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The cerebellum has a simple tri-laminar structure that is comprised of relatively
few cell types. Yet, its internal micro-circuitry is anatomically, biochemically, and
functionally complex. The most striking feature of cerebellar circuit complexity is its
compartmentalized topography. Each cell type within the cerebellar cortex is organized
into an exquisite map; molecular expression patterns, dendrite projections, and axon
terminal fields divide the medial-lateral axis of the cerebellum into topographic sagittal
zones. Here, we discuss the mechanisms that establish zones and highlight how gene
expression and neural activity contribute to cerebellar pattern formation. We focus on the
olivocerebellar system because its developmental mechanisms are becoming clear, its
topographic termination patterns are very precise, and its contribution to zonal function is
debated. This review deconstructs the architecture and development of the olivocerebellar
pathway to provide an update on how brain circuit maps form and function.
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INTRODUCTION
It is well established that brain circuits are organized into spatial
maps that control behavior (Hubel and Wiesel, 1979; Johnston,
1989; Friedman and O’Leary, 1996; Logan et al., 1996; Bozza et al.,
2002; Huffman and Cramer, 2007; Leergaard and Bjaalie, 2007; Li
and Crair, 2011; Suzuki et al., 2012). Yet, we have a limited under-
standing of how precise functional connections form during map
development. Neural circuit connectivity is intensely studied in
the cerebellum because its cellular networks are well understood
and its developmental mechanisms are experimentally tractable.
Cerebellar circuits have an established role in motor control and
they are now also implicated in higher order functions such as
cognition and emotion (Sacchetti et al., 2009; Strata et al., 2011).
Two main types of afferents transmit information to the cerebel-
lum: climbing fibers and mossy fibers. Climbing fibers arise only
from neurons of the inferior olivary nucleus in the brainstem
(Figure 1) and monoinnervate adult Purkinje cells (Figure 2A)
whereas mossy fibers originate from numerous brain and spinal
cord nuclei to innervate granule cells. Each climbing fiber elicits
powerful Purkinje cell responses that sculpt cerebellar function
(Figures 2C,D). Here, we discuss the development, organiza-
tion, and function of the olivocerebellar projection and highlight
the mechanisms that make this pathway an attractive model for
understanding topographic brain circuitry.

CEREBELLAR SAGITTAL ZONES
The adult cerebellum is anatomically divided into distinct folds
called lobules (Figure 3A; Larsell, 1952). Mammals and birds
have 10 lobules that are separated from one another by a series
of fissures. Because each fissure extends to a specific depth

in the cerebellum, each lobule develops with a unique shape
(Figure 3A). The invariance of lobule structure and their con-
servation across species support the idea that lobule/fissure
formation is spatially and temporally controlled by complex
morphogenetic programs (Sudarov and Joyner, 2007).

Strikingly, each lobule in the cerebellum is further com-
partmentalized along the medial-lateral axis into sagittal zones
(Figure 3). Each set of zones is clearly delineated by the pat-
terned expression of genes and proteins (Apps and Hawkes, 2009).
The most comprehensively studied zonal marker is zebrin II
(Brochu et al., 1990; Figures 3B,C, 4D), an antigen on the aldolase
C protein (Ahn et al., 1994; Hawkes and Herrup, 1995). Zebrin II
is expressed by alternating subsets of Purkinje cells (zebrin II+
adjacent to zebrin II−), thus forming complementary rows of
biochemically distinct Purkinje cells (Figures 3B,C, 4D). The
zonal organization of zebrin II is symmetrical about the cerebellar
midline, highly reproducible between individuals, and conserved
across species (Brochu et al., 1990; Sillitoe et al., 2005; Apps
and Hawkes, 2009). The pattern of zebrin II has an intricate
relationship to the expression of several other Purkinje cell pro-
teins. For example, phospholipase Cβ3 (PLCβ3), sphingosine
kinase 1a (SPHK1a), and excitatory amino-acid transporter 4
(EAAT4; Hawkes et al., 1985; Hawkes and Leclerc, 1987; Dehnes
et al., 1998; Terada et al., 2004; Sarna et al., 2006) are all co-
expressed with zebrin II. In contrast, phospholipase C β4 (PLCβ4;
Armstrong and Hawkes, 2000; Sarna et al., 2006) is expressed
selectively in zebrin II− zones. In addition to the complemen-
tary and corresponding relationships between zones, proteins
such as neurofilament heavy chain (NFH) divide individual
zebrin II zones into smaller sagittal units (Demilly et al., 2011).
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FIGURE 1 | (A) Wholemount image of an adult brain showing the cerebellum (Cb) from a dorsal view. The dotted line indicates the level of the tissue section
schematic in (B). (B) Schematic of sagittal section cut through an adult cerebellum showing the cerebellum (red) and inferior olive (IO; blue).

