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Abstract

Cdk1 kinase phosphorylates budding yeast Srs2, a member of UvrD protein family, displays both DNA translocation and
DNA unwinding activities in vitro. Srs2 prevents homologous recombination by dismantling Rad51 filaments and is also
required for double-strand break (DSB) repair. Here we examine the biological significance of Cdk1-dependent
phosphorylation of Srs2, using mutants that constitutively express the phosphorylated or unphosphorylated protein
isoforms. We found that Cdk1 targets Srs2 to repair DSB and, in particular, to complete synthesis-dependent strand
annealing, likely controlling the disassembly of a D-loop intermediate. Cdk1-dependent phosphorylation controls turnover
of Srs2 at the invading strand; and, in absence of this modification, the turnover of Rad51 is not affected. Further analysis of
the recombination phenotypes of the srs2 phospho-mutants showed that Srs2 phosphorylation is not required for the
removal of toxic Rad51 nucleofilaments, although it is essential for cell survival, when DNA breaks are channeled into
homologous recombinational repair. Cdk1-targeted Srs2 displays a PCNA–independent role and appears to have an
attenuated ability to inhibit recombination. Finally, the recombination defects of unphosphorylatable Srs2 are primarily due
to unscheduled accumulation of the Srs2 protein in a sumoylated form. Thus, the Srs2 anti-recombination function in
removing toxic Rad51 filaments is genetically separable from its role in promoting recombinational repair, which depends
exclusively on Cdk1-dependent phosphorylation. We suggest that Cdk1 kinase counteracts unscheduled sumoylation of
Srs2 and targets Srs2 to dismantle specific DNA structures, such as the D-loops, in a helicase-dependent manner during
homologous recombinational repair.
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Introduction

Homologous recombination (HR) is a fundamental DNA repair

pathway and its deregulation is responsible for a variety of

genomic rearrangements, including chromosome loss, DNA

translocations and inversions, which are typical of the genetic

alterations seen in tumor cells (reviewed in [1]). The mechanisms

and proteins involved in HR have been well conserved throughout

evolution and much of our knowledge on HR comes from studies

conducted in the yeast Saccharomyces cerevisiae (reviewed in [2–5]).

HR targets multiple DNA lesions, including single-stranded DNA

(sDNA) breaks and DSBs, promoting their repair using a region of

homology as a template. Diverse pathways can seal sDNA breaks,

but the role of HR in DSB repair is essential. Different HR sub-

pathways compete for DSB repair and some are less accurate

than others [6,7]. The position of DNA sequences involved in

recombination and the extent of their homology influence the

kinetics of DSB repair. Irreparable DNA breaks [8], or even those

repaired slowly [9], appear to be sequestered to the nuclear

periphery, through a mechanism resembling that used to tether

telomeres at the nuclear membrane [10]. When a region of

homology is found on both sides of a DSB, the preferred pathway

of repair is gene conversion (GC). Among the initial steps in GC is

the formation of Rad51 presynaptic nucleofilaments assisted by

accessory factors. While Rad51 nucleation can occur directly at

sDNA breaks, the ends of DSBs must be first processed to produce

sDNA tails in order to recruit Rad51. Multiple factors with

nuclease and/or helicase activities, including the Mre11/Rad50/

Xrs2 complex, Sae2, Exo1, Dna2 and Sgs1 cooperate in 59 to 39

DSB resection (reviewed in [11]). Assembled Rad51 nucleofila-

ments invade and displace a duplex donor homologue DNA

template leading to the formation of a D-loop structure. The
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D-loop is the site of DNA synthesis, which is promoted by

extension of the 39 invading strand. According to the canonical

DSB repair model [12], the capture of the second end of the DSB

generates a double Holliday junction (dHJ) whose resolution, by

cutting or branch migration, influences the formation of crossover

products associated with GC, that is, the extent of DNA exchanges

associated with DSB repair. If the second DSB end is not captured,

it can anneal to the invading strand evicted from the D-loop soon

after DNA synthesis. In this process, called synthesis-dependent

strand annealing (SDSA), GC is limited to DNA synthesized from

donor strand and crossovers are prevented [4]. Another HR

pathway, known as single strand annealing (SSA), is used when

DSB repair occurs between direct repeats [4]. In this case resected

homologous sequences anneal without DNA synthesis and DSB

repair is associated with deletion of the sequence between the

repeats. Notably, during SSA, a D-loop is not formed and Rad51

is not required. The formation of presynaptic Rad51 nucleofila-

ments is fundamental for HR commitment during GC. However,

Rad51 could nucleate improperly on DNA or even be engaged

into damaged filaments when other recombination factors are

inactivated: in both cases HR is not proficient, rather it becomes

toxic for other DNA transactions.

Many in vivo studies suggest that Srs2, a member of UvrD family

of DNA helicases conserved from bacteria to human, is involved in

the removal of toxic Rad51 filaments from sDNA [13–17].

Further, the Srs2 protein disrupts presynaptic Rad51 filaments

through its DNA translocase activity in vitro [18,19]. This Srs2 anti-

recombination activity requires a physical interaction with

sumoylated PCNA, as it was evidenced in the absence of the

post-replication repair (PRR) pathway, a context in which Srs2

prevents deadly the recombinational repair [20,21]. Srs2 also

exhibits 39 to 59 DNA helicase activity on duplex DNA [22].

Recent in vitro studies in yeast and plants suggest that Srs2 unwinds

DNA structures mimicking a D-loop [23,24]. Genetic evidence,

indeed, suggests that Srs2 favors the SDSA pathway, since the

loss of Srs2 results in an increase in crossover products [25–27].

Moreover, Srs2 is essential for DSB repair through either SSA or

ectopic GC [25,28,29]; in SSA repair, Srs2 is required to mediate

recovery from checkpoint-mediated arrest [29].

