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Abstract

Motivation: Gene expression data are commonly used at the intersection of cancer research and machine learning
for better understanding of the molecular status of tumour tissue. Deep learning predictive models have been
employed for gene expression data due to their ability to scale and remove the need for manual feature engineering.
However, gene expression data are often very high dimensional, noisy and presented with a low number of sam-
ples. This poses significant problems for learning algorithms: models often overfit, learn noise and struggle to
capture biologically relevant information. In this article, we utilize external biological knowledge embedded within
structures of gene interaction graphs such as protein–protein interaction (PPI) networks to guide the construction of
predictive models.

Results: We present Gene Interaction Network Constrained Construction (GINCCo), an unsupervised method for
automated construction of computational graph models for gene expression data that are structurally constrained
by prior knowledge of gene interaction networks. We employ this methodology in a case study on incorporating a
PPI network in cancer phenotype prediction tasks. Our computational graphs are structurally constructed using topo-
logical clustering algorithms on the PPI networks which incorporate inductive biases stemming from network
biology research on protein complex discovery. Each of the entities in the GINCCo computational graph represents
biological entities such as genes, candidate protein complexes and phenotypes instead of arbitrary hidden nodes of
a neural network. This provides a biologically relevant mechanism for model regularization yielding strong predict-
ive performance while drastically reducing the number of model parameters and enabling guided post-hoc enrich-
ment analyses of influential gene sets with respect to target phenotypes. Our experiments analysing a variety of can-
cer phenotypes show that GINCCo often outperforms support vector machine, Fully Connected Multi-layer
Perceptrons (MLP) and Randomly Connected MLPs despite greatly reduced model complexity.

Availability and implementation: https://github.com/paulmorio/gincco contains the source code for our approach.
We also release a library with algorithms for protein complex discovery within PPI networks at https://github.com/
paulmorio/protclus. This repository contains implementations of the clustering algorithms used in this article.

Contact: paul.scherer@cl.cam.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene expression data are commonly used at the intersection of
cancer research and machine learning as it is seen as a crucial
component towards understanding the molecular status of tu-
mour tissue. In its most common form, an observation of gene
expression data is presented as a k-dimensional feature vector of

continuous values after normalization of the raw data where
each element of the vector corresponds to the expression level of
a particular gene in the sample. Classically, this representation is
directly used to learn a prediction model for tasks such as cancer
disease subtype classification or as part of a larger system inte-
grating data from multiple modalities (Esteva et al., 2019;
Simidjievski et al., 2019).
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The high dimensionality and noisiness of the gene expression
data pose significant problems to learning algorithms. Coupled with
the comparatively low number of observations, this high dimension-
ality causes models to overfit, learn noise and struggle to capture
any biologically relevant information (Esteva et al., 2019). As a re-
sult, practitioners commonly aim to constrain model complexity by
incorporating various approaches for regularization including
dimensionality reduction and use of prior biological knowledge to
inductively bias models towards learning representations with fa-
vourable characteristics (Cawley and Talbot, 2006; Dutil et al.,
2018; Gustafsson et al., 2005; Simidjievski et al., 2019). Our re-
search uses prior knowledge to focus on the incorporation of gene
interaction networks as external priors into the predictive model in
order to guide the learning process. The overall goal of applying
network-based analysis to personal genomic profiles is to identify
network modules that are both informative of cancer mechanisms
and predictive of cancer phenotypes. A survey which describes some
of these approaches can be found in Zhang et al. (2017). However,
many of these methods are handcrafted to address very specific case
studies and typically they are not end-to-end differentiable which is
the focus of this study.

In this work, we propose a method for automated construction
of predictive neural network models that build upon structures dis-
covered within gene interaction networks. More specifically, we
utilize topological clustering algorithms chiefly used for the discov-
ery of protein complexes and functional modules within protein–
protein interaction (PPI) networks to define the structure of factor
graphs in an unsupervised manner. This deterministic procedure
produces sparse computational graph models which relate genes to
named protein complexes, structurally parameterizing individual
functions for the ‘activity’ of each complex based on an input gene
expression profile. Given such computation graphs, further connect-
ing the complex activities to cancer phenotypes defines a supervised
predictive model akin to a sparsely connected artificial neural net-
work, which maps the activity patterns of higher level functional
modules (protein complexes) to cancer phenotypes via the original
gene expression data.

Our approach effectively constrains the hypothesis space via
explicit structural biases obtained through unsupervised analyses
of network biology entities. As a result, this provides a biologic-
ally relevant mechanism for model regularization, resulting in
structurally constrained models that yield competitive predictive
performance with significantly lower number of model parame-
ters and offer insights into the expression patterns of phenotype
relevant complexes. Figure 1 features a simplified diagram of this
process over an input genomic profile dataset and a toy inter-
action network used to construct the topology of the computa-
tional graph.

