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ABSTRACT: In the context of global climate change, significant attention is being
directed toward renewable energy and the pivotal role of carbon capture and storage
(CCS) technologies. These innovations involve secure CO2 storage in deep saline
aquifers through structural and capillary processes, with the interfacial tension (IFT)
of the CO2-brine system influencing the storage capacity of formations. In this study,
an extensive data set of 2811 experimental data points was compiled to model the
IFT of impure and pure CO2-brine systems. Three white-box machine learning (ML)
methods, namely, genetic programming (GP), gene expression programming (GEP),
and group method of data handling (GMDH) were employed to establish accurate
mathematical correlations. Notably, the study utilized two distinct modeling
approaches: one focused on impurity compositions and the other incorporating a
pseudocritical temperature variable (Tcm) offering a versatile predictive tool suitable
for various gas mixtures. Among the correlation methods explored, GMDH,
employing five inputs, exhibited exceptional accuracy and reliability across all metrics. Its mean absolute percentage error
(MAPE) values for testing, training, and complete data sets stood at 7.63, 7.31, and 7.38%, respectively. In the case of six-input
models, the GEP correlation displayed the highest precision, with MAPE values of 9.30, 8.06, and 8.31% for the testing, training, and
total data sets, respectively. The sensitivity and trend analyses revealed that pressure exerted the most significant impact on the IFT
of CO2-brine, showcasing an adverse effect. Moreover, an impurity possessing a critical temperature below that of CO2 resulted in an
elevated IFT. Consequently, this relationship leads to higher impurity concentrations aligning with lower Tcm values and
subsequently elevated IFT. Also, monovalent and divalent cation molalities exhibited a growing influence on the IFT, with divalent
cations exerting approximately double the influence of monovalent cations. Finally, the Leverage approach confirmed both the
reliability of the experimental data and the robust statistical validity of the best correlations established in this study.

1. INTRODUCTION
The escalation of carbon dioxide (CO2) levels within the
Earth’s atmospheric composition stands as a pressing concern,
given its profound impact on the dynamics of global climate
alteration.1 To this end, diverse strategies have been initiated
to counteract the swift increase in CO2 concentrations. Among
these strategies, carbon capture and storage (CCS) emerges as
a propitious method for addressing CO2 emissions.

2−4

Underground geological structures, encompassing saline
aquifers, depleted oil and gas reservoirs, and coal seams have
emerged as robust candidates for the secure containment of
CO2.

5−10 On a global scale, deep saline aquifers offer the most
extensive capacity for CO2 storage in comparison to the two
primary alternatives: unmineable coal seams and depleted
hydrocarbon reservoirs.11 The interfacial tension (IFT), which
emerges due to variations in intermolecular forces between the
surfaces of the two phases in contact, holds a pivotal influence
over the behavior of multiphase flow within reservoirs.12 In the

context of two-phase displacement, the IFT plays a central role
in dictating the dynamic characteristics of phase transportation.
The way phases displace each other in porous media, including
phenomena such as viscous and capillary fingering, is greatly
influenced by the interplay of IFT between these phases.
Ensuring CCS efficiency requires retaining injected CO2 in the
subsurface to prevent any escape to the surface. This goal is
accomplished by using various trapping methods, such as
dissolution, residual or capillary, structural, and mineral
trapping.13−17 Structural trapping curbs the ascent of buoyant
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CO2 gas through the barrier of the cap rock. At a microscopic
level, when the saturation of confined CO2 remains low and
drops below a certain threshold, the IFT between CO2 and
brine keeps residual CO2 in place, leading to residual
trapping.18 When saturation levels are elevated, capillary
trapping takes precedence.19 Consequently, the efficacy of
capillary trapping hinges on the IFT governing the equilibrium
between vertical gravity and capillarity within a transitional
capillary zone.20,21 Furthermore, CO2 can be crucially
sequestered as small clusters within the gaps of rock pores,
which is extremely important for the effective implementation
of CCS projects. This containment is accomplished through
the interaction between CO2-brine IFT.

22

A significant hurdle in implementing CCS is the
considerable expense of isolating pure CO2 from mixed
anthropogenic sources. Direct utilization and subsequent
underground injection of this flue gas present an appealing
alternative. However, this approach is also susceptible to
impurities such as nitrogen (N2) and methane (CH4).
Although the ultimate aspiration is to sequester pure CO2,
practical economic considerations steer the preference toward
utilizing the accessible impure CO2.

23 As a result, it is
customary for the injected CO2 stream to encompass or be
amalgamated with diverse impurities originating from various
sources.24,25 CH4 as a greenhouse gas contributes to both
indirect and direct mechanisms for retaining infrared radiation
via the process of oxidation.26 Co-injecting CO2 with other
substances has the potential to alter different properties, such
as viscosity, diffusion coefficient, and density. The alteration of
IFT in the resulting fluid systems, especially in gas-brine
systems within saline formations, is substantial. These changes
collectively influence the migration and entrapment of CO2
within subsurface reservoirs.26,27

Accurate and reliable IFT values between CO2 and brine
under in situ conditions are of utmost importance. These
values are essential for accurately assessing various aspects,
such as the spread of CO2 in displacement scenarios, its
storage processes, and the final immobilization of CO2 below
the Earth’s surface. Recent years have witnessed a significant
amount of research dedicated to estimating the IFT between
gas containing pure or impure CO2 and brine. A multitude of
experimental investigations have been conducted to furnish
IFT data for these systems across varying temperature ranges,
pressure conditions, salt types, salinity levels, and compositions
of CO2-containing gas.