FIGURE 2 | (A) Schematic of a simplified cerebellar microcircuit illustrating
the two major sensory afferent pathways that project to the cerebellum:
climbing fibers and mossy fibers. Climbing fibers (blue projection) terminate
directly onto Purkinje cells whereas mossy fibers (yellow projection)
terminate on granule cell dendrites (green). Granule cell axons called parallel
fibers contact Purkinje cells (purple). Purkinje cells are the sole output
of the cerebellar cortex and transmit signals to the cerebellar nuclei (red).
(B) High power image of a climbing fiber expressing cocaine-and
amphetamine-regulated transcript (CART) peptide [arrow; staining was
performed according to Reeber and Sillitoe (2011)]. The target Purkinje cell
is weakly immunoreactive for CART. (C) Example Purkinje cell spike train

recorded in vivo. Recordings were performed in Ketamine/Xylazine
anesthetized mice using 2–5 M Ohm Tungsten electrodes (Thomas
Recording, Germany). Signals were band-pass filtered at 300–5000 Hz,
amplified with an ELC-03XS amplifier (NPI, Germany), and recorded with
Spike2 (CED, England). (D) Higher power view of the recording trace
illustrating the clear distinction between a climbing fiber complex spike (cs)
and simple spike (ss) responses in Purkinje cells. Asterisk in panel (C)

indicates a complex spike. The layers of the cerebellum are indicated as
molecular layer (ml), Purkinje cell layer (pcl), granular layer (gl), and white
matter (wm). The cerebellar nuclei are located in the white matter. Scale bar
in (B) = 25 μm.

Cumulatively, molecularly defined zonal compartments divide
the cerebellar cortex into hundreds of reproducible units with
each one containing up to several hundred Purkinje cells (Apps
and Hawkes, 2009).

Purkinje cell zones may be used to divide the cerebellum into
four transverse domains in the anterior–posterior axis (Ozol et al.,

1999). For example, in the vermis zebrin II expression reveals a
specific pattern in lobules I–V and VIII/IX (Figures 3B,C, 4D).
In contrast, expression of the small 25 kDa heat shock protein
HSP25 delineates distinct zonal patterns in lobules VI/VII and
IX/X, which express zebrin II in all Purkinje cells (Armstrong
et al., 2000). Afferent termination patterns mirror the topography
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FIGURE 3 | (A) Schematic of a sagittal section cut through the cerebellar
vermis revealing the stereotypical foliation pattern, which consists of 10
lobules [adapted with permission from White and Sillitoe (2013)]. The
cerebellum can be further divided along the anterior–posterior axis into
four transverse domains: anterior (blue; lobules I–V), central (green;
lobules VI and VII), posterior (yellow; lobules VIII and anterior IX), and
nodular (red; lobules posterior IX and X) (Ozol et al., 1999). (B) In the

adult cerebellum, zebrin II/aldolase C expression, which is revealed using
wholemount staining (Sillitoe and Hawkes, 2002; White et al., 2012),
delineates zones of Purkinje cells. The transverse zones are color coded
according to panel (A). (C) A schematic representation of an unfolded
vermis illustrating the full pattern of zebrin II zones (adapted with
permission from Sillitoe and Joyner, 2007). Lobule numbers are indicated
by Roman numerals. Anterior and posterior axes are denoted by A and P.

of Purkinje cell zones (Figures 4B,E). As a result, each transverse
domain is innervated by a specific combination of function-
ally distinct afferent fibers. For instance, spinocerebellar mossy
fibers project to lobules I–V and VIII/IX (Arsenio Nunes and
Sotelo, 1985; Brochu et al., 1990; Sillitoe et al., 2010), whereas
the vestibulocerellar mossy fibers project mainly to lobules IX and
X (Jaarsma et al., 1997; Maklad and Fritzsch, 2003). In mouse,
climbing fibers that express cocaine- and amphetamine-related
transcript peptide (CART) terminate selectively in lobules VI/VII
and IX/X (Reeber and Sillitoe, 2011), and corticotrophin releas-
ing factor (CRF) expressing climbing fibers are expressed in a
striking array of zones in lobules I–V and VIII/IX (Figures 4C,E)
(Sawada et al., 2008).

The efferent side of the cortical circuit also respects the zonal
topography. Sugihara and collaborators have mapped the tra-
jectories of Purkinje cell axons from specific cerebellar cortical
compartments onto the three sets of cerebellar nuclei. They
revealed a close correspondence between adolase C expressing
Purkinje cell terminals with subdivisions of cerebellar nuclei
(Sugihara and Shinoda, 2007). Together, Purkinje cell zones,
afferent topography, and Purkinje cell efferent projections to
the cerebellar nuclei define the cerebellar module, the func-
tional unit of the cerebellum (Apps and Hawkes, 2009; Ruigrok,
2011).

