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A B S T R A C T   

Previous studies have identified localized associations between childhood environment – namely their socio- 
economic status (SES) – and particular neural structures. The primary aim of the current study was to test 
whether associations between SES and brain structure are widespread or limited to specific neural pathways. We 
employed advances in whole-brain structural connectomics to address this. Diffusion tensor imaging was used to 
construct whole-brain connectomes in 113 6− 12 year olds. We then applied an adapted multi-block partial-least 
squares (PLS) regression to explore how connectome organisation is associated with childhood SES (parental 
income, education levels, and neighbourhood deprivation). The Fractional Anisotropy (FA) connectome was 
significantly associated with childhood SES and this effect was widespread. We then pursued a secondary aim, 
and demonstrated that the connectome mediated the relationship between SES and cognitive ability (matrix 
reasoning and vocabulary). However, the connectome did not significantly mediate SES relationships with ac-
ademic ability (maths and reading) or internalising and externalising behavior. This multivariate approach is 
important for advancing our theoretical understanding of how brain development may be shaped by childhood 
environment, and the role that it plays in predicting key outcomes. We also discuss the limitations with this new 
methodological approach.   

1. Introduction 

Structural brain connectivity changes profoundly from birth to early 
adulthood (e.g. see Barnea-Goraly et al., 2005; Muftuler et al., 2012; 
Vértes and Bullmore, 2015). These changes in structural connectivity 
enhance the efficiency of information exchange across large anatomical 
distances, something thought crucial for developmental changes in 
higher order cognitive abilities like fluid reasoning, behavioral regula-
tion (e.g. internalising and externalising behaviors) and educational 
progress, like learning to read and mathematics (Tau and Peterson, 
2010). Fractional Anisotropy (FA) is one way of measuring the integrity 
of white matter, a key component in changes in structural brain con-
nectivity. FA increases in widespread regions across the brain during 
childhood and adolescence (Giorgio et al., 2010; Lebel et al., 2017; 
Snook et al., 2005), with substantial individual variation (Fields, 2008; 
Johansen-Berg, 2010; Scholz et al., 2009), and differences in FA devel-
opment are associated with a range of developmental markers such as 
reading (de Moura et al., 2016; Deutsch et al., 2005; Klingberg et al., 
2000; Qiu et al., 2008; Vandermosten et al., 2012), maths (Bathelt et al., 

2019; Matejko and Ansari, 2015; Tsang et al., 2009) and behavioral 
difficulties (Loe et al., 2013; Muetzel et al., 2018; Waller et al., 2017). 

But what drives these individual differences in FA? The childhood 
environment is likely to have a profound effect on neural development 
(Brito and Noble, 2014; Hackman and Farah, 2009; Johnson et al., 2016; 
Lipina and Evers, 2017; Lipina and Posner, 2012; Ursache and Noble, 
2016). There is some evidence that the heritability of FA appears to 
decrease with age, in contrast to white matter volume, which tends to 
have stable high heritability across development (Chiang et al., 2011; 
Douet et al., 2014; Richmond et al., 2016). In adulthood, socioeconomic 
status (SES, e.g. income, education or occupation) is significantly asso-
ciated with FA in multiple regions across the brain (Gianaros et al., 
2013; Noble et al., 2013). These differences emerge in childhood: 
parental SES is positively associated with FA in a number of tracts across 
the child brain (Dufford and Kim, 2017; Gullick et al., 2016), and in 
particular within frontal and parietal cortices (Ursache and Noble, 
2016). In the study by Gullick et al., of 32 7–11 year old children using 
tract based spatial statistics (TBSS), FA was positively associated with 
parental SES in clusters across the brain: the left corticospinal tract, right 
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anterior inferior, fronto-occipital fasciculus, left superior longitudinal 
fasciculus and left temporal inferior longitudinal fasciculus (Gullick 
et al., 2016). Similar results were found in an another TBSS analysis by 
Dufford and Kim of 27 8− 10 year old children, in which higher FA in the 
uncinate fasciculus, cingulum bundle, inferior longitudinal fasciculus, 
superior longitudinal fasciculus, and corticospinal tracts was found to be 
significantly related to parent income (Dufford and Kim, 2017). 