2 Materials and methods

The proposed method, which we will refer to as Gene Interaction
Network Constrained Construction (GINCCo), incorporates prior
biological knowledge embedded within the structure of external PPI
networks and protein complexes discovered in these via topological
clustering algorithms to construct a bipartite graph between gene
expressions and functional modules. This bipartite factor graph
serves as the structural foundation for computational graph models
that will be further augmented into predictive models for cancer
phenotypes. Crucially, this means that the structure of the computa-
tional graphs created by GINCCo is defined in a purely unsuper-
vised and deterministic manner over external structured knowledge.

GINCCo’s procedure for constructing the computational graphs
is best described in three stages which also correspond to those
shown in Figure 1:

• Obtaining a case study specific sub-graph of an external PPI net-

work with the input gene expression data.

• Discovering protein complexes that serve as higher level func-

tional modules within the study specific sub-graph from Step 1.
• Constructing the factor and computational graphs for down-

stream modelling.

2.1 Processing and generating case study PPI networks
Let us assume an input gene expression dataset X 2 Rm�k describing
m patient observations with k-dimensional vectors of gene expres-
sion values, and K represents the set of genes in this expression data-
set. Furthermore, let us assume an external PPI network
GPPI ¼ ðVPPI;EPPIÞ, such as one from the STRING-DB 9606 Homo
Sapiens PPI network (Szklarczyk et al., 2019). For our purpose, this
PPI network is an unweighted graph with nodes VPPI labelled by the
names of proteins, and no additional node or edge features. We in-
duce a sub-graph of the input network GS � GPPI. The nodes of GS

are the intersection of the common genes in the input gene expres-
sion dataset K and their products in the PPI network; in other words
VS ¼ K \ VPPI. The induced sub-graph GS ¼ ðVS;ESÞ is the graph
whose vertex set is VS and whose edge set consists of all of the edges
in EPPI that have both endpoints in VS. This action is illustrated in
the top row of actions in Figure 1. We denote GS our study PPI net-
work since it is the ‘cut out’ of the external PPI network relevant to
our case study.

2.2 Protein complex discovery
Given the induced study network, we use a topological clustering al-
gorithm C (such as DPCLUS; Altaf-Ul-Amin et al., 2006) to discover
protein complexes within the study PPI network GS. The aim of the
clustering algorithms is to discover protein complexes represented as
a set of induced sub-graphs CðGSÞ ¼ fc1; c2; . . . ; clg, where l is the
number of complexes discovered by C. The number of protein com-
plexes found, l, is not dependent on the user, but rather on the appli-
cation of the clustering algorithm C upon the input study network.
Any appropriate clustering algorithm can be used.

It is worth noting that we specifically chose clustering algorithms
that do not partition the graph. In other words, a single protein may
be part of multiple complexes. This is to reflect the fact that proteins
may be involved in several biological processes and complexes.
Moreover, not all proteins in GS will necessarily be assigned to clus-
ters by C. We are not arbitrarily forcing all genes to be part of our
constructed models, and this acts as a form of feature selection upon
the input X by CðGSÞ.

2.3 Computational graph construction and predictive

models
The output of the clustering algorithm CðGSÞ ¼ fc1; c2; . . . ; clg ena-
bles the construction of a bipartite factor graph. Herein, each of the
protein complexes is assigned a uniquely labelled node ci and each
protein within the set of proteins involved in one or more complexes
is also given a labelled node by their name. Directed edges link pro-
teins to complexes ci they are a member of. This construction gives
the factorization of a parametric function fci

: ci !R computed
from the proteins involved in ci. The function fci

ð�Þ can be set by the
practitioner or learned as in a neural network.

The parameterizations fci
: ci ! R in our proposal are a stark

contrast to arbitrarily chosen hidden-state activations hi : Rk ! R

found in conventional application of fully connected multi-layer per-
ceptrons (FC MLPs). First, each of the ci denotes a ‘protein complex
activity’, a biologically relevant structure modelled through incorp-
oration of external PPI and topological clustering algorithm, instead
of an arbitrarily chosen hidden state node. The proteins that are
members of ci, and only those proteins, affect its activity level
fci

: ci ! R, instead of all input features. This is a strong and explicit
inductive bias if fci

is learned through a neural network. A visual
comparison between the factor graphs of a FC model and that of
GINCCo can be seen in Figure 2.
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We construct computational graph models for cancer phenotype
prediction by further augmenting the current gene/protein to protein
complex factor graph to include complete connections between the pro-
tein complexes ci to target nodes gained when encoding the target obser-
vations Y. As such, each function fci

: ci ! R computing the individual
protein complex ‘activity’ is learned over minimizing the global cross-
entropy loss between predicted and the target phenotypes.

2.4 Experimental setup
We hypothesized that the knowledge-driven construction of the compu-
tational graphs through incorporation of gene interaction networks as
prior biological knowledge will yield sparser models and better predict-
ive performance than FC baselines. We tested this hypothesis in parts:
comparing model sparsity in terms of number of parameters, comparing
predictive performance across datasets and subsequently checking
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Fig. 1. An overview of our procedure for incorporating PPI network based protein complex discovery and constructing computational graphs for gene expression analysis.