ANATOMICAL AND FUNCTIONAL ORGANIZATION OF
OLIVOCEREBELLAR ZONES
Fine topological mapping using anterograde tracers injected into
specific sub-nuclei of the inferior olive and the tracing of climb-
ing fiber collateral projections labeled from injections into the
cerebellar cortex of birds, rodents, and primates have shown
that there is a strict and precise association between climbing
fiber topography and zebrin II Purkinje cell zones (Voogd et al.,
2003; Sugihara and Shinoda, 2004; Voogd and Ruigrok, 2004;
Sugihara and Quy, 2007; Pakan and Wylie, 2008; Sugihara et al.,
2009; Fujita et al., 2010). In addition, several studies have used
climbing fiber markers to link the architecture of chemically dis-
tinct subsets of climbing fiber afferents to the adult pattern of
Purkinje cell zones (Table 1). For example, CRF, an amino acid
peptide, is expressed in a subset of climbing fibers that cor-
responds to specific Purkinje cell zones (Sawada et al., 2001,
2008) (Figures 4C,E). In addition, we recently showed that the
expression of the CART 55–102 peptide (Figure 2B) is intricately
patterned into a complex topographic map that respects HSP25
(mouse) and zebrin II (rat) Purkinje cell zone boundaries (Reeber
and Sillitoe, 2011). The class III intermediate filament protein
peripherin is also expressed in a subset of climbing fibers that
are organized into parasagittal compartments, although it is not
clear how peripherin labeled climbing fibers relate to Purkinje
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FIGURE 4 | (A) Schematic illustrating climbing fibers projecting from the
inferior olivary nucleus (IO) to the cerebellum (Cb) and their organization into a
crude zonal pattern at E17. (B) A schematic of the adult brain showing climbing
fibers projecting from the inferior olive (IO) to well-defined Purkinje cell zones
in the cerebellum. (C–E) In the adult cerebellum corticotropin-releasing factor
(CRF) is expressed in subsets of climbing fibers that align with zebrin II

Purkinje cell zones. Panels (C) and (D) show individual channels of CRF
and zebrin II expression and panel (E) is a merged image showing the
corresponding relationship between the two patterns. The staining pattern of
CRF and its relationship to zebrin II zones was previously described (Sawada
et al., 2008). CRF and zebrin II staining was carried out exactly as previously
described (Sawada et al., 2008). Scale bar in (E) = 100 μm (applies to C–D).

cell zones (Errante et al., 1998). The precise topography of the
olivocerebellar pathway raises the tantalizing possibility that zonal
circuits may be functionally relevant. In this regard, two pressing
questions have yet to be fully answered: (1) what is the functional
significance of zones? and (2) what role do topographic circuits
play during behavior?

Previous electrophysiological mapping studies suggested that
parasagittal zones could be related to cerebellar function
(Armstrong et al., 1974; Ekerot and Larson, 1980; Llinas and
Sasaki, 1989; Chockkan and Hawkes, 1994; Sugihara et al.,
1995; Chen et al., 1996; Hallem et al., 1999). However, it was
only recently that modern optical imaging and electrophysi-
ological approaches were exploited to uncover potential links
between functional cerebellar circuits and zonal architecture
(Ebner et al., 2012; Graham and Wylie, 2012). In their semi-
nal paper, Wadiche and Jahr (2005) used molecular physiology
approaches to demonstrate that synaptic plasticity may vary
between zones. Accordingly, the level of glutamate that is released
at climbing fiber terminals is zone dependent (Paukert et al.,
2010) and climbing fiber inputs initiate synchronous firing in
zones of Purkinje cells (Sasaki et al., 1989; Lang et al., 1999;
Blenkinsop and Lang, 2006; Wise et al., 2010). These studies
support the notion that there are fundamental differences in
the physiology of Purkinje cell zones and suggest the possibil-
ity that climbing fibers contribute to the functional specificity of
the zones.

The behavioral significance of zones remains elusive. However,
surgically induced lesions and localized delivery of pharmacolog-
ical agents into the inferior olive have provided some evidence
that cerebellar zones may facilitate behavior (Watanabe et al.,
1997; Seoane et al., 2005; Pijpers et al., 2008; Horn et al., 2010;
Cerminara and Apps, 2011). For example, Llinas and collabora-
tors found that when the neurotoxin 3-acetylpyridine (3AP) is
injected intraperitoneally, the inferior olive is rapidly destroyed
and severe ataxia emerges (Llinas et al., 1975). Similarly, inject-
ing another neurotoxin called trans-crotononitrile (TCN) into
rats inactivates the olive and induces profound motor deficits
(Seoane et al., 2005; Cerminara and Apps, 2011). Ruigrok and
colleagues used yet a different approach to inactivate the olive
(Pijpers et al., 2008). They injected cholera toxin b conjugated
to saporin into individual cerebellar cortical zones, which retro-
gradely transported the neurotoxin into the olive and induced
dysfunction of specific modules. By targeting distinct modules
they were able to demonstrated specific defects in the step
phase-dependent modulation of cutaneously induced reflexes
during locomotion (Pijpers et al., 2008; Cerminara and Apps,
2011). Moreover, inactivating specific olivary subdivisions in
cats with the glutamate receptor blocker, CNQX, produced a
series of unique motor deficits that were dependent on the par-
ticular sub-nucleus that was lesioned (Cerminara, 2010; Horn
et al., 2010). What is far from clear is whether each zone
encodes specific behaviors (or distinct aspects of a behavior), or
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Table 1 | Molecular and genetic markers for studying olivocerebellar

topography.