28−36 These inquiries mainly depend on
the pendant drop method because of its inherent advantages.
This method allows for accurate measurement of the IFT even
at high pressures and temperatures. However, it is crucial to
acknowledge that this experimental method can be time-
consuming and financially taxing, requiring subsequent
interpretive methods. In contrast, only a small number of
modeling investigations have been aimed at generating
practical correlations. Furthermore, theoretical underpinnings
for comprehending the effects of factors like temperature and
pressure on IFT and rock wettability have also been
established through the execution of molecular dynamics
simulations. Besides, these models may overestimate pre-
dictions, particularly when dealing with high pressures.37−39

Several researchers have put forward different correlations for
predicting the pure CO2-water IFT, specifically in scenarios
where salinity is absent.30,35,40 In addition, scientists have
developed several empirical correlations to explain the IFT in
pure CO2-brine systems.

32,41,42 Conversely, employing the

linear gradient theory, Yan et al.33 proposed correlations for
impure CO2-brine mixtures to assess the IFT in gas−water
combinations encompassing CO2, N2, and CH4. However, the
model exhibited limited precision, particularly when applied to
gas mixtures containing CO2. Utilizing the alternating
condition expectation algorithm, IFT predictions spanning a
broad pressure and temperature range of 0.1−60 MPa and
5.25−175 °C were conducted by Li et al.43 However, despite
the model’s intricacy, it shows a lack of accuracy, coupled with
an error exceeding 10%, emphasizing the critical necessity for
the development of a more dependable predictive approach.
Therefore, researchers explored artificial intelligence modeling
due to its capacity to effectively represent intricate systems
encompassing diverse included parameters.44,45 Zhang et al.46

employed a neural network to model CO2-brine IFT, utilizing
a database containing a total of 1716 data points. Kamari et
al.47 employed the identical database of 1716 data points,
utilizing multiple machine learning (ML) models to establish a
predictive model based on four input variables, including
temperature, pressure, monovalent cation molality, and
divalent cation molality for CO2-brine IFT. Niroomand-
Toomaj et al.48 introduced a Radial Basis Function model,
for the prediction of CO2/aquifer brine IFT. This model is
developed using 378 data points, encompassing various
temperatures, pressures, and salinities. Partovi et al.49

harnessed 1716 data points of CO2-brine IFT and leveraged
computer-based models to formulate hybrid models. These
models yielded notably more accurate results compared with
empirical correlations. Rashid et al.50 employed 1019
experimentally measured IFT values within their intelligent
modeling approach. Amooie et al.51 employed a novel database
containing 2517 experimental data points encompassing both
pure and impure CO2-brine systems. They applied several
white-box and black-box ML techniques to predict the IFT in
impure CO2-brine systems. Nait Amar

52 employed the genetic
programming (GP) approach to estimate IFT in both pure and
impure CO2-brine systems across diverse operational scenarios.
Their study incorporated 2346 validated IFT measurements.
Safaei-Farouji et al.53 utilized a data set comprising 2184
experimental data points and employed robust ML methods to
predict IFT within the CO2-brine system. Drawing from a data
set of 2517 experimental data points, Zhang et al.54 conducted
a study involving the modeling of CO2-brine IFT. The findings
indicated that increased pressure and/or decreased geothermal
gradients result in a significant increase in the maximum
structural trapping capacity. Evidently, in recent times,
researchers have consistently dedicated efforts toward refining
IFT prediction conditions, striving for broader and more
inclusive modeling approaches. This entails the incorporation
of a growing body of authentic experimental data spanning a
diverse array of operational conditions. However, recognizing
the significance of carbon sequestration in saline reservoirs, the
utilization of expanded data sets, and the inclusion of impurity
variables within the system hold the promise of constructing a
comprehensive model endowed with advanced capabilities.
The objective of this research is to formulate enhanced,

explicit mathematical correlations to estimate the IFT in CO2-
brine systems. This project is built on the most extensive data
set gathered to date, covering 2811 data points. To achieve this
goal, three renowned white-box ML methodologies, namely,
genetic programming (GP), gene expression programming
(GEP), and group method of data handling (GMDH), are
employed. A variety of statistical and graphical assessment
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techniques are used to validate these correlations. Further-
more, sensitivity analysis is conducted using Spearman rank
correlation to investigate the influence of input variables on the
output. Lastly, the leverage method is employed to determine
the practical application range of the established correlations.
Figure 1 illustrates the research process undertaken in this
study to model the IFT between CO2 and brine.

2. DATA COLLECTION
In order to model the IFT of both impure and pure CO2-brine
systems, 2811 experimental data points were gathered from
reliable literature sources.28−36,41,42,55−71 This database is the
most comprehensive collected for the IFT of CO2-brine to
date, containing about 290 or more data from similar studies.
Typically, in these investigations, impure brine is synthesized
through the introduction of salts such as KCl, NaCl, CaCl2,
Na2SO4, and MgCl2. Yet, it has been demonstrated that the
resultant IFT of CO2-brine primarily hinges on the valence of
the cations present. Hence, the classification of brine impurities

is undertaken through the bifurcation of input variables into
two distinct categories: the molalities of monovalent and
divalent cations. It is important to note that in the context of
pure water, the molality values for both monovalent and
divalent cations are designated as zero. In the context of the
available experimental data, the impurity within the CO2-rich
gas phase is attributed solely to differing concentrations of the
CH4 and N2 components. However, a fresh perspective is
adopted, wherein individual impurities are not isolated based
on their specific identities. Instead, the impure mixture is
approached as a unified whole, discerned by the introduction
of a novel critical parameter tailored for this distinction. This
study employed two distinct modeling methodologies, one
involving 6 inputs and the other involving 5 inputs. The initial
approach encompassed 6 inputs: temperature, pressure,
monovalent cation molality, bivalent cation molality, mole
fraction of N2, and mole fraction of CH4 within the injected
gas. Conversely, the second approach encompassed 5 inputs,
specifically temperature, pressure, monovalent cation molality,

