h of the 8-h incubation.
Depending on incubation conditions, after the initial 2 h, PGA accumulation decelerated, stabilized, or
for pH 7.0 at both 70 ◦C and 90 ◦C PGA concentration decreased.

To understand whether the PGA can be further degraded at pH 7 after 2 h, the second experiment
was performed using pure PGA (Figure 2). PGA heated at pH of 2.5 and 4 showed minimal degradation
over the 8 h period. However, at pH 7, the PGA experienced rapid degradation and exhibited over 90%
loss after 8 h of heating. This is in agreement with the previous experiment, which found that PGA
accumulated from C3G degradation had decreased concentrations at pH 7. A visible color change
could be seen with PGA solutions mixed with the pH 7 buffer; PGA solutions at pH 2.5 and 4 remained
colorless, while pH 7 solutions became increasingly yellow with longer heating times.
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3.4. Breast Adenocarcinoma MDA-MB-231 Viability

The viability of treated MDA-MB-231 cells was assessed using an MTS assay. PE, HPE2, HPE8,
CE, PCA, and PGA were used to treat the cells. The concentrations of C3G, PCA, and PGA in each
extract are displayed in Table 1. Cellular viability was measured by comparing cells treated with
extracts and commercially purchased PCA and PGA, at concentrations of 50, 100, and 200 µg/mL,
to negative and positive controls. The negative control consisted of DMEM growth medium with
0.5% DMSO, and the positive control was 0.5% DMSO with the chemotherapy drug doxorubicin at
a concentration of 50 µM.

Table 1. The composition of the C3G-rich extracts and thermally-challenged extracts (500 µg/mL) used
for the cell viability analyses.

Treatment C3G (µg/mL) PCA (µg/mL) PGA (µg/mL)

PE 59.92 ± 1.6 0.28 ± 0.001 0.023 ± 0.0002
HPE2 34.23 ± 3.3 0.77 ± 0.04 0.29 ± 0.01
HPE8 5.76 ± 0.5 2.02 ± 0.2 0.467 ± 0.01

CE 11.35 ± 0.1 N/A N/A

C3G, Cyanidin-3-O-glucoside; PCA, protocatechuic acid; PGA, phloroglucinaldehyde; PE, C3G-rich fraction;
HPE2, the PE subjected to 90 ◦C for 2 h; HPE8, the PE subjected to 90 ◦C for 8 h; CE, crude extract.

None of the haskap-derived treatments affected cellular viability except PGA (Table 2).
At concentrations of 100 µg/mL and above, PGA significantly reduced MDA-MB-231 viability over
periods of 24 and 48 h. In both cases, a cell viability of 35% was observed; with a strong dose-dependent
trend but no clear time-dependence.

3.5. Hepatocellular Carcinoma HepG2 Cell Viability

The viability of HepG2 cells, after exposure to haskap berry extracts containing C3G and its
metabolites, was assessed using an MTS assay, an acid phosphatase assay, and an ATP assay. Cellular
viability was compared to a negative control consisting of EMEM growth medium with 0.5% DMSO,
and a positive control containing 10 µg/mL of the chemotherapy drug sorafenib. Cells were treated
with PE, HPE2, HPE8, CE, PCA, and PGA at concentrations of 75, 150, and 300 µg/mL.

MTS-based viability determination (Table 2) showed a dose- and time-dependent reduction in
cell viability for PE and PGA. After a 24-h incubation, cell viability was 52% with a PGA concentration
of 75 µg/mL, and only 20.2% with a concentration of 300 µg/mL, when compared to the negative
control. For PE at 300 µg/mL after a 24-h incubation, cell viability was 64% compared to the negative
control. PCA treatments showed no effect on HepG2 viability as determined via MTS assay. Treatments
showing dose-dependent inhibition (PE & PGA), along with PCA due to conflicting reports of its
anti-tumorigenic activity, were selected for further testing over 48-h incubations.

Cell viability, as determined in an acid phosphatase assay, showed that PE (Figure 3A) induced
a strong dose-dependent reduction in cellular viability. This reduction ranged from 84.5% at a dosage
of 75 µg/mL, to 21.2% at 300 µg/mL, as seen in Figure 3A. PGA also induced a significant reduction in
cell viability, with all three treatments exhibiting similar activity to the positive control. PCA showed
no significant dose-dependent reduction in cellular viability.
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Table 2. Cell viability measured using the MTS assay.