Since Srs2 affects HR in several ways, Srs2 functions in

recombination are probably regulated. Previous studies demon-

strated that Srs2 is a target of the cell cycle-dependent kinase

(Cdk1) in vivo [30] and in vitro [31]. Cdk1 has been implicated in

the DNA damage response and in DSB repair [32]; by monitoring

repair of one HO-induced break, it was shown that Cdk1 is

required both at the level of resection and at a step after Rad51-

dependent strand invasion [33,34]. It is known that Cdk1 triggers

the resection of DSB ends by phosphorylating Sae2 [35], but other

direct targets in DSB repair are unknown.

We found that srs2 mutants that are unable to undergo Cdk1-

dependent phosphorylation can still remove toxic Rad51 nucleo-

filaments, but these srs2 mutants fail to promote homologous

recombinational repair. Analysis on repair of a single HO-induced

break through ectopic GC shows that the proper turnover of Srs2,

at D-loop intermediates, is dependent on its modification by

phosphorylation and this phosphorylation is essential for comple-

tion of the SDSA reaction that results in non-crossover products.

Moreover, the phosphorylation-dependent role of Srs2 does not

require an interaction with PCNA and does not affect the turnover

of Rad51 at invading filaments. In the absence of Srs2

phosphorylation, the protein is sumoylated and this is the main

cause of the recombinational repair defects seen in the nonpho-

sphorylatable srs2 mutant. Thus, coordination of the sumoyaltion

and phosphorylation modifications on Srs2 is essential during

homologous recombinational repair.

Results

The C-terminus tail of Srs2 contains consensus sites for
Cdk1-dependent phosphorylation and sumoylation

Saccharomyces cerevisiae Srs2 contains characteristic amino acid

motifs important for ATP-binding and DNA-binding that are

highly conserved among members of UvrD family [36]. All these

motifs are located in the N-terminal domain of the Srs2 protein

(grey box in Figure 1A) and are sufficient for the helicase activity

[22], but not for translocase-dependent removal of Rad51

nucleofilaments, as tested in vitro [37,38]. The C-terminal tail of

Srs2 protein plays an important regulatory function, since it

mediates protein-protein interactions, including interaction with

Rad51 and PCNA [15,21,37–40]. Moreover, a cluster of five

consensus sites for Cdk1 kinase is present in the C-terminal region

of Srs2, while two additional sites are located in the helicase

domain (Figure 1A; [39]). The last 138 amino acids (aa) of the Srs2

C-terminal tail are required for the interaction with PCNA [21]

and also contain three consensus sites for sumoylation (Figure 1A).

We previously showed that changing the seven serine/threonine

Cdk1 consensus sites to the unphosphorylatable residues alanine/

valine abolished DNA damage-induced phosphorylation of Srs2,

which can be monitored as an electrophoretic mobility shift on

SDS-PAGE (Figure 1B; [39]). We then produced a new srs2 allele

in which the same serine/threonine residues were changed to the

negatively charged aspartic acid/glutamic acid residues, with the

aim of producing a mutated version of Srs2 that mimics the

constitutively phosphorylated protein isoform. As shown in

Figure 1B, the levels of wt Srs2 and the two mutated Srs2

isoforms are similar, both in normal conditions and in response to

DNA damage by methyl methanesulfonate (MMS)-treatment

(data not shown). Henceforth, we will refer to the unpho-

sphorylated and phosphorylated srs2 mutants, respectively, as

srs2-7AV and srs2-7DE.

Author Summary

Broken DNA molecules can be repaired by copying a
homologous DNA sequence located elsewhere in the
genome. This process, called homologous recombination,
needs to be carefully regulated, because unwanted DNA
exchanges can lead to genome rearrangements and cell
death. Cdk1 kinase is required for cell cycle progression
and phosphorylates DNA repair factors, such as Srs2, a
protein that can both translocate on single-stranded DNA
and open the two strands of DNA double helix. DNA
translocation activity of Srs2 is crucial to prevent unwanted
recombination, while DNA unwinding activity might be
important to promote recombination. In this study, we
used two srs2 mutants that constitutively express the
unphosphorylated or Cdk1-dependent phosphorylated
Srs2 protein isoforms. We found that Srs2 performs
genetically distinct functions in preventing or promoting
homologous recombination. Cdk1 targets Srs2 to promote
accurate repair of double-stranded DNA breaks, but is not
essential for the removal of toxic recombination interme-
diates assembled at single-stranded DNA breaks. Further,
Cdk1 counteracts sumoylation of Srs2, which is responsible
for recombination defects due to the lack of Srs2
phosphorylation. In summary, Cdk1-dependent Srs2 phos-
phorylation prevents its unscheduled sumoylation and
targets the helicase to promote accurate homologous
recombinational repair.

Cdk1-Targeted Srs2 Promotes Recombinational Repair
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Srs2 phosphorylation promotes recombinational repair,
but is not essential for the reversal of toxic Rad51
nucleofilaments accumulating at sDNA gaps

To investigate whether Cdk1-dependent phosphorylation of Srs2

is important for its roles in HR, we first evaluated cell survival of the

two srs2 phospho-mutants following UV-light and zeocin treat-

ments. Wild type (SRS2) and srs2D strains were used as controls.

Previous studies have shown that the UV-sensitivity of srs2D strains

is suppressed by mutations in RAD51, indicating that cell lethality is

due to accumulation of toxic Rad51 nucleofilaments at gaps whose

repair can occur in the absence of HR [16]. We found that srs2D
and rad51D mutants are also sensitive to zeocin, a radiomimetic

chemical that induces DSBs (Figure 2A and data not shown). Thus,

zeocin-treatment induces DNA lesions whose repair is strictly HR-

dependent and prevented in the absence of Srs2. As shown in

Figure 2A, we found that both srs2-7AV and srs2-7DE mutants, as

SRS2 strains, survive UV-light doses that kill srs2D mutants.