GINCCo’s procedure for model construction is best described in three stages: (i) induction of the case study specific sub-graph GS common to the input gene expression dataset

(for set of k genes K) and the external PPI network which will be used for the (ii) unsupervised discovery of the protein complexes that act as biologically relevant higher level

modules of the inputs and (iii) the use of the clusterings CðGSÞ to construct a bipartite factor graph between the gene expressions and the protein complexes and extending the

use of the graph in the predictive model that transitively maps the gene expressions to phenotypes via the protein complex activities. In the final computational graph model,

we can see blue genes which are excluded as a result of extracting the case specific study graph, and red genes which are excluded as a result of clustering process on GS
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whether GINCCo captures useful signals that cannot be found through
random computational graph construction.

In order to evaluate the proposed method for model construction,
we used publicly available gene expression data from the METABRIC
Breast Cancer Consortium (METABRIC; Curtis et al., 2012) to pre-
dict cancer phenotypes with gene expression data. The dataset consists
of the mRNA expression data and clinical data of breast cancer pa-
tient samples in the METABRIC cohort (Curtis et al., 2012). Herein,
we tackle several classification tasks over the 1980 breast cancer
patients, representing a particularly large dataset for cancer data re-
search. Each observation is represented by a 24 368-dimensional vec-
tor corresponding to the continuous expression values of measured
genes. The microarray data were normalized as described in Curtis
et al. (2012). We evaluate the predictive performance over the pro-
posed methods ability to predict:

• Distance relapse, a binary classification task.
• IntegrativeCluster subtypes (IC10), a 11 class prediction task

where observations belong to integrative clusters typified by

copy number aberrations (Curtis et al., 2012).
• PAM50 breast tumour cancer subtype (Prat et al., 2010;

PAM50), a five class prediction task (Basal, Her2, Luminal A,

Luminal Band Normal).

To show that GINCCo can operate across datasets, we also evaluate
it on The Cancer Genome Atlas Head–Neck Squamous Cell Carcinoma
(TCGA-HNSC) dataset (Cancer Genome Atlas Network, 2015;
Rendleman et al., 2019). The HT-Seq count expression data were nor-
malized using the Fragments Per Kilobase of transcript per Million
mapped reads method as made available through the National Cancer
Institute Genomic Data Commons Data Portal, https://portal.gdc.can
cer.gov/ that have been as in Rendleman et al. (2019). The dataset con-
tains 528 TCGA-HNSC cases wherein we focus on the 20 501 mRNA
expression features. The clinical targets include:

• tumour grade, wherein observations are classified into Grades

I–IV based on standards set by the World Health Organization.
• 2-year relapse-free survival, a binary prediction task.

For all prediction tasks, tables of the exact class label distribu-
tions are presented in the supplementary materials (Supplementary
Appendix SA).

Amongst the considered methods are: majority class classifier
(MajorityClass), a support vector machine (SVM) with RBF kernel,

a FC two-layer neural network with 1600 hidden layer nodes (this
number of hidden nodes was chosen to closely match the number of
protein complexes used in GINCCo þ DPCLUS, the best performing
of the proposed methods), a network regularized FC network (Li
and Li, 2008; GraphReg), and our proposed model constructor
coupled with a variety of topological clustering algorithms. Each of
our models is referred to as GINCCo þ C, where C refers to one of:
Molecular Complex Detection (MCODE) (Bader and Hogue,
2003), COre-AttaCHment-based method (COACH) (Wu et al.,
2009), IPCA (Li et al., 2008) or DPCLUS (Altaf-Ul-Amin et al.,
2006) clustering algorithms. These clustering algorithms were
chosen on the basis that they are well established, allow overlapping
clusters and have deterministic implementations for reproducibility.
We also release an open-source library of these implementations
alongside this article as described in the availability statement.

MCODE is an agglomerative clustering algorithm for identifica-
tion of protein complexes given PPI graphs. COACH is an algorithm
for identification of protein complexes based on core-attachment
structure. DPCLUS is an iterative algorithm for protein-complex
identification from interaction graphs. Similarly to MCODE, given
a PPI graph, DPCLUS initializes the clusters with the node with the
highest weight, identified by analysing node neighbourhoods. Once
a cluster is initialized, the algorithm extends it by adding neighbour-
ing nodes that meet predefined criteria of density and cluster-
connectivity property. IPCA is a modification of DPCLUS. Similar
to DPCLUS, IPCA grows the clusters based on the topological struc-
ture of the underlying interaction graph by searching for small-
diameter sub-graphs that meet certain cluster connectivity-density
property. In contrast to DPClus that re-computes the node weights
each time a sub-graph is removed, IPCA computes these weights
once at the beginning and uses them for the whole process. The
hyperparameters of the clustering algorithms were set to their de-
fault values.