Figure 1. Research steps for modeling the CO2-brine IFT.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c07956
ACS Omega 2024, 9, 7937−7957

7939

https://pubs.acs.org/doi/10.1021/acsomega.3c07956?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07956?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07956?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07956?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07956?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


bivalent cation molality, and the pseudocritical temperature of
the gaseous mixture (Tcm). To elucidate, in the second
approach, rather than integrating the concentrations of CH4
and N2 as separate input variables, we introduce a solitary
input variable (i.e., Tcm) that encapsulates the entirety of the
mixture’s composition. This consolidated approach effectively
captures the essence of its constituents and is computed as
follows:72

yTcTcm
i

nc g

i i

,

=
(1)

where yi represents the mole fraction of every component, with
a corresponding critical temperature of Tci. Additionally, nc,g
denotes the number of components present in the gas mixture.
Table 1 presents the statistical summary detailing the input

and target parameters of the data set employed for the
modeling process. A visualization known as a box plot portrays
the five-number summary derived from a data set. This
summary includes the minimum, first quartile, median, third
quartile, and maximum values. In the construction of a box
plot, a box spans from the first quartile to the third quartile,
while a vertical line intersects the box at the median value.
Figure 2 presents a collection of box plots representing all
variables present within the database utilized in this study. The
data presented in Table 1 illustrate the experimental IFT
measurements, spanning a broad spectrum of operating
pressures, ranging from 0.08 to 69.51 (MPa), and temperatures
spanning from 278.15 to 448.15 (K). The extensive range of
model input parameters and their varied span offer a robust
foundation for constructing an inclusive predictive correlation
for the IFT of CO2-brine. To partition the data, a random
separation of the databank into two subsets was employed,
resulting in a training set comprising 80% of the entire data set,
and a test set encompassing the remaining 20%.

3. MODEL DEVELOPMENT
3.1. Genetic Programming (GP). GP constitutes a

specialized area within artificial intelligence and evolutionary
computation.73 It operates by drawing on concepts derived
from natural selection and evolution to autonomously produce
computer programs or models with the capacity to address
distinct tasks or challenges. In scenarios characterized by
nonlinearity and significant levels of imprecision, the employ-
ment of the GP method is widespread for the derivation of
correlations.74,75 GP systems exhibit structures reminiscent of
those of trees. Nodes within these structures are categorized
into internal or external groups based on their positions.76 The
process of the GP approach is illustrated in Figure 3 using a

flowchart configuration. Employing an iterative methodology,
this dependable, bioinspired technique ultimately yields a
precise mathematical representation. Upon input of the data,
the initial phase involves establishing a random community.
Subsequently, an objective function is employed to assess the
performance of the model. Following this, parent candidates
with elevated correlation values are selected for modification
using genetic operators, giving rise to offspring.77 Successive
iterations are produced following the same procedure, and the
quality of subsequent generations is enhanced as desired
knowledge from proficient individuals is transmitted to their
progeny. The process concludes when the desired level of
accuracy is achieved or the predetermined maximum number
of iterations is attained.78

3.2. Gene Expression Programming (GEP). The GEP,
pioneered by Ferreira in 2001,79 stands as a sophisticated
approach within the realm of soft computing. Operating within
the evolutionary algorithm framework, it harnesses the tenets
of evolution to achieve its goals. The distinctive benefit of GEP
lies in its capacity to produce precise mathematical
representations of the systems under examination. From a
conceptual standpoint, GEP is considered an enhanced
iteration of GP, which was first introduced by Koza.73 GEP
effectively addresses the challenges inherent in GP, notably the
constraints posed by regression strategies.79 Like any other
evolutionary algorithm, GEP undertakes exploration for the
optimal expression model by utilizing chromosomes that
encode and represent potential solutions. Moreover, GEP
introduces a pivotal component known as the expression tree
into its framework. The process of obtaining the expression
tree involves the conversion of chromosomes into tangible
candidates. Within the structure of GEP, genes are utilized,
encompassing both terminals and a head that encompasses
functions. Each gene is characterized by a predetermined
sequence of symbols, which correspond to various operators
like {+, −, ×, /, √, log}, alongside a terminal set
encompassing{x, y, z}.80 The GEP process involves several
key stages. To begin, GEP parameters are established,
encompassing critical aspects, such as population size,
termination conditions, and gene length. Subsequently, an
initial population of chromosomes is created, each representing
a distinct mathematical expression and selected at random.81 A
fitness evaluation is then conducted, gauging the chromo-
somes’ suitability based on a designated fitness function. The
most promising individuals are identified and retained for the
subsequent generation, while tournament selection is em-
ployed to detect candidates for recombination, yielding new
offspring. Within this framework, options for recombination

Table 1. Statistical Details of the Gathered Databank in This Research

pressure
(MPa)

temperature
(K)

monovalent cation molality
(mol/kg)

bivalent cation molality
(mol/kg)

CH4 (mole
fraction)

N2 (mole
fraction)

Tcm
(K)