Conversely, the srs2-7AV mutant, but not the srs2-7DE mutant, is

sensitive to zeocin and, indeed, is even more sensitive than the srs2D
strain. Previous reports showed that srs2D mutations are synthet-

ically lethal with either sgs1D or rad27D mutations [13,14,41]. While

the synthetic lethality of srs2D sgs1D double mutants is suppressed

by rad51D [13], single rad27D mutants are themselves lethal in

combination with rad51D [42]. Thus, the types of spontaneous DNA

damage accumulating in sgs1D and rad27D mutants mirror those

induced by UV and zeocin treatments: only in rad27D mutants and

under zeocin treatment, HR is essential for DNA repair. We crossed

the srs2-7AV and srs2-7DE phospho-mutants and srs2D as control

with sgs1D or rad27D mutants. Heterozygous diploid mutants were

sporulated and tetrad analysis was performed. As shown in

Figure 2B, neither srs2D sgs1D nor srs2D rad27D double mutants

form viable spores; the srs2-7AV mutation, but not the srs2-7DE

mutation, is synthetically lethal with the rad27D mutation, while

both srs2-7AV sgs1D mutants and srs2-7DE sgs1D mutant spores

form colonies.

Hence, the phenotypes of srs2-7AV mutants suggest that Srs2

phosphorylation is dispensable for the reversal of toxic Rad51-

dependent recombination intermediates induced at sDNA by UV

or by the absence of Sgs1, but phosphorylation is required to

promote recombinational repair in zeocin and in the absence of

Rad27.

Previous data suggested that the Srs2 protein sensitizes

postreplication repair (PRR) mutants, because it prevents HR

[43,44]. Accordingly, as show in Figure 2C, the sensitivity of rad5D
mutants to MMS is alleviated by deleting SRS2. srs2 mutants

encoding a protein that displays attenuated translocase activity also

suppress the DNA damage sensitivity of PRR mutants, although

they are not sensitive to DNA damaging agents by themselves [40].

Hence, we analyzed the srs2 phospho-mutants in a PRR mutant

context, in which the importance of having an intact DNA

translocation activity should be revealed. We constructed srs2

phospho-mutants in rad5D or rad18D backgrounds and then tested

viability on medium containing MMS. We found that srs2-7AV

mutation hypersensitizes rad5D and rad18D mutants to DNA

damage, but, conversely, the srs2-7DE mutation partially suppresses

the lethality of rad5D or rad18D mutation (Figure 2C and data not

shown). Notably, srs2-7AV and srs2-7DE mutants are not sensitive to

MMS, even at a higher MMS dose than those employed in

Figure 2C (data not shown).

Thus, we conclude that, even in a PRR context, unpho-

sphorylatable Srs2 can remove Rad51 at DNA gaps. On the other

hand, the phosphorylated Srs2 protein isoform appears to be less

proficient in the anti-recombinational role.

Srs2 phosphorylation is required for Rad51-dependent
DSB repair

The observation that srs2-7AV mutants are sensitive to

treatment with zeocin suggests that phosphorylation of Srs2 is

important in DSB repair. To directly examine this, we tested the

behavior of srs2 phospho-mutants in response to a single DSB

created by a galactose-inducible HO endonuclease. Previous

studies have shown that srs2D mutants can not survive a single

HO-induced DSB when repair of this break occurs either by

ectopic GC or by SSA [25,28,29]. While the GC pathway strictly

depends on RAD51, SSA can occur in the absence of Rad51.

There are important differences in the requirement for Srs2 in the

two pathways: Srs2 is not required to complete DSB repair during

SSA, but it is required for recovery from the DNA damage-

induced cell cycle arrest [29]. RAD51 deletion rescues the

checkpoint recovery defect in srs2D mutants [29]; thus, one

hypothesis is that Rad51 accumulates on DNA contributing to the

lethal checkpoint-induced arrest, since it can not be removed in

absence of Srs2 [29,45]. Conversely, during ectopic GC, srs2D
mutants are unable to complete DSB repair, with a specific

reduction in non-crossover products formation [25]. Since the

region of DNA homology involved is limited in ectopic DSB

repair, the formation of crossovers might be prevented because the

formation of the dHJ intermediate is reduced [46]. Thus, the

failure to carry out SDSA results in loss of non-crossover products

and there is a marked reduction in DSB repair efficiency [25].

To analyze the requirement of Srs2 phosphorylation in the DSB

repair response, we assayed cell survival of srs2 phospho-mutants

in a SSA system in which DSB repair occurs between repeated

sequences, one of which is located 25kb from the DSB and results

in a chromosomal deletion [29] or in an ectopic GC system in

which DSB repair occurs between chromosomes V and III [25]. In

agreement with previous findings, the rate of cell survival of srs2D
mutants is 2% in both the SSA and GC systems (Figure 3A and

3B). This high cell lethality in srs2D mutants correlates with

inability to dephosphorylate the checkpoint kinase Rad53, which is

activated in response to DSB induction (Figure 3A and 3B). Cell

Figure 1. Srs2 contains consensus sites for multiple post-
translational modifications. (A) Schematic view of Srs2 with the
conserved UvrD helicase domain (light grey box) and the PCNA binding
domain that is composed of the last 138 amino acids of the protein
(black box). Srs2 contains seven CDK1-dependent consensus sites and,
within the PCNA binding domain, three sumoylation consensus sites. (B)
Protein extracts were prepared from cultures of SRS2 and srs2 phospho-
mutants strains grown in log-phase with or without MMS and analyzed
using anti-Srs2 antibodies to assess protein levels and phosphorylation
status.
doi:10.1371/journal.pgen.1000858.g001

Cdk1-Targeted Srs2 Promotes Recombinational Repair
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Figure 2. Phosphorylation of Srs2 is required for cell survival when DNA break repair is channeled into HR. (A) Survival of SRS2, srs2D,
srs2-7AV, and srs2-7DE strains was determined after exposure to different doses of UV-light and the DSB-inducer zeocin. (B) Tetrads obtained from
sporulation of diploids heterozygous for the indicated mutations. Double mutant spores are indicated by the white squares. (C) The indicated strains
were grown at an equal cell concentration, sequentially diluted 1:6 and spotted onto plates containing MMS at the indicated concentrations. Cell
growth was evaluated after incubation at 28uC for 3 days.
doi:10.1371/journal.pgen.1000858.g002