The SVM’s hyperparameters were kept the same at C¼1.0 and
a scaled c value. The FC MLP and the computational graphs of
GINCCo were trained through optimization of the cross-entropy
loss. The loss was optimized using Adam (Kingma and Ba, 2014)
with a mini batch size of 32 and 500 epochs and a learning rate of
0.0001. The weight parameters were initialized using the Xavier
uniform initialization (Glorot and Bengio, 2010).

For each task, we compare the methods over the average per-
formance of five repeated class-stratified train and hold-out test
splits with 80:20 train:test set ratios. We use a quarter of each
training-set split to produce a validation set for early stopping. The
performance of each model was compared with respect to average
balanced classification accuracy (B-ACC) and weighted area under
receiver operator characteristic (W-AUC) over each of the five splits
in the tasks to account for any class imbalances. To compute the W-
AUC, we averaged the one-versus-rest scores for each label weighted
by the class label distribution. For completeness, we have included
tables for the comparative analysis of unbalanced accuracy,
weighted precision, weighted recall and weighted F-scores which
can be found in the Supplementary Appendix SC.

3 Results

3.1 Factor graphs produced by GINCCo are

considerably sparser than FC network models
The computational graph models produced by GINCCo innately in-
corporate biological knowledge of the PPI network and the multi-
protein modules discovered through CðGSÞ over the study network.
The resulting bipartite factor graphs between the gene expressions
and protein complex activities fci : ci !R are considerably sparser
than their FC counterparts as 8ci 2 CðGSÞ; jcij � k by design and
often jcij � k as seen in Table 1. Table 1 describes the number of
edges (parameters) in the bipartite graph produced by GINCCo and
a given clustering algorithm Cð�Þ on the study network created with
STRING and the 24 368 genes in the METABRIC dataset. Table 2
describes descriptive statistics of the clusters obtained by each clus-
tering algorithm on the study network. This is compared against the

GINCCo Factor Graph

Fully Connected Factor Graph

Fig. 2. A visual comparison between the factor graphs produced using a FC compu-

tational graph as in a standard neural network and that produced by GINCCo using

the toy example introduced in Figure 1
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number of edges formed in the FC counterpart with the equal num-
ber of hidden activities hi; a visual comparison can be found in
Figure 2. Table 1 shows how GINCCo models have orders of magni-
tude less parameters than their FC counterparts, and we will show
that despite this the models still perform competitively in predictive
tasks and bring additional benefits.

3.2 Empirical results show integration of prior biological

knowledge yields strong predictive performance
The main comparative results are summarized in Table 2 for the
METABRIC and TCGA-HNCS datasets. The results show that all
variations of the computational graph models produced by GINCCo
perform strongly against both the SVM and FC MLP baselines.

More specifically, GINCCo þ DPCLUS performs competitively
overall making an especially substantial gain in IC10 subtype predic-
tion. Performing a pairwise frequentist correlated t-test (Benavoli
et al., 2017) shows that GINCCo þ DPCLUS has statistically signifi-
cant performance gains across all tasks compared with
MajorityClass and GraphReg methods but is not significant against
the other methods except on IC10 subtype prediction (see
Supplementary Appendix SD). However, this result is still good as it
comes in spite of the fact that the GINCCo þ DPCLUS model con-
tains <0.05% of the number of parameters used in the FC MLP (see
Table 1). Furthermore, GINCCo models provide additional features
pertaining biologically relevant insights that are not possible with
the other methods as we show in Section 3.3.

We attribute the strong performance of GINCCo to two related
advantages over FC networks. First, GINCCo’s sparser model com-
plexity allows more ‘weight’ to be assigned to each of the input
signals used. Similarly, the sparse connectivity also helps generaliz-
ability in a similar way to the dropout regularization method.
However, in contrast, the connectivity of GINCCo graph is set, ex-
plicit and realized through incorporation of prior knowledge rather
than being random and ephemeral. This brings us to the second ad-
vantage of GINCCo—the structure of the computational graphs,

and thus the representations, explicitly incorporate biological know-
ledge of protein complex membership as intermediate states. In
other words, they are not ‘hidden’ nodes with arbitrary meaning.
The learned activities of the protein complexes are explicitly factor-
ized to the gene expression measurements of the genes/proteins that
have a membership in the complex. To show that GINCCo benefits
from both of the previously mentioned advantages and not only
from the first advantage of regularization via sparse connections, we
demonstrate that the performance of GINCCo þ DPCLUS outper-
form computational graphs constructed through random processes
(RC MLP-R and RC MLP-M).

The differing performances on the choice of clustering algorithm
Cð�Þ reflect the different assumptions made by researchers on what
topological structures within GS contain protein complexes.
MCODE and DPCLUS exhibit stricter rules on complex candidates
with fewer, smaller and more tightly knit clusters than either
COACH or IPCA as in Table 3. This may be interpreted as these
two methods constraining the hypothesis space more and incorpo-
rating ‘more’ expert knowledge which is helpful to the classification
tasks. Naturally, GINCCo is agnostic to the choice of Cð�Þ, therefore
various combinations or set complexes may be explored in further
work.