Transient expression in subsets of climbing fibers

CGRP (zones in rat E16-P20) Chedotal and Sotelo, 1992;
Morara et al., 1992

Parvalbumin (zones in rat ∼P0–P10) Wassef et al., 1992;
Chedotal and Sotelo, 1993

Topographic climbing fiber projections

Calretinin (zones in cat) Yan and Garey, 1996

CART (zones in mouse and rat) Reeber and Sillitoe, 2011

CRF (zones in mouse and opossum) Cummings et al., 1989;
Sawada et al., 2008

DNPI/VGLUT2 (zones in mouse) Paukert et al., 2010

NPY (zones in rat) Ueyama et al., 1994

Peripherin (zones in rat) Errante et al., 1998

Compartmentalization of the inferior olive

BEN Chedotal et al., 1996

Brn3a Xiang et al., 1996

Brn3b Xiang et al., 1996

CART Reeber and Sillitoe, 2011

Cdh6 Suzuki et al., 1997

Cdh8 Suzuki et al., 1997; Redies
et al., 2011

Cdh11 Suzuki et al., 1997

CRF Yamano and Tohyama, 1994

Cx36 Belluardo et al., 2000;
Weickert et al., 2005

Cx45 Van Der Giessen et al., 2006

Cx47 Weickert et al., 2005

Cx57 Zappala et al., 2010

DCC Bloch-Gallego et al., 1999

EphA3 Nishida et al., 2002

EPHA4 Hashimoto et al., 2012

EphA5 Nishida et al., 2002

EphA6 Nishida et al., 2002

EPHA7 Hashimoto et al., 2012

ER81 Zhu and Guthrie, 2002;
Hashimoto et al., 2012

FOXP2 Hashimoto et al., 2012

NPY Ueyama et al., 1994; Morara
et al., 1997

Nr-CAM Backer et al., 2002

Pannexin1 Weickert et al., 2005

Pdh7 Redies et al., 2011

Pdh10 Redies et al., 2011

Unc-5H2 Bloch-Gallego et al., 1999

Unc-5H3 Bloch-Gallego et al., 1999

DNPI/VGLUT2 Hisano et al., 2002

Genetic markers for the inferior olive and/or climbing fibers

CART-Cre Madisen et al., 2010

CRF-Cre Martin et al., 2010

(Continued)

Table 1 | Continued

Cx36-LacZ Degen et al., 2004

Cx45-lacZ Van Der Giessen et al., 2006

Npy-GFP Nishiyama et al., 2007

Parvalbumin-Cre Tanahira et al., 2009

Parvalbumin-CreER Taniguchi et al., 2011

Note that the markers in each subsection are organized in alphabetical order and

molecules of the same family are grouped together. The names of proteins are

upper case and not italicized. mRNAs and transgenic mouse lines are italicized.

whether multiple zones interact during motor control. Perhaps
one way to unravel what zones do is to uncover how they
form. Indeed, developmental studies have raised two critical
questions that are ultimately relevant to cerebellar behavior:
(1) what are the cellular and molecular mechanisms that con-
trol Purkinje cell zone development? and (2) how do climb-
ing fiber projections invade, recognize, and connect to their
targets?

GENETIC LINEAGE, MIGRATION, AND AXONOGENESIS OF
INFERIOR OLIVE CELLS
Several landmark studies have used the regulatory sequences
of developmentally expressed genes to design genetic tools for
tracking the fate of cerebellar and inferior olive cells from
embryogenesis to adulthood (Rodriguez and Dymecki, 2000;
Hoshino et al., 2005; Machold and Fishell, 2005; Pascual et al.,
2007). Genetic fate-mapping studies using Atonal homolog 1
(Atoh1, formerly known as Math1) and Wnt1 regulatory ele-
ments revealed that inferior olive neurons emerge from a dis-
tinct progenitor pool in the lower rhombic lip of the hindbrain
(Rodriguez and Dymecki, 2000; Landsberg et al., 2005; Wang
et al., 2005; Nichols and Bruce, 2006). In accordance with these
findings, genetic fate-mapping using a pancreas specific tran-
scription factor 1a-Cre (Ptf1aCre/+) allele to drive lacZ reporter
gene expression in R26R [Gt(ROSA)26Sortm1sor ; Soriano, 1999]
mice revealed that inferior olivary neurons are derived from
a distinct Ptf1a domain (Hoshino et al., 2005; Yamada et al.,
2007). Hoshino and colleagues determined that Ptf1a is required
for the proper development of inferior olive neurons, because
the inferior olivary complex is severely altered in Ptf1a null
mutants (Yamada et al., 2007). Without Ptf1a, some inferior
olive neurons do not differentiate while others migrate inap-
propriately. Moreover, a large number of apoptotic cells were
observed in the Ptf1a mutants, and the fate of Ptf1a-dependent
lineages adopted mossy fiber neuron characteristics (Yamada
et al., 2007). Although Ptf1a appears to control the develop-
ment of most, if not all, olivary neurons, it is not clear what
upstream or downstream molecular pathways might be respon-
sible for generating the sub-nuclei. Studies by Bloch-Gallego and
colleagues provide some insight into this question. The authors
determined that the absence of Rho-guanine exchange factor
Trio impairs the organization of the inferior olivary nucleus
into distinct lamellae (Backer et al., 2007). Additionally, in a
recent elegant study, quail-chick chimaeras were used to pro-
vide evidence that each inferior olive sub-nucleus originates from
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specific rhombomeres, developmental hindbrain units that are
each restricted in their lineages (Hidalgo-Sanchez et al., 2012). It
is intriguing that climbing fiber zones, which arise from distinct
olivary sub-nuclei, may be specified early by rhombomere specific
cues.