Treatment
Concentration 24 h 48 h

(µg/mL) (% Viability ± SD) (% Viability ± SD)

MDA-MB-231
PE 50 97.43 ± 2.04 ab 103.10 ± 10.17 a

100 107.02 ± 6.71 ab 105.15 ± 5.29 a

200 109.86 ± 1.50 ab 106.52 ± 6.50 a

HPE2 50 100.22 ± 2.14 cd 98.34 ± 0.91 a

100 104.96 ± 1.42 ab 106.43 ± 4.20 a

200 108.38 ± 4.16 ab 94.13 ± 8.44 a

HPE8 50 103.82 ± 2.48 ab 107.68 ± 6.24 a

100 104.19 ± 4.13 ab 104.78 ± 4.45 a

200 100.55 ± 3.11 ab 85.10 ± 11.13 a

CE 50 103.31 ± 4.98 ab 105.37 ± 3.46 a

100 99.33 ± 3.24 ab 98.99 ± 12.10 a

200 98.73 ± 2.18 ab 99.16 ± 3.86 a

PCA 50 101.18 ± 11.40 ab 94.43 ± 6.65 a

100 101.08 ± 8.12 ab 81.96 ± 13.33 a

200 107.89 ± 10.21 ab 86.96 ± 29.52 a

PGA 50 78.22 ± 2.37 bc 80.35 ± 5.54 a

100 35.30 ± 26.66 d 36.25 ± 5.11 bc

200 7.09 ± 8.93 e 17.71 ± 13.55 c

Dox 27.2 53.30 ± 13.56 cd 7.89 ± 7.29 c

HepG2
PE 75 89.26 ± 11.01 bc 72.9 ± 3.07 cd

150 88.39 ± 2.43 bc 70.97 ± 7.32 d
300 64.32 ± 14.33 cd 35.57 ± 11.55 e

HPE2 75 105.92 ± 7.78 ab 92.09 ± 4.61 abc

150 104.28 ± 9.19 ab 91.26 ± 5.18 abcd

300 97.34 ± 8.48 ab 81.58 ± 6.69 bcd

HPE8 75 105.64 ± 8.35 ab 90.15 ± 7.96 abcd

150 102.85 ± 5.86 ab 81.65 ± 10.15 bcd

300 103.35 ± 5.08 ab 80.07 ± 6.22 bcd

CE 75 102.92 ± 3.59 ab 95.2 ± 5.03 ab

150 102.59 ± 7.62 ab 94.67 ± 3.6 ab

300 104.76 ± 4.90 ab 93.35 ± 3.29 abc

PCA 75 84.98 ± 4.04 bc 90.943 ± 1.6 abcd

150 92.41 ± 8.27 ab 89.99 ± 7.21 abcd

300 114.06 ± 7.53 ab 108.66 ± 7.77 a

PGA 75 52.85 ± 3.82 de 25.71 ± 7.07 ef

150 18.34 ± 10.46 f 15.16 ± 7.36 efg

300 20.23 ± 8.25 f 1.80 ± 1.70 g

Sorafenib 10 39.38 ± 5.48 ef 11.40 ± 9.22 fg

Results represent the mean ± SD, Letters (a–g) indicate significantly different means (p ≤ 0.05) within temperature
treatments. MTS: 5-[3-(Carboxymethoxy) phenyl]-3-(4,5-dimethyl-2-thiazolyl)-2-(4-sulfophenyl)-2H-tetrazolium
inner salt.
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It was determined via an ATP assay that PE-induced a dose-dependent reduction in ATP activity
after an incubation of 48 h (Figure 3B). PE added at a concentration of 75 µg/mL did not generate
a value that was significantly different from the vehicle control (p ≤ 0.05); however, PE added
at a concentration of 300 µg/mL induced an ATP reduction to 23.5%. PGA induced a strong
reduction in detectable ATP, ranging from 35.6% of luminescence at a concentration of 75 µg/mL,
to 8.8% at a concentration of 300 µg/mL (Figure3B). PCA induced a slight dose-dependent reduction in
luminescence with 150 µg/mL and 300 µg/mL being significantly different than the negative control,
but not significantly different from each other.
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4. Discussion

Numerous studies and reviews have investigated and confirmed that anthocyanins undergo
first-order kinetic degradation [30–34]. At a neutral pH, anthocyanins are liable to undergo
spontaneous degradation, making the treatment temperature less significant for samples at neutral
pH [16,30,35]. As demonstrated in Figures 1 and 2, for samples degraded at both 70 ◦C and 90 ◦C
at time 0, samples at pH 7.0 showed a C3G reduction of almost 50% compared to the samples at
pH 2.5. Within a given pH, C3G degradation accelerates at higher temperatures. This indicates that for
C3G containing products, lower-temperature processing may preserve anthocyanin content compared
to higher temperature methods. A study by Khattab et al. [36] monitored anthocyanin degradation
in the drying of whole haskap berries at temperatures of 60, 100, and 140 ◦C. The study found that
reductions of 74–76%, 79–81%, and 91–95%, respectively, of total anthocyanins were observed at those
temperatures. Among the five predominant anthocyanins present in haskap berries, C3G was the least
thermally stable [36].