IFT
(mN/m)

mean 14.02 333.46 1.02 0.45 0.02 0.02 298.96 39.91
median 9.06 323.40 0.05 0.00 0.00 0.00 304.20 37.19
mode 2.00 373.15 0.00 0.00 0.00 0.00 304.20 31.90
SD 12.89 38.18 1.38 1.02 0.11 0.09 20.73 11.51
Kurtosis 3.37 −0.29 0.91 9.26 32.13 42.87 19.67 0.02
Skewness 1.82 0.71 1.35 2.99 5.64 6.48 −4.39 0.74
minimum 0.08 278.15 0.00 0.00 0.00 0.00 170.65 12.40
maximum 69.51 448.15 5.13 5.00 0.80 0.75 304.20 76.10
count 2811 2811 2811 2811 2811 2811 2811 2811
status input input input input input input input target
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Figure 2. Box plots of all variables present within the database utilized in this study.
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include both one- and two-point recombination techniques.
The process is enriched by a mutation operation, which
substantially impacts GEP’s genomic makeup by substituting
one element for another. Additionally, the concept of
transposition and insertion is integrated, allowing specific
sections of a chromosome’s genome to be activated and
repositioned.79 These steps, encompassing fitness evaluation,
selection, recombination, mutation, and genomic manipula-
tion, are iteratively undertaken until a predefined termination

criterion is satisfied. Figure 4 shows the flowchart of the GEP
approach.
3.3. Group Method of Data Handling (GMDH).

Ivakhnenko82 pioneered the GMDH technique, an approach
designed to model intricate systems characterized by multi-
faceted input data converging into a singular output. The
fundamental objective of the GMDH approach involves
constructing a feed-forward system function through the
utilization of a second-order transfer function. This technique
establishes the number of hidden layers, the number of

Figure 3. Flowchart of the GP approach.

Figure 4. Flowchart of the GEP approach.
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neurons within those layers, and the most suitable model
configuration. The interrelation between the dependent and
independent variables in GMDH is represented by a nonlinear
function termed the Volterra series, formulated as eq 2. To
evaluate the Volterra series as a two-variable second-order
polynomial, eq 3 is employed:83

y a a x a x x

x a x x x ...

i

m

i i
i

m

j

m

ij i j

i

m

j

m

k

m

j ijk i j k

0
1 1 1

1 1 1

= + +

+

= = =

= = = (2)

G x x a a x a x a x a x a x x( , )i j i j i j i j0 1 2 3
2

4
2

5= + + + + + (3)

The objective of the GMDH approach is to ascertain the
unspecified parameters, denoted as ai, within the Volterra
series. These ai parameters are computed for every pairing of
input variables xi and xj inputs using regression method-
ologies.84,85 Building upon this principle and accounting for

the notion of least-squares error, the G function can be
formulated as follows for a given set of M observations
involving multi-input and single-output data pairs:86,87

E
y G

M

( O)i
M

i i1
2

=
==

(4)

y f x x x i m( , , ..., ), 1, 2, ...,i i i im1 2= = (5)

A simple flowchart of the GMDH algorithm is shown in
Figure 5.

4. RESULTS AND DISCUSSION
4.1. Developed Correlations. As previously indicated, the

utilization of GP, GEP, and GMDH led to the creation of
numerous equations by considering five and six input
parameters to estimate impure and pure CO2 and brine IFT.
The formulated equations are outlined as follows:
GP correlation (6 inputs):

c c P c c c
c T

c P c
c

c N c
c c cIFT BCM MCM exp( CH )

( ) ( )0 1 2 3 4 4
5

6 7

8

9 2 10
11 12 13

i

k
jjjjjjj

i
k
jjjjj

y
{
zzzzz

y

{
zzzzzzz= * + * + * + * * +

*
* +

+ * +
+

*
+

(6)

c0 = 1.7933
c1 = 0.02595
c2 = 1.0789
c9 = 0.375
c4 = 25.226
c0 = 1.227
c6 = 3.603

c7 = 14.895
c1 = 1.0291
c9 = −0.007072
c10 = −0.02436
c1 = 24.592
c12 = 2.0911
c13 = 0.014857

Figure 5. Flowchart of the GMDH approach.
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GP correlation (5 inputs):
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c0 = −0.14747
c1 = 2.5728

c2 = 4.5562
c3 = −0.29192
c4 = −0.9349
c5 = −3.3606
c6 = −0.29668
c7 = −0.86023
c8 = −3.3606
c9 = 62.314
c10 = 4.7827 × 10−9

GEP correlation (6 inputs):
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c1 = −0.017632
c2 = −1.4104
c3 = −2.4452
c4 = −16.302
c5 = −0.55608
c6 = 14.208
c7 = 1.648
c8 = 1.9531
c9 = −2.5993

c10 = −0.37481
c11 = −13.088
c12 = 2.057
c13 = 3.8507
c14 = 18.404
c15 = 9.3247× 10−8

c16 = 78.36
GEP correlation (5 inputs):
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c0 = 1446.8
c1 = 2461.0
c2 = 356.77
c3 = −3.0301
c4 = 2.4591

c5 = −0.21942
c6 = 16147.0
c7 = 1.8543
c8 = 48.195
GMDH correlation (6 inputs):

Y N N N N N N

N N N N N N N

N N N N N N N

N N N N

N P P T T

N P P P

N MCM

N N

1 237.329 12 8.59043 12 3 0.029114 12 0.0683583 3 2.32834 3 0.00170334
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4 42.6855 8 1.61476 8 10 0.00503938 8 0.0359466 10 3.40845 10 0.0254462

7 60.3427 MCM 9 0.0398817 MCM 0.129818 9 2.41246 9 0.0444492

8 131.961 1.61189 0.0194535 1.01047 0.00132743
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GMDH correlation (5 inputs):
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Y N N N N N
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N N N N N N N
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N N N N N N N
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1 7.1885 7 0.689503 7 2 0.0131058 2 0.626504 ( 2) 0.00974851