3.3 Experiments against randomly structured

computational graphs show GINCCo models capture

useful parameterizations
As the structure of the computational graphs is driven largely by the
structure of the external PPI network and the number/members of
the protein complexes discovered, we check that GINCCo graphs
actually capture biologically relevant information. Naturally, the
structure of the PPI network itself is explained and justified by the
maintainers/proposers/curators of the databases. Similarly, the bio-
logical relevance of the clustering algorithms used on the PPI net-
works is also reasoned and justified within each of the original
papers. Hence, our task here is to find whether the computational
graphs constructed through GINCCo obtain better scores than the
SVMs and FC-MLP because the structure and learned activity func-
tions capture meaningful biological relationships.

We test this with two approaches to generate randomly con-
nected computational graph models, referred to as RC MLP-R and
RC MLP-M. For RC MLP-R, we construct computational graphs
with a random number of ‘discovered protein complexes’ and a ran-
dom number of connections attributing protein memberships to
clusters. The random numbers are drawn from a uniform distribu-
tion between l 2 ½30; 6000� for the number of protein complexes
(this range was chosen to roughly reflect the number of protein com-
plexes found in the chosen clustering algorithms on the STRING-DB
PPI network; see Table 3) and u 2 ½1; l � k� random protein to com-
plex connections. For RC MLP-M models, we preserve the number

Table 1. Number of parameters used in equally dimensioned FC

MLP network and the proposed method using different clustering

methods to automatically discover protein complexes and their

members on the STRING 9606 PPI network and the 24 368 genes

measured in METABRIC

Method MCODE

(40 clusters)

COACH

(4108 clusters)

IPCA

(5744 Clusters)

DPCLUS

(1562 clusters)

FC MLP 974 720 100 103 744 139 969 792 38 062 816

GINCCo 14 537 1 431 338 2 800 267 19 545

Table 2. Average percentage balanced accuracy (B-ACC) and W-AUC with SDs over five repeated train and holdout test evaluations using all of the

gene expression features of METABRIC and TCGA-HNCS

Method METABRIC TCGA-HNCS

Distance relapse PAM50 IC10 Tumour grade 2-year relapse-free survival

B-ACC W-AUC B-ACC W-AUC B-ACC W-AUC B-ACC W-AUC B-ACC W-AUC

MajorityClass 50.00 6 0.00 0.50 6 0.00 20.00 6 0.00 0.50 6 0.00 9.09 6 0.00 0.50 6 0.00 25.00 6 0.00 0.50 6 0.00 50.00 6 0.00 0.50 6 0.00

SVM 54.43 6 1.85 0.54 6 0.02 72.21 6 3.07 0.94 6 0.01 55.72 6 3.79 0.95 6 0.01 39.35 6 4.28 0.67 6 0.04 56.59 6 4.83 0.57 6 0.05

FC MLP 56.92 6 2.65 0.57 6 0.03 74.65 6 3.60 0.94 6 0.01 66.32 6 1.99 0.95 6 0.01 34.29 6 3.53 0.66 6 0.04 58.14 6 4.23 0.58 6 0.05

GraphReg 49.86 6 1.05 0.50 6 0.01 22.57 6 2.71 0.82 6 0.01 9.09 6 0.00 0.83 6 0.01 27.63 6 3.25 0.64 6 0.02 55.42 6 2.35 0.55 6 0.02

GINCCo þMCODE 56.65 6 1.86 0.57 6 0.02 73.52 6 2.71 0.93 6 0.01 57.77 6 1.73 0.93 6 0.01 36.93 6 10.14 0.64 6 0.03 55.43 6 2.87 0.55 6 0.03

GINCCo þ COACH 56.73 6 0.98 0.57 6 0.01 74.97 6 3.27 0.95 6 0.01 63.04 6 2.98 0.95 6 0.01 39.38 6 11.48 0.65 6 0.03 56.79 6 3.49 0.57 6 0.03

GINCCo þ IPCA 57.13 6 1.47 0.57 6 0.01 74.62 6 4.55 0.94 6 0.01 62.26 6 4.51 0.94 6 0.01 37.36 6 9.54 0.63 6 0.03 55.56 6 3.39 0.55 6 0.03

GINCCo þ DPCLUS 57.27 6 1.80 0.57 6 0.02 75.97 6 4.59 0.97 6 0.01 70.43 6 3.68 0.97 6 0.00 39.09 6 9.96 0.67 6 0.03 57.17 6 4.42 0.57 6 0.04
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of complexes and connections used in GINCCo þ DPCLUS but per-
turb the connections. Hence, lRCMLPM ¼ lDPCLUS and
uRCMLPM ¼ uDPCLUS, translating to l¼1562 and u¼19 545 for
METABRIC tasks. For an empirical evaluation, 100 instances of such
random computational graphs were constructed to obtain a Monte-
Carlo aggregate mean score across the same repeated train-test evalu-
ation described in Section 2.4. Results are shown in Table 4.