Inferior olive neurons are born dorsally in the lower rhombic
lip and migrate circumferentially around the edges of the brain-
stem to their final location near the ventral midline (Altman and
Bayer, 1987; Sotelo, 2004; Sotelo and Chedotal, 2005) (Table 2).
Tritiated thymidine labeling (Altman and Bayer, 1987) and HRP
axonal tracing in vitro (Bourrat and Sotelo, 1988, 1990b) revealed
that inferior olivary neurons migrate along the lateral edges
of the brainstem in a unique “submarginal stream” (Altman
and Bayer, 1987; Bourrat and Sotelo, 1988, 1990b; Sotelo and
Chedotal, 2005). Interestingly, the somata of olivary neurons
do not cross the floor plate, whereas their axons do cross and
project exclusively to the contralateral cerebellum (Altman and
Bayer, 1987; Altman, 1997). The restriction of olivary neurons
to one side of the midline is controlled by both chemoat-
tractive and chemorepellent molecules (e.g., netrin-1/DCC and
Slit/Robo; Bloch-Gallego et al., 1999; Causeret et al., 2002; de
Diego et al., 2002; Marillat et al., 2004). Marillat et al. (2004)
showed that Rig-1/Robo3 plays an essential role in controlling

the migration of precerebellar neurons and the projection of
axons across the midline. In Rig1/Robo3 deficient mice, inferior
olive neurons incorrectly send axons to the ipsilateral cerebel-
lum in addition to sending the normal contralateral projection
(Marillat et al., 2004).

The first climbing fibers arrive in the developing cerebel-
lum at ∼embryonic day (E) 14/15 in the mouse (Paradies
and Eisenman, 1993) (Table 2) and are already organized in
a crude zonal map at ∼E15/16 (Sotelo et al., 1984; Chedotal
and Sotelo, 1992; Paradies and Eisenman, 1993; Paradies et al.,
1996), which is approximately when Purkinje cells begin to
express parasagittal markers (e.g., engrailed1/2 and L7/Pcp2)
(Hashimoto and Mikoshiba, 2003; Wilson et al., 2011). By ∼E17
in mice, olivocerebellar topography strongly corresponds with the
nascent architecture of Purkinje cell zones (Paradies et al., 1996;
Figure 4A).

FORMATION OF OLIVOCEREBELLAR ZONES
The almost perfect overlap between climbing fiber terminal field
topography and Purkinje cell zones suggests that the spatial and
temporal targeting of cerebellar afferent pathways is closely coor-
dinated with Purkinje cell development. Purkinje cells become
postmitotic between ∼E10 and ∼E13 and form symmetrical

Table 2 | Timeline of olivocerebellar development.

Developmental stage Developmental event References

∼E12/13 rat (E10/11 mouse) Inferior olive neurons are born Pierce, 1973; Bourrat and Sotelo, 1990a, 1991;
Sotelo, 2004

∼E14/15 mouse Climbing fibers arrive in cerebellum Paradies and Eisenman, 1993

∼E16–E18 rat (E14–16 mouse) Inferior olive neurons settle in final position adjacent to
the floor plate

Bourrat and Sotelo, 1990a; Sotelo, 2004

∼E16 rat (E14 mouse) Transient biochemical compartmentation of inferior olive
and Purkinje cells (arising independently)

Wassef et al., 1992; Larouche et al., 2006

∼E15/16 mouse Climbing fibers organize into crude parasagittal clusters Paradies and Eisenman, 1993

∼E17 mouse Climbing fiber topography corresponds clearly with
nascent Purkinje cell zone

Paradies et al., 1996

∼P0–P5 rat (P0–P3 mouse) Olivocerebellar projections resolve into precise sagittal
zones similar to the adult

Sotelo et al., 1984

∼P0 rat (P0 mouse) Creeper stage starts Watanabe and Kano, 2011

∼P0–P10 rat (P0–P8 mouse) Critical period for olivocerebellar plasticity Sherrard et al., 1986

∼P3 mouse Discrete climbing fiber mediated EPSCs recorded in
Purkinje cells (all fibers induce similar amplitudes in
perinatal Purkinje cells)

Hashimoto and Kano, 2003

∼P5 rat (P3 mouse) Pericellular nest stage starts Watanabe and Kano, 2011

∼P5 mouse Development of climbing fiber terminal structure Mason and Gregory, 1984

∼P7 mouse “Winner” climbing fiber is strengthened Hashimoto and Kano, 2003

End of the first postnatal week Climbing fiber complex spikes are first detected Woodward et al., 1969

∼P9 rat (P7 mouse) Capuchon stage Watanabe and Kano, 2011

∼P12 rat (P10 mouse) Dendritic stage commences Watanabe and Kano, 2011

∼P7–11 rat (P5–9 mouse) Climbing fiber pruning and perisomatic synpase
elimination: the early phase

Watanabe and Kano, 2011

∼P12–17 rat (P10–15 mouse) Climbing fiber pruning and perisomatic synpase
elimination: the late phase

Watanabe and Kano, 2011
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zonal “clusters” by ∼E14 (Hashimoto and Mikoshiba, 2003;
Hoshino et al., 2005; Sillitoe et al., 2009; Namba et al., 2011;
Sudarov et al., 2011). Climbing fiber neurons are also born
at ∼E10/11 (Sugihara and Shinoda, 2007). Interestingly, when
they arrive in the developing cerebellum they immediately project
into clusters of Purkinje cells (Paradies and Eisenman, 1993).
The predictable termination of climbing fibers into Purkinje cell
zones suggests that the Purkinje cells may play an active role in
instructing the pattern of olivocerebellar targeting.