2 14.6423 0.706114 3 0.0138623 0.00531772 3 1.53122 ( 3) 0.00456879

3 5.28129 MCM 5.23378 MCM 4 0.0590986 MCM 0.738552 4 1.11658

4 18.5756 13 2.47684 13 6 0.0738438 ( 13) 0.0658759 6 2.66314 ( 6) 0.0157403

6 227.611 1.05442 9 0.00392383 0.00122593 9 2.90394 ( 9) 0.00581509

7 42.6855 12 1.61476 12 14 0.00503938 ( 12) 0.0359466 14 3.40845 ( 14) 0.0254462

9 135.413 11 2.43339 11 15 0.00798595 ( 11) 0.041285 15 8.00916 ( 15) 0.0802109

11 52.8677 1.50791 BCM 0.0254271 0.0188808 BCM 1.96934 BCM 0.20259

12 131.961 1.61189 0.0194535 1.01047 0.00132743

13 61.9661 BCM Tcm 0.0122519 BCM 0.268553 Tcm 0.000260694
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where T is the temperature (K), P is the pressure (MPa),
MCM stands for monovalent cation molality (mol/kg), BCM
stands for bivalent cation molality (mol/kg), Tcm is the
pseudocritical temperature of the gaseous mixture, and N2 and
CH4 show mole fractions of N2 and CH4 within the injected
gas, respectively.
4.2. Assessment of the Correlations. Using seven

statistical indicators, we assessed the precision of the proposed
models. The study incorporated the following metrics for
evaluation:88

1. Mean absolute percentage error (MAPE, %): MAPE
measures the average percentage difference between
predicted and actual values, indicating the overall
accuracy of the model.
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2. Standard deviation (SD): SD quantifies the dispersion or
spread of predicted values around the actual values,
giving insight into the variability of the model’s
performance.
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3. Root mean square error (RMSE): RMSE calculates the
average magnitude of the differences between predicted
and actual values, reflecting the model’s overall
prediction error.
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4. Determination coefficient (R2): R2 assesses the propor-
tion of variance in the dependent variable that is

explained by the independent variables in the model. It
indicates how well the model fits the data.
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in this context, N represents the number of data, yexp
denotes the experimental data, and ypred signifies the data
predicted by the correlations proposed in the study.

5. Mean absolute error (MAE): MAE computes the
average absolute differences between predicted and
actual values, providing a measure of the average
prediction error. This assessment corresponds to a risk
evaluation that mirrors the expected outcome of the
absolute error loss or l1-norm loss. If ŷi represents the
expected outcome of the ith instance, and yi denotes the
corresponding actual value, the computed MAE for a
total of “n_data” can be expressed as follows:
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6. Mean bias error (MBE): MBE calculates the average
difference between predicted and actual values, indicat-
ing the overall bias or tendency of the model to
overestimate or underestimate.
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7. Nash−Sutcliffe efficiency (NSE): NSE evaluates the
model’s performance by comparing the predicted values
to the mean observed value. It assesses how well the
model captures the variation in the observed data.
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Here, y̅o represents the mean of observed data, while ym
signifies the simulated data. Additionally, yot denotes the
data being released at time instant t.

These metrics collectively provide a comprehensive
evaluation of the accuracy and reliability of the suggested
correlations in predicting the desired outcomes. The computed
values of the aforementioned statistical parameters are listed in
Table 2. Based on the statistical assessment presented in Table
2, it is evident that the GMDH correlation utilizing five inputs
has demonstrated the utmost precision and dependability
across all indicators. Notably, its MAPE values for the testing,
training, and complete data sets are recorded at 7.63, 7.31, and
7.38%, respectively. On the other hand, in the case of six-input
models, the GEP correlation displayed the highest precision,
with MAPE values of 9.30, 8.06, and 8.31 for the testing,
training, and total data sets, respectively. Taking into account
all of the statistical parameters, the sequence of correlations
based on accuracy is as follows: GMDH (5 inputs), GEP (5
inputs), GEP (6 inputs), GP (6 inputs), GP (5 inputs), and
GMDH (6 inputs). The consolidated approach (5 inputs),
which utilizes Tcm of a gaseous mixture rather than treating
CH4 and N2 as separate input variables, effectively captures the
essence of its constituents, represents impurities in CO2-
containing gas, and reduces the complexity of mathematical
models with higher accuracy compared to those involving six
inputs.
Moving forward, a graphical examination can be employed

to evaluate the precision of the suggested correlations. To
initiate this investigation, graphical representations showcasing
the cross-plots of IFT values predicted by the correlations
against the corresponding experimental values were depicted in
Figure 6. Within the cross-plots, a significant clustering of data
points around the X = Y reference line is observed across all
models, indicative of the correlations’ commendable accuracy.
Notably, the GMDH model formulated with five inputs
exhibits a notably enhanced concentration around the X = Y
line, underscoring its superior predictive capability for the
CO2-brine interfacial tension.
Furthermore, Figure 7 provides insight into the distribution

of errors during both the testing and training phases of the
models. A thorough examination of the error distribution

graphs reveals the absence of any discernible error pattern with
the majority of computed errors clustering around the zero-
error line. Notably, the GMDH model constructed using five
inputs exhibits a reduced dispersion of errors compared to the
other models, underscoring its elevated accuracy in predicting
the IFT of both impure and pure CO2-brine systems.
After the analyses outlined in this study were conducted, a

cumulative frequency plot depicting the entirety of the data
against absolute error values has been generated for all
predictive correlations, as depicted in Figure 8. This visual
representation reveals that over 70% of the predicted IFT data
using all correlations exhibit an absolute error of less than 10%.
Furthermore, more than 90% of the predicted data
demonstrate an absolute error of less than 20%. In contrast,
the GMDH model employing five inputs displays absolute
errors of approximately 8 and 15% for 70% and 90% of the IFT
data, respectively. This highlights the exceptional accuracy of
the GMDH correlation when compared to the other
correlations.
4.3. Trend Analysis. During the following stage of