Along with affecting the rate of C3G degradation, solution pH may also affect the mechanism
of degradation. For C3G at a pH of 3.5, it appears that the opening of the pyrylium ring initiates
anthocyanin degradation, forming a glycosylated chalcone [37]. For C3G at a pH of 1, deglycosylation
was proposed as the first step in the degradation pathway [20]. It has been determined that the
addition of sugars could help prevent anthocyanin degradation under some storage and treatment
conditions [38]. This could be valuable, especially at higher temperatures and both acidic and
neutral pH.

As with C3G degradation, the widest variation in PCA concentration was observed between
measurements taken at pH 2.5 and 7.0 at 70 ◦C, with there being slightly less variation at 90 ◦C.
This could indicate an inverse relationship, where PCA concentration could potentially represent the
level of C3G degradation (Figure 1). The value of PCA as a bioactive compound is still unknown
and PCA does not impart vibrant color, so its value for commercial products is still undetermined.
Further investigation into the bioactivity of PCA and its interactions is recommended.

For incubation times longer than 2 h, at both 70 ◦C and 90 ◦C, PGA accumulation slowed
or stabilized. For all samples at pH 7.0, there was a decrease in PGA concentration over time.
The decelerating of PGA accumulation could be attributed to PGA degradation. Incubation of pure
PGA at 90 ◦C at pH 7.0 showed its further degradation (Figure 2). This indicates that, like its parent
anthocyanin C3G, PGA is unstable at higher pH, and further degrades as the incubation time increases.
High pH values appear to have a prominent effect on the degradation of PGA, which is further
accelerated by heating.

Haskap extract did not significantly reduce MDA-MB-231 cell viability. This is likely due to
differing anthocyanin profiles between haskap berries and blueberries. Interestingly, PGA significantly
reduced the MDA-MB-231 viability, which has not previously been reported. PGA has been shown
to be anti-proliferative when incubated with Caco-2 cells in vitro [24,25]. Further studies should be
conducted to determine if this reduction in viability is selective, and to elucidate the underlying
mechanism. For HepG2 cells exposed to haskap berry extracts, and C3G metabolites, CE reduced cell
viability to 64% when treated at a level of 300 µg/mL. Based on the ATP assay, PCA caused a significant
reduction in HepG2 viability. PCA has been reported to reduce HepG2 viability [39]. The results of the
MTS, ATP, and acid phosphatase assays suggest that PCA and PGA in thermally degraded haskap
extracts may not be present in high enough concentrations to induce cytotoxicity in both cancer cell
lines. However, both PE and PGA caused dose-dependent inhibition of HepG2.

5. Conclusions

Solution pH, incubation time, and temperature affect anthocyanin stability. As these increase,
the anthocyanin concentration decreases. C3G is more stable when treated at lower temperatures over
longer incubations when compared to shorter incubations at higher temperatures. Incubation at pH 7.0
promotes rapid C3G degradation; therefore, maintaining an acidic pH during processing is favorable
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for C3G retention. Haskap juice is naturally acidic in nature, and this acidity should be preserved to
maintain anthocyanin stability. Haskap berry extract with high levels of C3G produced a time- and
dose-dependent inhibition of HepG2 cell proliferation and PGA generated dose-dependent inhibition
of MDA-MB-231 cells. This preliminary in vitro study suggests that haskap berry anthocyanins could
potentially have cancer chemopreventive properties. It also indicates that the inhibitory effects of
haskap berry extracts are mediated, at least in part, by C3G. Further studies are required to determine
the anti-cancer potential and mechanism of action of C3G. One of C3G’s thermal degradation product
and in vivo primary metabolites, PGA, also generated significant anti-proliferative effects on HepG2
cells. Processing of haskap berries and their storage could exacerbate anthocyanin degradation,
which could lead to a reduction in putative health benefits for the consumer. Since there is growing
interest in the use of fruit-derived C3G as a food additive, natural colorant, dietary antioxidant,
and nutraceutical, further research is required to determine the toxicity and biological activity of PGA.
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