Cdk1-Targeted Srs2 Promotes Recombinational Repair
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Figure 3. Phosphorylation of Srs2 is required for Rad51-dependent DSB repair via the SDSA pathway. An HO-mediated DSB was
induced by addition of galactose to cultures of SRS2 and srs2 mutants. Cell viability and Rad53 phosphorylation was analyzed during DSB repair by
SSA (A) or GC (B). (C) Southern Blot analysis was performed on EcoRI digested DNA extracted from SRS2 and srs2 strains at the indicated time points
following galactose induction of the DSB which is repaired by GC. DSB repair efficiency and the percentage of crossover products were calculated at
24 hours after DSB induction.
doi:10.1371/journal.pgen.1000858.g003

Cdk1-Targeted Srs2 Promotes Recombinational Repair
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survival of srs2-7AV mutants is 25% in the GC system where they

also fail to fully dephosphorylate Rad53 24 hours after DSB

induction (Figure 3A and 3B). Survival of the srs2-7AV mutant is

normal in the SSA system and survival of the srs2-7DE mutant is

normal in both systems. Thus, Srs2 phosphorylation is necessary

for cell survival when DSB repair proceeds through the Rad51-

dependent GC pathway, but is dispensable in the SSA pathway,

which does not require Rad51. As mentioned above, although

SSA is Rad51-independent pathway, in absence of Srs2, Rad51

might improperly accumulate on DNA and interfere with

checkpoint recovery [29,45]. Since srs2-7AV survive DSB repair

via SSA, this further strengthens the conclusion that Srs2

phosphorylation is not required for reversal of toxic Rad51-

dependent intermediates.

We used Southern blotting with a probe that recognizes the

MAT locus, to physically observe DSB repair in the GC system

(Figure 3B). As mentioned above, in this system a DSB is induced

at a MAT locus inserted into Chromosome V and is repaired using

a unique uncleavable MAT-inc cassette on chromosome III

(Figure 3B). Notably, crossovers that are associated with the GC

event can be evaluated by restriction analysis, since crossovers give

rise to chromosomal bands that differ in size from the parental

chromosomes and the non-crossover GC products (Figure 3B). As

shown in Figure 3C, DNA of SRS2 and srs2 mutants were analyzed

by Southern blotting. DSB repair efficiency is about 30% in srs2D
strain, in agreement with previous findings [25] and in srs2-7AV it

is reduced to 70% compared to SRS2 or srs2-7DE (Figure 3C).

Moreover, the percentage of crossovers associated with GC

increases three-fold in srs2D and two-fold in srs2-7AV compared

to SRS2 or srs2-7DE (Figure 3C). Similar to the srs2D mutants, the

increase in crossovers is associated with a reduction in non-

crossover repair efficiency in the srs2-7AV mutant (Figure 3C);

thus, DSB repair defects in the absence of Srs2 phosphorylation

likely indicate a specific failure to carry out repair via the SDSA

pathway that results in non-crossover products.

Srs2 phosphorylation affects turnover of Srs2, but not
turnover of Rad51, during strand invasion in DSB repair

Our analysis indicates that Srs2 phosphorylation is required for

Rad51-dependent DSB repair. Although we found that Srs2

phosphorylation is not essential for the removal of toxic Rad51

nucleofilaments at DNA gaps or during DSB repair by SSA, it

might be specifically required to remove Rad51-dependent

recombination intermediates initiated at D-loop intermediate.

To investigate this possibility, we analyzed Rad51 binding to DSBs

by ChIP and Q-PCR in SRS2 and srs2 phospho-mutants. We used

DNA primers that amplified the region of homology located on

donor chromosome III. Using this strategy, proteins localizing

either at broken or recipient chromosomes will be immunopre-

cipitated at the DSB when the invading strand is in duplex DNA,

which most likely represents the D-loop. As shown in Figure 4A,

Rad51 protein is undetectable at the donor MAT locus before HO

induction, while it is loaded at the DSB with similar kinetics in

SRS2 and all srs2 mutated strains. Thus, we conclude that Rad51-

mediated strand invasion occurs with similar kinetics in SRS2 and

srs2 mutants. We also conclude that Rad51 is removed from the

DSB with similar kinetics in all contexts and strains analyzed.

Thus, DSB repair defects in srs2D or srs2-7AV mutants are

unrelated to an abnormal persistence of Rad51 after strand

invasion.

Previous findings have indicated that Srs2 is loaded at DSBs

[47]. We asked whether Srs2 phosphorylation could influence its

ability to be recruited to DSBs in our GC system. Using the same

ChIP strategy employed above, we found that Srs2 is sited at the

invading strand with a three-fold enrichment (Figure 4B). The Srs2

and Srs2-7DE proteins are loaded and dislodged from DNA with

kinetics resembling that of Rad51, but the Srs2-7AV protein

accumulates only at later times and abnormally persists on DNA

for at least 24 hours after DSB induction; notably, Rad51 has

been displaced from DNA, when Srs2-7AV protein accumulates

(Figure 4).

Figure 4. Srs2 phosphorylation controls turnover of Srs2 but not Rad51 at the invading strand during DSB repair. Proteins extracts
were prepared from the indicated strains, fixed in formaldehyde and analyzed by ChIP using anti-Rad51 (A) or anti-Srs2 antibodies (B). After DNA
cross-linking reversion, real-time PCRs were performed to quantitatively analyze the ChIP results. The DNA region amplified by PCR is located on
donor sequence on Chromosome III.
doi:10.1371/journal.pgen.1000858.g004

Cdk1-Targeted Srs2 Promotes Recombinational Repair
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In summary, the data in Figure 4 suggest that Srs2 is loaded at

the D-loop during GC and its proper recruitment is governed by

Cdk1-dependent phosphorylation. However, the DSB repair

defects in srs2-7AV or srs2D mutants appear not be related to

inefficient metabolism of Rad51 nucleofilaments at donor DNA

sequences.