Sotelo and collaborators postulated that the cerebellum and
the inferior olive might have matching gene expression domains
that establish bidirectional signaling to generate the olivocerebel-
lar map (Sotelo and Wassef, 1991; Sotelo and Chedotal, 1997,
2005). Support for this hypothesis was first provided by using
a combination of markers that labeled zones of Purkinje cells
(calbindin, GMP-cyclic dependent protein kinase, Purkinje cell-
specific glycoprotein, and PEP-19) and also marked correspond-
ing subsets of inferior olive cells along with their projections
[calbindin, parvalbumin, and calcitonin gene-related peptide
(CGRP); Table 1]. The precision and reproducibility of zonal
boundaries defined by these markers suggested the possibility that
inferior olivary neurons might target Purkinje cell zones by rec-
ognizing positional cues (Sotelo and Wassef, 1991; Sotelo and
Chedotal, 1997, 2005).

Eph/ephrin genes play a major role in establishing brain topog-
raphy (Flanagan and Vanderhaeghen, 1998; Cang et al., 2008a,b;
Allen-Sharpley and Cramer, 2012). In the cerebellum, eph/ephrin
are expressed in distinct parasagittal domains (Karam et al., 2000,
2002). Nishida and coworkers (2002) provided compelling evi-
dence for the involvement of eph/ephrin signaling in controlling
the molecular matching between climbing fibers and Purkinje
cells during olivocerebellar circuit formation (Nishida et al.,
2002). They showed that altering ephA receptor and ephrin-A lig-
and expression in chick hindbrain explant cultures disrupted the
anterior–posterior targeting of olivocerebellar axons. However,
this study did not address whether eph/ephrin signaling con-
trols the development of olivocerebellar zones (Nishida et al.,
2002; Hashimoto and Hibi, 2012). Regardless, because specific
ephA/ephrin-A manipulations can disrupt the global targeting of
olivocerebellar axons, there is a possibility that other eph/ephrins
and/or additional molecules likely cooperate to establish precise
Purkinje cell-afferent interactions during map formation. Besides
the eph/ephrins, possible candidates are the type-II classic cad-
herin and δ-protocadherin cell–cell adhesion molecules, which
are expressed in a striking array of Purkinje cell sagittal zones
(Suzuki et al., 1997; Neudert et al., 2008; Redies et al., 2011)
and in specific subdivisions of the inferior olive (Suzuki et al.,
1997; Neudert et al., 2008; Redies et al., 2011). Despite these
clues, we still do not have a clear picture of what genes con-
trol the topographic connectivity of olivocerebellar zones nor do
we understand the detailed mechanisms that initiate and main-
tain the physical interaction between specific Purkinje cells and
climbing fibers. However, recent work demonstrates that start-
ing from birth, inferior olive neurons spontaneously organize
into clusters that fire synchronous Ca2+ transients in in vitro
brain slice preparations (Rekling et al., 2012). Curiously, dur-
ing early postnatal development spontaneous waves travel along

chains of axon collaterals that connect sagittal rows of Purkinje
cells (Watt et al., 2009). Both phenomena were suggested as likely
mechanisms contributing to the development of cerebellar com-
partments. However, whether the spontaneous waves of Purkinje
cell activity are linked to the spontaneous activity of inferior
olive neurons awaits further analysis. It will also be interesting to
determine whether cerebellar spontaneous activity interacts with
developmental gene function in a zone specific fashion.

POSTNATAL REMODELING OF CLIMBING FIBERS
Following the establishment of the crude zonal map, climb-
ing fibers undergo extensive morphological changes and proceed
through different stages of fiber remodeling to form function-
ally mature connections (Watanabe and Kano, 2011) (Table 2).
The first phase of remodeling is the “creeper” stage (∼P0 in
rat) when climbing fibers are very thin and form transient
synapses on immature Purkinje cell dendrites (Chedotal and
Sotelo, 1993; Sugihara, 2005; Watanabe and Kano, 2011). Then,
climbing fibers enter a “transitional” stage and exhibit char-
acteristics that are intermediate between those of the creeper
and nest stages (Sugihara, 2005). The “pericellular nest’ stage
(∼P5) is defined by the dense terminal arbors (“nest”) that sur-
round Purkinje cell somata (Cajal, 1911; O’Leary et al., 1971;
Mason et al., 1990; Sugihara, 2005; Watanabe and Kano, 2011).
During this stage, each Purkinje cell receives polyneuronal input
from more than five different climbing fibers. Climbing fibers
are progressively displaced onto the developing dendritic stems
of maturing Purkinje cells (“capuchon stage”; starting at ∼P9).
As the dendritic arbors develop, the climbing fibers leave their
perisomatic and capuchon positions to occupy peridendritic
positions (after ∼P12; referred to as dendritic stage; Chedotal
and Sotelo, 1992; Watanabe and Kano, 2011). During this period,
climbing fibers translocate up the Purkinje cell dendrite to
find their ultimate location within the basal two thirds of the
molecular layer (Crepel et al., 1976; Mariani and Changeux,
1981; Hashimoto and Kano, 2005; Kano and Hashimoto, 2009;
Watanabe and Kano, 2011).