From RC MLP-R results, we can see how on average a sparse
randomly structured instantiation of a computational graph model
does not outperform the FC model or GINCCo þ DPCLUS, often
performing significantly worse on multi-label tasks and with highly
variable outputs. This suggests that the unguided random sparsifica-
tion does not lead to better results. This is further compounded by
the results from RC MLP-M which show that despite the preserva-
tion of the number of ‘complexes’ and connections of GINCCO þ
DPCLUS, the randomizations of the connections hurt the perform-
ance. Moreover, this suggests that the inductive biases offered by ex-
plicit factorizations of genes and protein complexes via validated
biologically inspired clustering algorithms drastically reduce the
number of model parameters, perform competitively and also enable
guided post-hoc enrichment studies of target relevant functional
modules, as we show next.

A benefit of the deterministic and explicit factorization of the
parametric activity functions of named protein complexes (and po-
tentially other higher level modules such as pathways) presents inter-
esting opportunities for introspective analyses of the models. Each
of the candidate protein complexes may be functionally analysed
through gene set enrichment analyses that can provide insights into
the patterns of ‘active’ functional modules with respect to the input
gene expressions and the disease phenotypes. A preliminary post-
hoc analysis to identify functionally relevant complex candidates
with trained GINCCo models is presented in the supplementary
materials (Supplementary Appendix SB). In particular, we leveraged
Integrated Gradients (Sundararajan et al., 2017), a gradient-based
attribution method, to estimate the importance of intermediate pro-
tein complex nodes in the computation of the target values. We then
ranked the protein complexes according to their importance to the
prediction task and performed functional enrichment analysis using
Enrichr (DisGeNET) to identify enriched pathways. For classifica-
tion of PAM50 on the METABRIC dataset with GINCCo þ
DPCLUS, we found that the top enriched pathways for the most im-
portant complex candidates are (i) malignant neoplasm of the breast

(q-value: 2.4e-21) and (ii) breast carcinoma (q-value: 8.35e-21).
These results suggest that the protein complexes identified by
DPCLUS are biologically meaningful and further support our choice
for incorporating them as structural inductive biases in our model.
More generally, this result shows the potential of GINCCo to help
identify functionally relevant gene-sets given specific phenotype tar-
gets and to enable their study through functional enrichment
analyses.

4 Related work and discussion

This work is focussed on the utilization of prior biological knowledge
embedded within the topologies of interaction networks to guide the
construction of predictive models. Therefore, it is related to several
other approaches that incorporate inductive biases from the topolo-
gies of external molecular networks into neural networks (and other
modelling approaches) as well as end-to-end differentiable models.
More closely, GINCCo relates to Knowledge-Primed Neural
Networks (KPNNs; Fortelny and Bock, 2020), that explicitly incorp-
orate biological networks in the design of the neural network architec-
ture. Similarly to GINCCo, the input nodes correspond to genes (or
proteins), but the hidden units of the neural network correspond to
various signalling proteins and transcription factors. This, in turn,
leads to an accurate and interpretable predictive model for single-cell
analysis. However, in order to produce such models, KPNNs require
topological data in the form of directed acyclic graphs with explicitly
defined regulatory mechanisms. In contrast, GINCCo is more general
in this respect, since it is not constrained by the type nor completeness
of the structural prior. This allows for incorporating (and combining)
different topological data for various applications including, but not
limited to single-cell analysis, such as cancer sub-type identification/
classification.

Other similar approaches have been proposed recently exploiting
knowledge of biological pathways to create sparse neural network
models. PASNet (Hao et al., 2018) and P-NET (Elmarakeby et al.,
2020) incorporate pathway information for survival prediction in
glioblastoma multiforme and for stratification of prostate cancer
patients, respectively. These approaches are all closely related to
GINCCo. However, P-NET requires careful handcrafted construction
of the architecture as well as manual curation of certain layers. In con-
trast, GINCCo is more general, fully automated and leads to substan-
tially smaller models. Moreover, the clustering step in GINCCo is
independent; therefore, it can handle various types of domain-
knowledge (including pathways). Similarly, PASNet refers to a sparse
neural network that also relies on knowledge-based structural biases,
by incorporating pathway information. In that, it is similar to
GINCCo, however, instead of ‘learning’ the second hidden layer from
the constructed clusters (as in GINCCo), PASNet explicitly maps the
pathways. Therefore, in that respect, GINCCo is more general, since
it does not explicitly rely on known pathway sets.