Sumoylation of Srs2 is responsible for the recombination
defects in srs2-7AV phosphomutants

In the course of our studies on Srs2 phosphorylation, we noticed

that in response to massive DNA damage, such as treatment with

0.3% MMS, Srs2 accumulates as additional modified isoforms,

which can be visualized as a ladder on SDS-PAGE analysis

(Figure 5A). These Srs2 protein isoforms are recognized by SUMO-

specific antibodies (Figure 5A). Preliminary characterization of Srs2

sumoylation indicates that none of the well-characterized SUMO

ligases, including Siz1 and Siz2, are involved in this modification

(Figure S1A). Three putative sumoylation sites have been mapped to

the C-terminus tail of Srs2 (Figure 1A). Our data indicated that DNA

damage-induced sumoylation of Srs2 was abolished in srs2-3KR

mutants, in which the three lysine residues in the motifs identified as

modified by SUMO were mutated to arginine (Figure 5A). Notably,

the Srs2-3KR protein can be fully phosphorylated (Figure S1B).

Intriguingly, while sumoylation of native Srs2 is induced at 0.3%

MMS, the unphosphorylatable Srs2-7AV protein can be detected as

SUMO-modified isoforms at ten-fold lower MMS doses (Figure 5A).

Thus, while sumoylation and phosphorylation can occur indepen-

dently, Srs2 accumulates in a sumoylated form in the absence of

phosphorylation.

The biological relevance of Srs2 sumoylation is still obscure, as

extensive studies of the phenotypes of the srs2-3KR mutant were

inconclusive (D. Callahan and H. Klein, unpublished results).

However, the finding that unphosphorylatable Srs2 is hyper-

sumoylated prompted us to ask if the srs2-7AV mutant defects in

recombinational repair might be related to Srs2 sumoylation. To

test this, we mutagenized the sumoylation consensus sites in the

srs2-7AV mutant to create the srs2-7AV3KR allele, which is

simultaneously impaired for phosphorylation and sumoylation.

We then tested the behavior of the srs2-7AV3KR mutant in the

DSB repair GC system in which srs2-7AV mutant was highly

sensitive (see Figure 3). We found that srs2-7AV3KR mutant

survived DNA damage (Figure 5B); DSB repair is accomplished

efficiently and a normal level of crossovers is seen in srs2-7AV3KR

(Figure 5B). In addition, the srs2-7AV3KR mutant correctly

reversed the checkpoint response after DSB induction and repair,

as seen by Rad53 kinase dephosphorylation (data not shown).

Furthermore, the srs2-3KR mutant, which is only impaired in

sumoylation, can accomplish DSB repair (Figure 5B). To see if

ablation of Srs2 sumoylation rescues the phosphorylation defects

in recombinational repair in other contexts, we crossed the srs2-

7AV3KR mutant with the rad27D mutant to generate rad27D srs2-

7AV3KR double mutants. While the rad27D srs2-7AV double

mutants never form viable spores (see Figure 2A), we found that

rad27D srs2-7AV3KR double mutants developed into visible

colonies (17/25 of total cases analyzed), although the double

mutant grew very slowly (Figure 5C). This partial suppression

highlights the importance of Srs2 protein modifications when it is

likely that more than one lesion is formed.

Taken together, the data in Figure 5 indicate that Srs2 is

sumoylated in vivo. Sumoylation of Srs2 is not required for DSB

repair, but the recombinational repair defects in unphosphoryla-

table srs2-7AV mutants are largely related to the unscheduled

sumoylation of the protein.

Cdk1-targeted role of Srs2 is exerted independently of its
interaction with PCNA

The sumoylation consensus sites are located in the last 138

residues of the C-terminus tail of Srs2 (Figure 1A), which also

mediates the interaction with PCNA [21]. Hence, we asked if this

tail is important for the Cdk1-dependent role of Srs2. As shown in

Figure 6, we found that the srs22DC138 mutant is viable after

induction of a HO-mediated DSB and also when combined with a

rad27D. Conversely, unphosphorylatable srs2-7AV mutants lacking

the PCNA-interaction domain (srs2-7AVDC138) are lethal in both

contexts. These data suggest that Cdk1 targets Srs2 to promote

recombinational repair independently of the interaction with

PCNA and sumoylation. Moreover, elimination of sumoylation

sites, but not deletion of the Srs2 tail containing the same sites,

suppresses the recombination defects in the srs2-7AV mutant.

Discussion

Increasing evidence suggests that cell cycle-dependent kinase

Cdk1 is required for the DNA damage response [32], so changing

the general view that in the presence of DNA lesions Cdk1 has to

be inhibited to allow sufficient time for DNA repair. It rather

suggests that Cdk1 is actively involved in DNA repair. Cdk1

phosphorylates Sae2, which is part of the DSB resection

machinery, and is needed to promote HR [35]. Sae2 is the only

Cdk1 target that functions in DSB repair identified thus far,

although Cdk1 is required at later steps during HR [33]. Cdk1 also

phosphorylates the budding yeast Srs2 protein [30,31] a member

of the evolutionarily conserved family of UvrD proteins, which

displays both DNA unwinding [22] and sDNA translocation

activities in vitro [18,19]. The DNA translocase activity of Srs2 is

essential to disrupt toxic Rad51 nucleofilaments and prevent

unwanted recombination events, while the helicase activity of Srs2,

both in yeast and plants, is thought to be required to dismantle

DNA structures mimicking a D-loop [23,24].