The monoinnervation of adult climbing fibers onto Purkinje
cells is achieved through massive pruning of climbing fibers
during postnatal development. Previous studies have revealed sys-
tematic changes occurring in the relative synaptic strength of mul-
tiple climbing fibers when they polyinnervate a single Purkinje
cell during postnatal development. These studies revealed that
climbing fiber mediated excitatory postsynaptic currents (EPSCs)
recorded in Purkinje cells have similar amplitudes until ∼P3.
In the second postnatal week, multiple EPSCs differentiate into
one large EPSC and a few small EPSCs (Hashimoto and Kano,
2003). These results suggest that climbing fiber synaptic strengths
are similar to one another during early postnatal development,
and a single climbing fiber, the “winner,” is selectively strength-
ened during the second postnatal week (∼P7; Hashimoto and
Kano, 2003; Bosman et al., 2008). Following these studies, Kano
and colleagues used electrophysiological and morphological tech-
niques to determine that competition between multiple climbing
fibers occurs at the soma before climbing fibers form synapses
with Purkinje cell dendrites (Hashimoto et al., 2009). Notably, the
“winner” climbing fiber undergoes translocation to the dendrites
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and simultaneously maintains synapses on the soma, while the
weaker climbing fibers remain around the soma forming “pericel-
lular nests” with the “winner” synapses (Hashimoto et al., 2009).
After the strengthening of a single “winner” climbing fiber, prun-
ing and perisomatic synapse elimination occur in two distinct
phases: the early phase (∼P7–11), which is independent of par-
allel fiber synapses and the late phase (∼P12–17), which depends
on activity between parallel fibers and Purkinje cells (Watanabe
and Kano, 2011).

In three different mutant mice, weaver, staggerer, and reeler,
Purkinje cells develop in the absence of granule cells but are
permanently innervated by multiple climbing fibers (Crepel
and Mariani, 1976; Mariani et al., 1977; Crepel et al., 1980;
Mariani and Changeux, 1980; Steinmayr et al., 1998). Similarly,
studies using experimentally-induced “hypogranular” cerebella
(Woodward et al., 1974; Crepel and Delhaye-Bouchaud, 1979;
Bravin et al., 1995; Sugihara et al., 2000) revealed that the pres-
ence of intact granule cells, normal parallel fiber-Purkinje cell
synapses, and activity all play a role in climbing fiber synapse
elimination.

The process of fiber elimination is mediated by several
molecules including metabotropic glutamate receptor mGluR1,
PLCβ4, Ca(v)2.1 P/Q-type Ca2+ channel, glutamate receptor
Glurδ2, precerebellin (or Cbln1), and the GABA synthesizing
enzyme GAD67 (Kano et al., 1995, 1997, 1998; Kashiwabuchi
et al., 1995; Offermanns et al., 1997; Sugihara et al., 1999;
Ichikawa et al., 2002; Miyazaki et al., 2004, 2010; Hirai et al.,
2005; Uemura et al., 2007; Hashimoto et al., 2011; Nakayama
et al., 2012; Uesaka et al., 2012). Mutations that alter the function
of these proteins cause severe defects in climbing fiber synapse
development and elimination (Kano et al., 1995, 1997, 1998;
Kashiwabuchi et al., 1995; Offermanns et al., 1997; Sugihara
et al., 1999; Ichikawa et al., 2002; Miyazaki et al., 2004, 2010;
Hirai et al., 2005; Uemura et al., 2007; Hashimoto et al., 2011;
Nakayama et al., 2012; Uesaka et al., 2012). Interestingly, Kano
and colleagues developed an organotypic co-culture preparation
to recapitulate in vivo climbing fiber remodeling and with this
system identified neuroligin-2 as a key player of climbing fiber
elimination in Purkinje cells (Uesaka et al., 2012). Thus, synap-
togenesis in the olivocerebellar projection starts relatively early
during brain circuit formation, occurs over a protracted period
of time, and requires both genetic control and neural activity
(Chedotal and Sotelo, 1992; Sotelo, 2004). However, it is not
clear whether developmental remodeling plays a role in generat-
ing climbing fiber compartments: although one can imagine that
the precise zonal boundaries emerge as supernumerary axons are
pruned away.