However, these studies have primarily focussed on the relationship 
between the environment and localized FA differences using univariate 
analyses in which signals from the brain are analysed voxel by voxel, 
such as comparisons between specific regions of interest (ROIs) or TBSS 
(for a review and critique of this approach, see Raizada and Kishiyama, 
2010). These studies have been vital in demonstrating the associations 
between individual differences in connectivity and the childhood envi-
ronment. The focus has been on regions or connections known to play a 
key functional role in particular behavioral or cognitive processes in 
adulthood. However, because of this focus on a voxel-wise approach, it 
remains unclear whether environmental associations are specific or 
whether there is a more generalized, widespread association between 
brain structure and the environment. Indeed, given that the brain is 
organized into highly connected distributed networks (Cao et al., 2014; 
Fair et al., 2009; Richmond et al., 2016) it is likely that the impact of 
childhood environment will not be isolated to particular localized brain 
areas or circuits (Raizada and Kishiyama, 2010; Richmond et al., 2016). 
For example, Smith et al. demonstrated a widespread association be-
tween functional connectivity and 280 environmental, behavioral and 
demographic (including multiple SES measures, like income) variables 
in the adult connectome (Smith et al., 2015). And Kim et al. (2019) 
showed that connectome efficiency across a wide range of regions was 
significantly associated with income-needs ratio, in girls aged 6–11 
years. 

This backdrop motivated the conceptual rationale for our study. To 
complement the localist approach within the field to-date, we adopted a 
systems neuroscience approach, by creating whole-brain structural con-
nectomes. Voxel-wise methods rely on spatially overlapping associations 
between FA and other variables across children. This approach is pri-
marily designed to identify focal and consistent differences across in-
dividuals, but will likely underestimate the contribution of whole-brain 
network structure (Bathelt et al., 2018). For example, Bathelt et al. 
contrasted the global organization established using the FA connectome, 
versus that identified using a voxel-wise FA skeleton (TBSS) in children. 
They found that TBSS was far less sensitive to academic development 
(Measured using the Word Reading and Numerical Operations tasks 
from the Wechsler Individual Achievement Test 2nd edition UK) than 
the connectome method (Bathelt et al., 2018). This is because FA dif-
ferences must necessarily overlap across children to yield significant 
voxel-wise effects, whereas a connectome captures effects that may be 
spatially variable across children, but which nonetheless have a 
consistent impact on organisation within different regions or globally. 

The current study has two aims. Firstly, to establish whether the 
relationship between childhood SES and neural connectivity is specif-
ically localized or widespread, using whole-brain structural con-
nectomics (Hagmann et al., 2007; Zalesky et al., 2010). Next, given that 
key childhood outcomes such as higher-order cognition, academic 
ability and behavior rely on efficient communication across distributed 
brain networks (Pugh et al., 2001; Tau and Peterson, 2010), the FA 
connectome has the potential to explain why childhood SES is signifi-
cantly associated with these outcomes (Gullick et al., 2016; Noble et al., 
2013). Accordingly, the study’s second aim is to investigate whether the 
FA connectome provides a mediating pathway between a childhood SES 
and differences in cognitive ability (matrix reasoning and vocabulary), 
academic attainment (reading and maths) and behavior (externalising 
and internalising behaviors). These questions are critical to advancing 
our theoretical understanding of how and why the environment is 
important for child development. 

Capturing complex associations between aspects of childhood SES, 

the structural connectome, and child outcomes presents key challenges, 
such as high dimensionality, multicollinearity and bridging multiple 
different data types. PLS methods (Wold, 1975, 2004), are particularly 
suited to this context. We applied PLS techniques (McIntosh and 
Lobaugh, 2004) using the Regularized Generalized Canonical Correla-
tion Analysis (RGCCA) framework (Tenenhaus and Tenenhaus, 2011, 
2014) to investigate the associations between childhood SES, the 
structural connectome and child outcomes, namely general cognitive 
ability (matrix reasoning and vocabulary), reading and maths, and 
internalising and externalising behaviors. The following questions were 
addressed: 1) Is the structural connectome significantly related to 
childhood SES (including income, education and neighbourhood 
deprivation)? 2) Does the structural connectome mediate the relation-
ship between childhood SES, and cognition, academic ability or 
behavior? 

2. Methods 

2.1. Participants 

Data were collected from 6− 12 year olds living in the East of England 
in the UK. All children took part in academic and cognitive assessments 
on a one to one basis with a researcher over three hours. Their primary 
caregiver completed questionnaires about the behavior of their child 
and their SES. Children took part in a 20 min structural magnetic 
resonance imaging (MRI) scan during which Diffusion Tensor Images 
(DTI) and T1-weighted images were acquired. It was not a requirement 
for recruitment, but all children were native English speakers. 