One key finding in the present study is that Cdk1-dependent

phosphorylation of Srs2 is required to complete the SDSA pathway,

thus Srs2 is a novel target for Cdk1 in DSB repair. Srs2

phosphorylation controls the quality of DSB repair by preventing

crossover outcome. Since we found that Srs2 phosphorylation is not

required for the removal of toxic Rad51 filaments, we suggest that

Cdk1 targets Srs2 helicase to dismantle D-loop structures in order to

favor non-crossover products.

Srs2 phosphorylation promotes recombinational repair,
but is dispensable for reversal of toxic Rad51
nucleofilaments at gaps

Recombination can be both prevented and stimulated in srs2

mutants, suggesting a dual role for Srs2 in HR. The finding that

Srs2 is a DNA translocase that antagonizes the formation of

unscheduled Rad51 filaments explains certain srs2 phenotypes in

HR that are suppressed by ablating RAD51; these include the

synthetic lethality with sgs1 mutants or high sensitivity to UV-light

[13,16]. Nevertheless, srs2 mutants are defective in Rad51-

dependent DSB repair [25,28] or lethal when combined with

rad27D mutants [14,41]. These are contexts in which HR is

essential to restore DNA lesions and the activity of Srs2 is required

to promote homologous recombinational repair.

In this study we analyzed the recombination phenotypes of two

srs2 mutants that mimicked either the constitutive unphosphory-

lated (srs2-7AV) or Cdk1-dependent phosphorylated (srs2-7DE)

protein isoforms. We found that srs2-7AV unphosphorylatable

mutants display only a subset of srs2D phenotypes and, in particular,

they do not display those phenotypes that are suppressed by RAD51

Cdk1-Targeted Srs2 Promotes Recombinational Repair

PLoS Genetics | www.plosgenetics.org 7 February 2010 | Volume 6 | Issue 2 | e1000858



Figure 5. Srs2 sumoylation causes recombination defects in the unphosphorylatable srs2-7AV mutant. (A) Srs2 was immunoprecipitated
from protein extracts prepared from the indicated yeast strains under DNA damaging conditions. Blots were probed first with anti-SUMO antibodies,
then stripped and reprobed with anti-Srs2 antibodies. (B) Cell survival, DSB repair efficiency and rate of crossover formation were determined for the
indicated strains as in Figure 3C. (C) Tetrads obtained from sporulation of diploids heterozygous for the rad27D and srs2-7AV3KR mutations. Double
mutant spores are indicated by the white squares.
doi:10.1371/journal.pgen.1000858.g005
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deletion. In fact, srs2-7AV mutants are not UV-sensitive or

synthetically lethal with sgs1D, but are non-viable when combined

with rad27 mutants or treated with the DSB-inducing drug zeocin.

Thus, functions of Srs2 in preventing unscheduled recombination or

in allowing efficient recombinational repair are genetically separa-

ble. The phosphorylation of Srs2 is dispensable for the removal of

toxic Rad51 nucleofilaments assembled at gaps, while it is essential

to promote recombinational repair.

Srs2 phosphorylation is required during DSB repair to
complete the SDSA pathway

In accordance with the finding that Srs2 phosphorylation is

essential to promote recombination, we found that it is also

required for Rad51-mediated DSB repair. In particular, we have

been able to show that Srs2 phosphorylation is necessary to

complete SDSA in DSB repair. ChIP data on Rad51 are

consistent with the idea that strand invasion is not affected and

that Rad51 protein does not persist on the D-loops in srs2D or srs2-

7AV mutants, although we cannot rule out that presynaptic

filament assembly may somehow be affected in the absence of Srs2

or its phosphorylation. ChIP analysis conducted on Srs2 suggests

that the protein is found at DSBs upon strand invasion, thus it is

likely loaded at D-loops. Taken together, these data are consistent

with a role of phosphorylated Srs2 in SDSA pathway, but another

helicase/translocase may be implicated in removing Rad51 at the

D-loops. We favour the idea that Cdk1 targets Srs2 to dismantle

the D-loop intermediate in SDSA (Figure 7) perhaps after DNA

synthesis has extended the invading strand. Srs2 helicase activity

might be stimulated by binding to the D-loop structure and/or by

interaction with other recombination factors. ChIP data conduct-

ed on unphosphorylatable Srs2-7AV at the invading strand suggest

that the mutated protein accumulates at later times and is not

rapidly dislodged from DNA as the wild-type protein. The fact

that unphosphorylatable Srs2 appears glued at the D-loops is

evocative of a protein working very inefficiently and whose

turnover is largely prevented. It is likely that the unscheduled

accumulation of the protein on the DNA might contribute to

impaired cell viability and, consistent with this idea, the lethal

phenotype of srs2-7AV mutant in response to DSBs is dominant

(Figure S2).

Our data indicate that the proportion of srs2-7AV cells that do

not survive DSB repair via GC is higher than the one, which fails

to repair DNA lesion (Figure 3). This suggests that a fraction of

srs2-7AV cells might die because of checkpoint-mediated arrest, as

in srs2D mutants [25]. However, Srs2 phosphorylation is not

required for recovery during DSB repair by SSA, that is, when

Srs2 is probably engaged to remove toxic Rad51-depedent DNA

structures, rather than working at the D-loop intermediate [45].

Thus, the checkpoint recovery defect in srs2-7AV mutants might

have different causes during DSB repair by GC or SSA; as

described below, perhaps some aspects of recovery defect in srs2

mutants in GC could be explained considering that Cdk1-

dependent phosphorylation was no longer required for Srs2

recombination activity, if sumoylation is also prevented.

Cdk1 activity prevents unscheduled sumoylation of Srs2
We found that Srs2 sumoylation can be detected in vivo in

response to heavy DNA damage. Protein modification is prevented

ablating three lysine residues located in the extreme C-terminus tail

of Srs2. Sumoylation and Cdk1-dependent phosphorylation

modifications of Srs2 are independent events, but when phosphor-

ylation fails, sumoylated Srs2 accumulates. There is a functional

relationship between these two DNA damage induced modifica-

tions, since ablation of sumoylation residues largely rescues the

recombinational repair phenotypes of srs2-7AV mutants.