graphical analysis, the accuracy of the most well-established
correlations, specifically GMDH (employing 5 inputs) and
GEP (employing 6 inputs), is examined for their ability to
predict the expected physical trend of IFT in CO2-brine
systems. Initially, the impact of the pressure on IFT
measurements is investigated for a pure CO2 and brine
system. This assessment is conducted under a consistent
temperature of 333 K, encompassing a wide pressure spectrum
ranging from 1 to 68 MPa. The system under consideration
maintains a monovalent cation molality of 1.98 mol/kg, while
the divalent cation molality remains at zero, aligning with
experimental observations detailed in the literature.68 The
objective is to employ established correlations to project the
experimental outcomes. As illustrated in Figure 9, the overall
IFT of the CO2-brine system experiences a decline as the
pressure increases. The trend of IFT reduction with respect to
pressure reveals two discernible segments: an initial sharp
decline, succeeded by a considerably gradual decrease within a
subsequent pseudo-steady plateau phase. CO2 possesses
critical conditions at a temperature of 304.2 K and a pressure
of 7.38 MPa.89 For the examined system at a constant

Table 2. Results of Statistical Error Analysis for All Models

statistical criteria RMSE SD R2 MAPE (%) MBE MAE NSE

GP (6 inputs) test 4.8733 0.1389 0.8379 9.8978 −0.1404 3.6904 0.8151
train 4.4064 0.1169 0.8495 8.4081 0.0352 3.2446 0.8204
all 4.5038 0.1217 0.8470 8.7064 4.1 × 10−13 3.3339 0.8193

GEP (6 inputs) test 4.2900 0.1296 0.8744 9.2988 −0.0469 3.3839 0.8567
train 4.1060 0.1106 0.8693 8.0647 0.0631 3.0523 0.8489
all 4.1435 0.1147 0.8705 8.3119 0.0410 3.1187 0.8507

GMDH (6 inputs) test 4.9537 0.1497 0.8326 10.3991 −0.1281 3.7652 0.8055
train 4.6396 0.1296 0.8331 9.5159 0.0321 3.5744 0.7977
all 4.7042 0.1339 0.8330 9.6928 −2.3 × 10−11 3.6126 0.7996

GP (5 inputs) test 4.7648 0.1424 0.8410 10.3019 −0.0889 3.7533 0.8203
train 4.4857 0.1241 0.8451 9.0998 0.0223 3.4299 0.8141
all 4.5430 0.1280 0.8443 9.3405 −2.9 × 10−11 3.4947 0.8156

GEP (5 inputs) test 4.2197 0.1305 0.8785 9.1968 −0.0516 3.3016 0.8628
train 3.9132 0.1124 0.8813 8.0600 0.0129 2.9911 0.8650
all 3.9764 0.1163 0.8807 8.2877 1.7 × 10−13 3.0533 0.8645

GMDH (5 inputs) test 3.7919 0.1095 0.8943 7.6343 0.1059 2.8170 0.8803
train 3.5825 0.1020 0.9025 7.3111 −0.0265 2.7166 0.8923
all 3.6254 0.1035 0.9008 7.3759 1.9 × 10−14 2.7367 0.8899
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temperature of 333 K, which surpasses the critical temperature
of CO2, the state of CO2 is influenced by pressure. When the
pressure remains below the critical pressure of CO2, the CO2
exists in a gaseous phase. However, as the pressure surpasses
the critical point, CO2 transitions into a supercritical state. In
this context, the IFT displays a distinct behavior. At lower
pressures, the IFT experiences a sharp decrease. This is

primarily attributed to the enhancing (partial) dissolution of
CO2 gas within the aqueous phase coupled with its heightened
affinity for adsorption at the interface with rising pressure. As
pressure continues to rise, the CO2-brine IFT reaches a
pseudo-plateau, coinciding with the point at which CO2 enters
the supercritical state. Other researchers have also documented
this phenomenon for the supercritical or liquid phase of

Figure 6. Cross-plots of the developed correlations.
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CO2.
28,42,63,6928,42,63,69 During the supercritical or liquid phase,

CO2 transforms into a semifluid state with minimal or no
compressibility, leading to nearly constant density differences
within the CO2-brine. Notably, the IFT of the CO2-brine
exhibits limited pressure dependency after achieving the
pseudo-plateau state. Overall, the intricate temperature and
pressure interactions impacting the IFT of CO2-brine are

found to be more intricate than was theoretically expected.
This complexity can be attributed to the phase changes of CO2
and its solubility effects within the brine, influenced by
alterations in pressure and temperature.63 As illustrated in
Figure 9, both correlations effectively capture the trend of
decreasing IFT with increasing pressure and provide accurate
estimations.

Figure 7. Error distribution plots of the developed correlations.
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The subsequent analysis involves examining the influence of
the temperature on the IFT of a pure CO2-brine system
composed of NaCl and KCl. This investigation maintains a
monovalent cation molality of 1.98 mol/kg, while the divalent
cation molality remains at zero. This experimental setup aligns
with prior research detailed in the literature.63 As depicted in
Figure 10, there is a general trend of increasing the IFT for the
CO2-brine system as the temperature rises. This phenomenon
is accurately captured by correlations, demonstrating low error
in their predictions. While the presented example indicates an
increasing trend, it is crucial to acknowledge that the impact of
temperature on the CO2-brine IFT is not always like this. In
fact, the relationship between temperature and the CO2-brine
IFT is nonmonotonic, meaning it does not follow a consistent
upward or downward trajectory. This behavior has been
observed in various studies. The effect of temperature on IFT
can vary based on the specific temperature and pressure ranges.
In some cases, increasing temperature may lead to an increase

in IFT, while in others, it could result in a decrease or no
significant change in IFT.42,51,55,63 This complex behavior is
attributed to factors such as solubility changes and phase
alterations induced by temperature and pressure variations.
The interplay of these factors contributes to the intricate
behavior of CO2-brine IFT under different conditions.