In broader terms, GINCCo follows a long tradition of methods
that incorporate biological knowledge through feature selection and
extraction. In particular, it relates to embedded techniques (Hira

Table 3. Descriptive statistics of the protein complexes discovered

via the topological clustering of the study PPI network GS induced

from the STRING PPI network and METABRIC

Statistic MCODE COACH IPCA DPCLUS

Number of protein complex 40 4108 5744 1562

Maximum cluster size 1555 2684 639 359

Minimum cluster size 3 4 5 2

Average cluster size 363.43 348.43 487.51 12.51

Table 4. B-ACC and W-AUC with SDs over five repeated train/test evaluations using all of the gene expression features of METABRIC and

TCGA-HNCS

Method METABRIC TCGA-HNCS

Distance relapse PAM50 IC10 Tumour grade 2-year relapse-free survival

B-ACC W-AUC B-ACC W-AUC B-ACC W-AUC B-ACC W-AUC B-ACC W-AUC

FC MLP 56.92 6 2.65 0.57 6 0.03 74.65 6 3.60 0.94 6 0.01 66.32 6 1.99 0.95 6 0.01 34.29 6 3.53 0.66 6 0.04 58.14 6 4.23 0.58 6 0.05

RC MLP-R 56.91 6 0.78 0.57 6 0.01 72.06 6 6.55 0.93 6 0.04 57.25 6 10.03 0.92 6 0.06 38.02 6 3.26 0.64 6 0.05 54.86 6 1.58 0.54 6 0.02

RC MLP-M 55.25 6 1.56 0.55 6 0.02 64.87 6 8.79 0.92 6 0.05 54.10 6 6.68 0.91 6 0.04 35.45 6 2.45 0.66 6 0.01 54.15 6 1.87 0.54 6 0.02

GINCCo þ
DPCLUS

57.27 6 1.80 0.57 6 0.02 75.97 6 4.59 0.97 6 0.01 70.43 6 3.68 0.97 6 0.00 39.09 6 9.96 0.67 6 0.03 57.17 6 4.42 0.57 6 0.04
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and Gillies, 2015) that simultaneously select subsets of the original
gene features and build a predictive model such as SVM-RFE
(Guyon et al., 2002) and LASSO (Ma et al., 2007). GINCCo distin-
guishes itself here in that it performs the selection and model con-
struction in a completely automated, deterministic and unsupervised
manner; this can be seen as a pre-processing step allowing GINCCo
to scale immensely and study factor graphs without the influence of
task-specific optimization dictating the shape of the models.

Incorporating topological inductive biases can also be performed
with network regularization methods as seen in Gustafsson et al.
(2005), Li and Li (2008) and Min et al. (2018). Herein, methods
such as graph Laplacian regularization work on regularizing the
coefficients of linear models such that they are similar for terms that
are connected within the incorporated network. We have included
the method proposed by Li and Li (2008) within our comparative
analysis in the previous section. A benefit of graph regularization as
a method for incorporating prior knowledge is that it does not re-
quire a separate clustering stage as in GINCCo. However, this
comes at the cost of not being able to study the potential gene sets
(in our case protein complexes) for functional relevance, such as
post-training analysis using functional enrichment analysis in the
Supplementary Appendix SB. Furthermore, there is a subtle but im-
portant difference in the aims of our method and graph regulariza-
tion methods in terms of the inductive bias produced. The graph
Laplacian regularization is a summation of the smoothness terms on
the variables to encourage similar coefficients on the genes that are
connected. In contrast, GINNCo models are inductively biased
(quite explicitly) to produce representations based on the subnet-
works extracted by the clustering algorithms. Naturally, as graph
regularization methods are typically implemented as a regularization
term, they can be trivially incorporated into the objective function
of GINCCo models as well.

More generally, variations operating on the general network
propagation model have found increasing use within research
involving network biology (Cowen et al., 2017). Parallel research
took place within machine learning communities on graph neural
networks which impose a graph constrained inductive bias onto the
representations learned in neural networks mostly on social net-
works (Belkin and Niyogi, 2001; Defferrard et al., 2016; Kipf and
Welling, 2017). Such neural networks are characterized by graph
convolutional operators that serve as useful inductive biases for
learning representations of nodes and other graph substructures.

The clear biological motivations (Cowen et al., 2017) behind the
network propagation model and its parallels to graph neural
network(GNN) models quickly inspired a succession of works
aimed at using GNNs architectures on gene expression data. Rhee
et al. (2018) use a ChebNet (Defferrard et al., 2016) variant with a
relation network (Santoro et al., 2017) to impose a PPI network
upon each of the genomic profiles. Here, each of the gene expression
values is mapped onto a copy of the PPI structure. This was used to
classify genomic profiles from the TCGA into PAM50 classifications
for breast cancer subtype classifications. Chereda et al. (2019) pro-
vided a simpler architecture solely using a ChebNet on the gene ex-
pression values mapped on a PPI network to predict metastasis. The
published results on metastasis show that their proposed method is
marginally better (1–2%) than their random forest and FC neural
network baselines. This naturally raises the question of whether the
positive performance published in Rhee et al. (2018)’s hybrid model
comes primarily from their GNN or relational network component
or the combination of both.