What may be the mechanism for the toxicity of sumoylation in

the absence of phosphorylation? Sumoylation of Srs2 alone appears

unnecessary for many of its recombination functions (D. Callahan

and H.Klein, unpublished results); here we show that it is not

essential in DSB repair (see Figure 5B and Figure 6). While the

biological significance of Srs2 sumoylation waits to be elucidated, we

speculate that it might be important for degradation of Srs2 protein.

Srs2 can interact physically with Slx5 [39], that in complex with

Slx8, has been implicated in degradation of sumoylated proteins

bound to irreparable DNA breaks at the nuclear periphery [8,9].

Our data suggest that Cdk1-dependent phosphorylation of Srs2

counteracts its sumoylation, which takes over only in response to

massive DNA damage. Thus, in a possible scenario, unpho-

sphorylated and sumoylated Srs2 is trapped at DSB and becomes

channeled via the Slx5/Slx8 pathway to the nuclear periphery

(Figure 7).

Since this emergency nuclear periphery pathway intervenes to

degrade proteins in response to irreparable DSBs, it might

Figure 6. The Cdk1-dependent role of Srs2 does not depend on
its interaction with PCNA. (A) Viability of SRS2 and srs2-7AV strains,
with and without the PCNA interacting domain, after DSB induction. (B)
Tetrads obtained from sporulation of diploids heterozygous for rad27D
and the indicated srs2 mutations. Double mutant spores are indicated
by the white squares.
doi:10.1371/journal.pgen.1000858.g006
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normally act on phosphorylated and sumoylated Srs2 and,

therefore, Srs2-7AV cannot be eliminated. Conversely, after

successful DSB repair, phosphorylated Srs2 could be recycled by

other routes, and independent of sumoylation. Intriguingly, the

unscheduled Srs2-dependent sequestration of DSBs to the

periphery might explain the checkpoint recovery defects in srs2-

7AV and perhaps also that of srs2D, if we imagine that another

unregulated DNA helicase takes over in the absence of Srs2. Our

studies did not show any obvious alterations in Srs2 protein levels

in srs2 phospho-mutants and/or SUMO-mutants (M.Saponaro

and G.Liberi, unpublished results), but local protein degradation

events at damaged DNA could be relevant.

Elimination of sumoylation compensates for the absence of

phosphorylation of Srs2 in DSB repair, but paradoxically this rescue

requires the last 138 residues of Srs2 that are not normally necessary

for DSB repair. Hence, this suppression might require interaction

with other factors. Preventing sumoylation in the unphosphoryla-

table Srs2 rescues recombination defects that ensue after a single

DSB, but the importance of these Srs2 modifications become

evident when many breaks occur, as in the rad27D mutants.

Roles of Srs2 modifications in replication-induced DNA
damage

We found that Srs2 phosphorylation is essential for recombi-

national repair of spontaneous damage occurring during S-phase

in rad27D mutants. Similar to the response to DSBs, sumoylation

of Srs2 is a main cause of death in srs2-7AV phospho-mutants. It is

more difficult to predict the kind of damage which requires

phosphorylated Srs2 in rad27D mutants. Rad27 is required for

Okazaki DNA fragment processing [48] and in its absence, Srs2

might dismantle DNA and/or RNA structures that block HR. In

any case, based on our conclusion that Srs2 phosphorylation is not

essential for the processing of toxic Rad51 filaments, we think it

more probable that the helicase activity, rather than translocase

activity, is crucial for the survival in rad27D mutants. This

proposed role of phosphorylated Srs2 in replication might seem at

odds with the role suggested for Srs2 in preventing recombina-

tional repair during S-phase through recruitment by sumoylated

PCNA [20,21]. However, in PRR mutants, Srs2 is proposed to be

recruited by PCNA to disrupt Rad51 filaments at DNA gaps,

while in the absence of Rad27, we are considering that Srs2 acts in

Figure 7. Model for the roles of the Srs2 modifications in recombination. Srs2 removes toxic Rad51 filaments by translocating on ss-DNA. In
response to a DSB, Cdk1 targets Srs2 helicase to dismantle the D-loops, thus allowing SDSA pathway that limits DNA exchanges. When Srs2
phosphorylation is prevented, unscheduled sumoylation takes over and the DSB is channeled into the Slx5-dependent pathway.
doi:10.1371/journal.pgen.1000858.g007
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a PCNA-independent and phosphorylation-dependent role as a

helicase, rather than as a translocase. Importantly, srs2-7DE

mutants slightly suppress the MMS sensitivity of PRR mutants,

suggesting that the phosphorylated Srs2 is less efficient as a

DNA translocase than the non-phosphorylated isoform. This is

unmasked in PRR mutants, where it is likely that many sDNA

breaks occur. Srs2 phosphorylation might modulate its interaction

with PCNA, a hypothesis that will be interesting to test in the

future.

Concluding remarks
Our data indicate that Srs2 is a new target of Cdk1 kinase in

DSB repair, acting at the level of strand invasion, rather than

during DNA end resection. Srs2 phosphorylation is required to

limit the extent of DNA exchanges during DSB repair with a

function that is genetically separable from its role in processing

toxic Rad51 filaments. We suggest that Cdk1-mediated phos-

phorylation might control, throughout the interaction with

PCNA and/or other factors, the ability of Srs2 to function as a

translocase or a helicase that inhibits or allows HR depending on

the context. Furthermore, our data unravel a novel aspect of

Cdk1-dependent regulation in counteracting untimely sumoyla-

tion events, which might become toxic for recombination if not

properly scheduled.

Materials and Methods

Strains and plasmids
Genotypes of the strains used in this study are listed in Table S1.

Deletion strains were obtained by the one-step PCR method and

multiple mutant strains were derived from meiotic segregants of

appropriate crosses. The srs2-7DE phospho-mutant was construct-

ed by a site-directed mutagenesis strategy already described to

construct the srs2-7AV mutant [39]. Mutations in SRS2 were

introduced at the seven consensus sites for the Cdk1 kinase

(T604D, S698E, S879E, S893E, S938E, S950E and S965E).