63

Moving forward, the investigation delves into the impact of
salinity on the CO2-brine IFT under constant temperature and
pressure conditions. The objective is to evaluate the predictive
capabilities of correlations in capturing IFT variations with
changing salinity. To accomplish this, multiple CO2-brine
systems with different salinities are considered, featuring
equivalent molalities of monovalent and divalent cations, as
illustrated in Figure 11. This experimental setup aligns with
prior research detailed in the literature.55 An established notion
suggests that as water salinity increases, the solubility of CO2 in
brine decreases.90 Consequently, the IFT between CO2 and
brine exhibits a consistent upward trend in response to salinity

Figure 8. Cumulative frequency plot of the developed correlations.

Figure 9. Experimental data68 and prediction of correlations for the impact of pressure on IFT of a pure CO2-brine system.
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changes, regardless of the specific salt type. The mechanism
underlying this behavior is intertwined with the distribution of
cations within the aqueous phase. Typically, cations exhibit a
minimal affinity for accumulation at the interface, resulting in
their concentration in the bulk aqueous phase. This leads to a
negative adsorption phenomenon at the interface, causing a
depletion of cations. Consequently, water molecules tend to
migrate from the interface into the solution to compensate for
this effect.91 As a consequence of this interaction, the mutual
solubility between CO2 and water is diminished, ultimately
contributing to an increase in the IFT between them. This
intricate interplay between cation distribution, water-CO2
mutual solubility, and resultant IFT behavior emphasizes the
complexity of these phenomena.51 As shown in Figure 11,
again, the developed correlations exhibit a promising level of
accuracy in capturing the aforementioned trends.
Subsequently, we turn our attention to investigating the

influence of impurities present in a gas stream on the IFT
within the systems of impure CO2 and water. This analysis is

conducted under conditions of constant temperature and
pressure. The objective is to gain insight into how the presence
of impurities impacts the IFT between CO2 and water. Taking
into account the critical temperatures of CO2, CH4, and N2 as
304.2, 190.85, and 126.2 K, respectively, the determination of
Tcm can be achieved using eq 1. This calculation involves
considering different compositions of CH4, N2, and CO2.
Given the substantial variance between the critical temper-
atures of these impurities and those of pure CO2, it follows that
the Tcm for an impure mixture is notably less than that of pure
CO2 gas. Consequently, a reduced Tcm indicates a diminished
CO2 composition while signifying an increased prevalence of
impurities within the gas stream.31,33,43 Figure 12 visually
represents the influence of impurities on the IFT of CO2-water
under a constant pressure of 15 MPa and a temperature of
313.15 K, as experimentally investigated in the literature.31,33

Additionally, the predictions generated by GMDH (5 inputs)
are presented in the same context. The depicted figure
underscores the accurate representation by the GMDH

Figure 10. Experimental data63 and prediction of correlations for the impact of temperature on IFT of a pure CO2-brine system.

Figure 11. Experimental data55 and prediction of correlations for the impact of salinity on IFT of a pure CO2-brine system.
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correlation of the escalating pattern in the IFT corresponding
to the rise in impurities (or, inversely, the decline in Tcm).
The fundamental explanation for the observed IFT augmenta-
tion in the presence of non-CO2 constituents lies in their
diminished solubility, such as N2, in comparison to the notable
solubility of CO2 in water.

27

4.4. Sensitivity Analysis. In the context of parametric
investigations, it is of great significance to ascertain the effects
of various inputs on the resulting outcome. As a point to bear
in mind, this study employed two distinct modeling method-
ologies, one involving 5 inputs and the other involving 6
inputs. The initial approach encompassed 6 inputs: temper-
ature, pressure, monovalent cation molality, bivalent cation
molality, mole fraction of N2, and mole fraction of CH4 within
the injected gas. Conversely, the second approach encom-
passed 5 inputs, specifically temperature, pressure, monovalent
cation molality, bivalent cation molality, and Tcm of the
injected gas. In this context, the Pearson correlation
coefficient92 was calculated to determine the influence exerted
by individual input variables on the response of both the GEP
model (utilizing 6 inputs) and the GMDH model (utilizing 5
inputs), representing the most robust correlations established
within this study. A greater value of the relevancy factor (r)
associated with an input parameter signifies a more
pronounced significance and impact on the IFT of CO2-
brine. The ensuing equation was employed to quantify the
relevance factor:93,94

r(inp, IFT)

(inp inp )(IFT IFT )
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where inpa,i and inpi,j denote the average value and the jth
value of the ith input, respectively (where i can represent any
of the input variables). Also, IFTj represents the jth value of
estimated IFT data and IFTa stands for the average value of the
IFT data. Figure 13 portrays the comparative influences of the
input variables under consideration on the IFT between CO2
and brine. As depicted in Figure 13, it is evident in both
modeling methodologies that pressure exhibited the most