A series of closely related research (Bertin et al., 2019; Dutil
et al., 2018; Hashir et al., 2019) has studied integrating various gene
interaction networks such as PPI, gene regulatory, transcription
regulation, etc. as masking measures over the features to impose an
inductive bias. Experiments were carried out on single-gene infer-
ence tasks (Dutil et al., 2018) and a cancer phenotype prediction
task (Bertin et al., 2019). The usage of the network information was
deemed useful for the single-gene inference task, but also important
negative results in some experiments where the prior knowledge of a
curated graph was about as useful as a randomly connected graph

was also reported—highlighting the importance of choosing the
‘right’ graph as prior knowledge. On the phenotype prediction task,
using graphs as a mask over the gene expressions as prior knowledge
was unable to beat a baseline multilayer perceptron on the same
task (Bertin et al., 2019).

The work on applying GNNs to incorporate prior network infor-
mation to genomic data tasks is a nascent and valid general ap-
proach to the problem. However, the differential graph convolution
and pooling operations as used in previous work, are not best suited
to learn biologically useful subnetworks for the predictive model
within the small datasets that are available now. The classic graph
convolutional operations used in Rhee et al. (2018) and Chereda
et al. (2019) consider higher level node aggregations of all its neigh-
bours with equal weight. When the nodes of the GNNs are genes
superimposed onto a gene interaction graph (let us say a PPI net-
work) the resulting node feature only consists of the gene expression
scalar. The feature propagation mechanism between neighbours cre-
ates a bottleneck when every node aggregates messages from its
neighbours (Alon and Yahav, 2020). Each of the scalars is simply
mixed into another scalar value through the aggregation.
Differentiably learned pooling methods require an increasing num-
ber of samples to learn ‘useful’ higher level representations, which
are not explicitly related to a biologically relevant entities.
Furthermore, pooling methods have recently been shown to have in-
herent limitations in actually capturing local receptive fields better
than random cluster assignments (Mesquita et al., 2020).

In contrast, the models created through our proposed framework
forego learning ‘hidden’ higher level representations by explicitly
factorizing the transitive relationship between gene expressions, pro-
tein complex activity, and phenotypes using PPI networks and deter-
ministic protein complex discovery algorithms. This is done
specifically to constrain the hypothesis space of potential models
and impose structure using domain knowledge on the scarce data in
the gene expression datasets. It relates each gene expression to a
named higher level entity, the protein complex and has a function
specific weighting that is learned (or set based on the practitioner)
through the global optimization scheme over this computational
graph. As a result, the signal from each gene expression is not equal-
ly weighted, but specific to each complex activity function—signals
are even dropped explicitly through the CðGSÞ function if they are
not within the scope of study for the computational graph. This is
unlike the GNN or a network regularized method which would in-
clude all of the input and try to learn something from it even if it
were noise. Thus, our method is substantially different and additive
on both existing approaches.

5 Conclusion

We presented GINCCo, a scalable unsupervised approach to incor-
porating biological knowledge embedded in the structure of gene
interaction networks for automated construction of computational
graphs for gene expression analysis. GINCCo has several distin-
guishing properties. First, it provides a biologically relevant mechan-
ism for model regularization, resulting in structurally constrained
models that often yield better predictive performance whilst drastic-
ally reducing model parameters and enabling post-hoc enrichment
analyses. Secondly, GINCCo is scalable and applicable to other
tasks beyond the case study presented where explicitly modelling the
activities of subnetworks within networks describing prior know-
ledge can be beneficial to a data analysis task. For example, the com-
putational graphs can be seamlessly incorporated into larger
integrative frameworks handling multiple modalities such as the in-
tegrative variational auto-encoders in Simidjievski et al. (2019) to
reduce the complexity of its hypothesis space. Finally, there is no ar-
bitrary decision making on the number of hidden nodes or their bio-
logical relevance as in standard MLPs. Each node within our
computational graphs is either a gene, a phenotype, or a candidate
protein complex. The structure describes a knowledge-directed fac-
torization of the parametric function for the activity of a protein
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complex based on the expression levels of its constituent gene/pro-
teins. This makes introspective study into the individual contribu-
tions and functional roles of entities in the model and patterns as a
whole more amenable.

Data availability

The data underlying this article are publicly available for METABRIC
at https://www.cbioportal.org/study/summary?id¼brca_metabric and
for TCGA-HNCS at https://portal.gdc.cancer.gov/. The TCGA-HNCS
dataset version used in this article was derived from Rendleman et al.
(2019) available in the public domain: https://github.com/mrendleman/
MachineLearningTCGAHNSC-BINF/. The STRING 9606 Human PPI
network is publicly available at https://string-db.org/cgi/download.
Additionally, any data supporting the conclusions of this article will be
shared on reasonable request to the corresponding author. Source code
to implementations is made available as in the availability statement on
the title page.
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