Construction of srs2-3KR strain, containing mutations K1081R,

K1089R and K1142R at SUMO-consensus sites, will be described

in detail elsewhere. srs2-7AV3KR mutant was constructed as follow:

a NAT selection cassette was integrated downstream of the srs2-

3KR mutated gene. DNA primers were designed to amplify a DNA

region containing both the 3KR mutations and the NAT cassette.

This DNA region was then used to replace, by transformation, the

C-terminus of the srs2-7AV. A similar PCR-mediated strategy was

used to delete the C-terminus-PCNA interaction domain in both

wild type and srs2-7AV mutants. SRS2 and srs2 mutants were also

cloned into the low copy-number Ycplac22 vector by gap-repair

procedure or using PCR-based strategies described above and

were used in all HO-based experiments. As tested by Western

blotting, protein levels are similar when Srs2 or its mutated

versions were expressed from SRS2 chromosomal locus or from the

Ycplac22 centromeric plasmid.

UV and drug treatments
Log-phase cells were spread on YPD plates, irradiated with UV

light (254 nm) and incubated in the dark; cell survival was

compared to that of untreated controls. Log-phase cultures were

incubated with different doses of zeocin (Invitrogen) for 1 hour and

cell survival was calculated by comparing the plating efficiency

with untreated cells. The UV and zeocin curves are the average of

three independent experiments. Spot assays were performed by

evaluating the growth of serially diluted cultures on synthetic

complete medium containing adenine at a final concentration of

0.7 g/liter, with or without MMS (SIGMA).

DSB repair efficiency, crossover frequency, and viability
measurements

Relative frequencies of survival of cultures plated on glucose

and galactose using the SSA and GC DSB HO-inducible systems

were calculated as previously described [25,29]. Product formation

and analysis of crossover formation were assessed by Southern

blotting analyses as described in [25]. The results shown are the

average of three to five independent experiments.

ChIP experiments and quantitative PCR
Asynchronous cultures were grown overnight at 28uC in YEP

media containing 2% raffinose. When cultures reached mid log-

phase, 15 mg/ml nocodazole was added to synchronize the cells in

G2/M. Expression of the HO endonuclease was induced by

addition of 2% galactose for the indicated times. ChIP analysis was

carried out as previously described [49]. Samples were incubated

with 1% Formaldehyde for 20 min with the anti-Rad51 ChIP and

45 minutes with the anti-Srs2 ChIP. Immunoprecipitation was

carried out with clarified extracts using anti-Rad51 (kindly gift of

Patrick Sung, Yale University, New Heaven) or anti-Srs2 (Santa

Cruz Biotechnology) antibodies overnight at 4uC. Levels of

immunoprecipitated DNAs were measured by quantitative real-

time PCR using the SYBR Green technique (SYBR Green PCR

Master Mix, Applied Biosystems) and run in an Applied

Biosystems 7500 Fast Real-Time PCR System. Sequences of the

DNA primers are listed in the Table S2. Dissociation stage curves

were checked to test primer specificity. The results were analyzed

with the 2-DC
T method as previously described [50]. For the ChIP

anti-Rad51 experiments the relative enrichment was determined

by the fold increase of ChIPed DNA relative to that prior to DSB

induction; for the ChIP anti-Srs2 the absolute 2-DC
T variation

after the subtraction of the 2-DC
T of the ChIP carried out in

parallel in a srs2D mutant is shown. The total amount of DNA is

normalized respect to an unrelated locus near ARS305.

Protein analysis and detection of the sumoylated forms
Proteins were extracted using a TCA protocol [30]. Western

blotting analysis was performed as previously described [30] with

anti-Rad53 [51] and anti-Srs2 (Santa Cruz Biotechnology)

antibodies. Immuno-precipitation of Srs2 was carried out with

an anti-Srs2 antibody or without antibody as a control on proteins

extracted by the TCA protocol using a 50 ml culture of cells at

a density of 107 cells/ml. After a series of washings with JS

buffer (50 mM Hepes pH 7,5, 150 mM NaCl, 1,5 mM MgCl2,

1% glycerol, 5 mM EGTA, 1% Triton X-100), proteins were

resuspended in a suitable volume of Laemmli buffer and separated

on a 10% acrylamide SDS-PAGE gel. The blots were probed with

a rabbit anti-SUMO antibody (kindly gift of Xiaolan Zhao,

Memorial Sloan-Kettering Cancer Center, New York) and a

HRP-labeled secondary antibody (Amersham). Blots were then

stripped with the commercial solution Restore Western Blot

Stripping Buffer (Thermo Scientific) and probed with the anti-Srs2

antibody (Santa Cruz Biotechnology).

Supporting Information

Figure S1 Analysis of Srs2 sumoylation and its interplay with

phosphorylation. (A) Analysis of Srs2 sumoylation was performed

in E3 ligase deficient mutants, as described in Figure 5. (B) The

DNA damage-induced Srs2 phosphorylation was evaluated in

SRS2 and srs2-3KR mutants upon exposure to 0.02% MMS for 3

hours.

Found at: doi:10.1371/journal.pgen.1000858.s001 (0.22 MB TIF)
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Figure S2 The lethal phenotype in recombinational repair of

srs2-7AV mutants is dominant. Cell survival in response to DSB

induction were evaluated in the presence of a genomic copy of

SRS2 and srs2 phospho-mutants carried on a low copy number

plasmid.

Found at: doi:10.1371/journal.pgen.1000858.s002 (0.05 MB TIF)

Table S1 Yeast strains used in this study.

Found at: doi:10.1371/journal.pgen.1000858.s003 (0.09 MB

DOC)

Table S2 DNA primers used in ChIP and Q-PCR experiments.

Found at: doi:10.1371/journal.pgen.1000858.s004 (0.03 MB

DOC)
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