substantial influence on the IFT of CO2-brine, demonstrating a
detrimental effect. Conversely, within the framework of both
modeling strategies, temperature is observed to exert the least
pronounced impact on the IFT. Nevertheless, as temperature
exhibits a nonmonotonic nature, we hold the view that the
acquired coefficient modestly underestimates its influence. In
Figure 13a, it is evident that the influence on IFT ranges from
the highest to the lowest in the following order: pressure,
bivalent cation molality, mole fraction of CH4, mole fraction of
N2, monovalent cation molality, and temperature. On the other
hand, Figure 13a shows that pressure, Tcm, bivalent cation
molality, monovalent cation molality, and temperature had the
greatest to lowest influences on the IFT, respectively. Our
analysis reveals a notable and adverse influence of the Tcm of
CO2-containing gas on the IFT between impure CO2 and
brine. This observation implies that any impurity possessing a
Tc lower than that of CO2 leads to an elevation in the IFT
within the system and conversely. Consequently, heightened
impurity concentrations align with lower Tcm values,
consequently resulting in an elevated IFT. While this trend
holds true for CH4 and N2, it is essential to verify the
universality of this pattern for other non-CO2 components that
were not part of the current investigation. To conclude, the
monovalent and divalent cation molalities demonstrate an
escalating influence on the IFT, with divalent cations notably
indicating approximately double the impact of monovalent
cations.
4.5. Leverage Technique. The Leverage approach95−97 is

a potent technique in statistical analysis for identifying
influential data points within regression models. Central to
this method are standardized residuals (R) and Hat matrix
leverage (H), which quantify deviations of predicted values
from real data and measure the influence of individual
observations, respectively. Critical leverage (H*) value
establishes a threshold for identifying high-leverage points.98

The Leverage approach’s elements form a comprehensive
framework for assessing model reliability and data quality in
regression analysis. Set within the mathematical realm of −3 ≤
R ≤ 3 and H ≤ H*, data points assume the distinguished role
of “valid” representatives, resolutely navigating the intricate
pathways of statistical thresholds. These valid data are in the

Figure 12. Experimental data31,33 and prediction of GMDH correlation for the impact of impurities on IFT of impure CO2-water systems.
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applicability domain of the model. Data points within −3 ≤ R
≤ 3 and H* ≤ H are deemed “good high-leverage data”, which
are outside of the applicability domain of the model extending
beyond statistical bounds yet well-predicted by the model. In
contrast, data points exceeding R values of 3 or falling below
−3 are categorized as “suspected” reflecting greater predictive
uncertainty and are considered experimentally doubtful.99 The
utilization of William’s plot becomes viable for delineating the
range of applicability for the GEP model (6 inputs) and the
GMDH model (5 inputs), representing the most robust
correlation established within this study, as illustrated in Figure
14. Both of these correlations exhibit the majority of data
falling within the realm of validity, and they are duly

acknowledged for their credibility. The GEP model, featuring
6 inputs, showcased approximately 6.5% outliers alongside a
mere 0.5% of suspected data. Similarly, the GMDH model,
with 5 inputs, exhibited roughly 3.9% outliers and 1%
suspected data. These findings collectively endorse the
substantial application scope and reliability of both correla-
tions, affirming the robust validity and reliability of the
database employed in the modeling process.

5. SUMMARY AND CONCLUSIONS
This study employed three white-box machine learning (ML)
models to forecast the IFT of the CO2-brine systems. A total of

Figure 13. Sensitivity analysis using the results of (a) GEP (6 inputs) and (b) GMDH (5 inputs).
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2811 experimental IFT data points, encompassing diverse
pressure and temperature operational conditions, were
gathered from literature sources. These data incorporated
impurities from both the gas (primarily N2 and CH4) and
aqueous phases (including monovalent and divalent salt types).
The following conclusions can be deduced from the acquired
findings:

1. Among the correlations tested, the GMDH model,
utilizing five inputs, showcased remarkable accuracy and
reliability across all metrics. Its MAPE values for testing,
training, and complete data sets were 7.63, 7.31, and
7.38%, respectively. Conversely, in the case of six-input
models, the GEP correlation achieved superior precision,

with MAPE values of 9.30, 8.06, and 8.31% for testing,
training, and total data sets, respectively.

2. Taking into account all of the statistical parameters, the
sequence of correlations based on accuracy is as follows:
GMDH (5 inputs), GEP (5 inputs), GEP (6 inputs), GP
(6 inputs), GP (5 inputs), and GMDH (6 inputs). The
consolidated approach (5 inputs), which utilizes Tcm of
a gaseous mixture rather than treating CH4 and N2 as
separate input variables, effectively captures the essence
of its constituents, represents impurities in CO2-
containing gas, and reduces the complexity of
mathematical models with higher accuracy compared
to those involving six inputs.

Figure 14. Identification of applicability scope of correlations: (a) GEP (6 inputs) and (b) GMDH (5 inputs).
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3. The sensitivity analysis indicated that pressure had the
most significant impact on CO2-brine IFT, resulting in a
detrimental effect. Temperature, in contrast, exhibited
the least pronounced influence on IFT, though its effect
might be slightly underestimated due to its nonlinear
behavior. In the context of the six-input modeling
approach, pressure, bivalent cation molality, CH4 mole
fraction, N2 mole fraction, monovalent cation molality,
and temperature ranked from highest to lowest in terms
of their impact on IFT. Similarly, within the five-input
modeling approach, pressure, CO2-containing gas
pseudocritical temperature (Tcm), bivalent cation
molality, monovalent cation molality, and temperature
exerted the most to least influence on IFT, respectively.

4. There was an adverse influence of gas Tcm on the IFT
between impure CO2 and brine. This relationship leads
to higher impurity concentrations aligning with lower
Tcm values and subsequently elevated IFT. Moreover,
monovalent and divalent cation molalities escalate the
influence on IFT, with divalent cations exhibiting
approximately double the influence of monovalent
cations.

5. The Leverage approach confirmed both the strong
reliability of the experimental data and the robust
statistical validity of the best correlations established in
this study. Specifically, the GEP model with 6 inputs
revealed around 0.5% of potentially suspected data
points, while the GMDH model with 5 inputs displayed
approximately 1% of such instances.
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