PLASTICITY OF OLIVOCEREBELLAR ZONE CONNECTIVITY
In contrast to the adult central nervous system which has a
limited capacity for axonal regeneration, the immature central
nervous system is capable of some axonal regrowth (Nicholls
and Saunders, 1996). However, regrowth during development fre-
quently occurs through an alternative pathway that is distinct
from the normal one. The olivocerebellar pathway is an excel-
lent example of a system in which regrowth establishes a new
pathway. Various groups have used the pedunculotomy approach

to stimulate transcommissural olivocerebellar reinnervation to
determine the temporal properties of afferent-target interactions
during development (Angaut et al., 1985; Sherrard et al., 1986;
Zagrebelsky et al., 1997; Sugihara et al., 2003; Dixon et al., 2005;
Willson et al., 2007). Following unilateral early postnatal tran-
section of an inferior cerebellar peduncle (which carries the
climbing fibers), the contralateral inferior olive degenerates and
new axons, arising from the remaining inferior olive, grow into
the denervated hemicerebellum (Zagrebelsky et al., 1997). The
innervation of these transcommissural axons precisely aligns with
Purkinje cell expression zones and mirrors the distribution of
the “unaltered” projections on the intact side (Zagrebelsky et al.,
1997). Sugihara and colleagues (2003) have shown that the newly
formed projections develop normal climbing fiber arborizations
and form functional synapses onto Purkinje cells. Remarkably,
olivocerebellar reinnervation can compensate for motor deficits
(Dixon et al., 2005) and rescue the cerebellums influence over spa-
tial learning (Willson et al., 2007). Similar to what might occur
during normal development, reinnervation may be regulated by
position-dependent cues that mediate the precise connectivity
between climbing fibers and Purkinje cells (Dixon and Sherrard,
2006; Willson et al., 2008).

NOVEL TOOLS TO STUDY OLIVOCEREBELLAR
DEVELOPMENT, CONNECTIVITY, AND FUNCTION
Neuronal tracing using viruses and genetically encoded fluores-
cent reporters are now widely used for unraveling circuit connec-
tivity (Wickersham et al., 2007; Marshel et al., 2010; Wall et al.,
2010). Retrograde transneuronal infection of rabies virus reveals
the organization of multi-synaptic neuronal networks (Coulon
et al., 1989; Ugolini, 1995; Kelly and Strick, 2000; Graf et al.,
2002). Genetically modified viruses have also allowed control
over which cells are initially infected, extent of viral spread, and
direction of the spread (Callaway, 2008). Recently, the use of a
deletion-mutant rabies virus allowed the spread of the virus to be
restricted to monosynaptic connections for selectively revealing
first-order presynaptic neurons (Wickersham et al., 2007, 2010;
Marshel et al., 2010; Rancz et al., 2011). Using the rabies virus
tracing approach, communication networks between the cerebral
cortex, basal ganglia, and cerebellum have been resolved (Kelly
and Strick, 2003; Bostan et al., 2010; Coffman et al., 2011; Suzuki
et al., 2012). More recently, Ruigrok and colleagues also used
viral tracing to show that cerebrocerebellar connectivity respects
cerebellar zonal organization (Suzuki et al., 2012). Combining
viral tracing with transgenic targeting of recombinant viruses
(Weible et al., 2010) will allow for unparalleled resolution of
circuit topography in the olivocerebellar pathway.

In the past, lesioning, electrical stimulation, and chemical
activation/deactivation have unveiled essential functions of the
cerebellum and inferior olive (Llinas et al., 1975; McCormick
and Thompson, 1984; Bradley et al., 1991; O’Hearn et al., 1993;
O’Hearn and Molliver, 1993; Willson et al., 2007; Pijpers et al.,
2008; Strick et al., 2009; Horn et al., 2010; Cerminara and Apps,
2011). However, these manipulations are limited by the lack
of cell type specificity and/or the by the tissue damage that
occurs. Optogenetics methods offer an ideal solution to these
shortcomings as they provide an avenue for targeting induced
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neural activity to specific cells in vivo, without damaging the
circuit (Deisseroth et al., 2006; Zhang et al., 2006; Hira et al.,
2009; Tsubota et al., 2011). These light-activated ion channels,
which include channelrhodopsin-2 (ChR2) and halorhodopsin
(eNpHR), have fast temporal kinetics to efficiently activate or
inhibit the firing of action potentials (Boyden et al., 2005; Zhang
et al., 2006; Adamantidis et al., 2007; Arenkiel et al., 2007; Abbott
et al., 2009). Importantly, by using cell type specific promoters
one can drive the expression of these light-responsive proteins in
selective neuronal populations (e.g., using the L7/Pcp2 Purkinje
cell specific promoter; Oberdick et al., 1990). Indeed, a recent
study used L7/Pcp2-Cre mice to target ChR2 and eNpHR expres-
sion to examine the role of Purkinje cells in controlling cardio-
vascular function (Tsubota et al., 2011). It will now be interesting
to develop optogenetic methods for manipulating neuronal activ-
ity within specific inferior olivary nuclei in order to determine
the contribution of olivocerebellar zones to motor and nonmotor
functions in vivo.

SUMMARY
It is well established that the cerebellum is divided into a complex
map of functional zones. Much progress has been made in delin-
eating the zonal topography between the inferior olivary nucleus,

cerebellar cortex, and the cerebellar nuclei. However, there are
several important questions that remain unanswered. For exam-
ple: (1) Are the olivocerebellar cells that project to each cerebellar
zone born at different times and/or are they derived from differ-
ent genetic lineages? (2) What are the molecular mechanisms that
guide olivocerebellar projections into zonal compartments? and
(3) What behaviors are encoded into each zone? In future stud-
ies, it will be interesting to combine modern anatomical tracing
techniques with high-resolution imaging, sophisticated genetic
approaches and electrophysiology to answer such questions.
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