Given that recruitment of participants often suffers from a bias to-
wards higher SES families (Fry et al., 2017; Henrich et al., 2010; Sak-
shaug et al., 2016; Wolke et al., 2009), particular care was taken to 
ensure the sample was reflective of the spread of SES in the UK. Par-
ticipants were primarily recruited through schools that have over 27 % 
of students receiving free school meals (FSM). Flyers and posters were 
sent to all Sure Start Children’s Centres in Cambridge City and South 
Cambridgeshire and to houses, GP’s and library’s in areas across Cam-
bridge City that have the highest percentage of children living under the 
poverty line. Parents could contact the research team by email, phone or 
by returning an expression of interest form. Each family was reimbursed 
for their time. Parents provided written informed consent and the study 
protocol was approved by the Psychology Research Ethics Committee at 
the University of Cambridge (references: PRE.2015.11 and 
PRE.2017.102). 

We initially recruited and tested 134 children in total. Twenty one 
DTI scans were excluded due to large movement (maximum displace-
ment above 3 mm in the DTI sequence, as calculated by FSL Eddy). The 
end result was 113 useable datasets for the main analysis. Their mean 
age was 9.3 years (±1.4 SD years, range: 6.9–12.8 years), 55 were boys 
and 58 were girls, and 87 % of the sample were right-handed. Their 
mean equivalised income (income adjusted for household size, Any-
aegbu, 2010) was £29,277 (±£16,034 SD, range: £3,750 to £75,000). 
The UK poverty line is defined as 60 % of median income, (the median 
income was £29,060 when most data were collected). Accordingly, we 
estimate that 32 % of the sample were living below the poverty line 
when tested. Overall, 84 % of our sample were White, with 15 % of the 
sample made up of Asian/Asian British and Black/-
African/Caribbean/Black British. The proportion of ethnic minority 
families in the sample is slightly higher than would be expected for 
Cambridgeshire, which is over 90 % White (https://cambridgesh 
ireinsight.org.uk/population/). 

2.2. The structural connectome 

Magnetic resonance imaging data were acquired at the MRC Cogni-
tion and Brain Sciences Unit, Cambridge UK. All scans were obtained on 
the Siemens 3 T Prisma-fit system (Siemens Healthcare, Erlangen, 
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Germany), using a 32-channel quadrature head coil. T1-weighted vol-
ume scans were acquired using a whole brain coverage 3D Magnetiza-
tion Prepared Rapid Acquisition Gradient Echo (MP-RAGE) sequence 
acquired using 1 mm isometric image resolution. Echo time was 2.98 ms, 
and repetition time was 2250 ms. Diffusion scans were acquired using 
echo-planar diffusion-weighted images with an isotropic set of 68 non- 
collinear directions, using a weighting factor of b = 1000s*mm-2, 
inter-leaved with 4 T2-weighted (b = 0) volumes. Whole brain 
coverage was obtained with 60 contiguous axial slices and isometric 
image resolution of 2 mm. Echo time was 90 ms and repetition time was 
8500 ms. Children watched a film of their choice whilst undergoing the 
20-minute MRI scan. The white-matter DTI connectome was constructed 
by estimating the most probable white matter connections for each 
participant and then constructing connectivity matrices from the 
average Fractional Anisotropy (FA) between each pair of brain regions. 

An overview of the pre-processing steps is given in Fig. 1. Raw MRI 
scans were first converted from DICOM to compressed NIfTI-1 format 
using the dcm2niitool (http://www.mccauslandcenter.sc.edu/mric 
ro/mricron/dcm2nii.html). The b0 -weighted volume of the DTI im-
ages was used to create a brain mask and all volumes were corrected for 
movement and eddy currents using FSL’s eddy tool. Following this, 
nonlocal means denoising (Coupe et al., 2008) was used to improve the 
signal-to-noise ratio using the Diffusion Imaging in Python (DiPy) v0.11 
package (Garyfallidis et al., 2014). Fractional Anisotropy maps were 
derived for each participant by fitting the diffusion tensor model using 
dtifit from the FMRIB Software Library (FSL) v.5.0.6 (Behrens et al., 
2003). DiPy was then used to fit a spherical constrained deconvolution 
(CSD) (Tournier et al., 2008) model to the 60-gradient direction DTI 
images using a maximum harmonic order of 8. Subsequently, probabi-
listic whole-brain tractography was applied to this CSD model using 8 
seeds in any voxel that had a General FA value greater than 0.2, step size 

equal to 0.5 and with no more than 2 crossing fibres allowed per voxel. 
The T1-weighted images were used to define the brain regions. The 

images were first pre-processed by adjusting the field of view using FSL’s 
robustfov function and denoised using nonlocal means denoising in 
DiPy. A robust brain mask was extracted using the brain extraction al-
gorithm of the Advanced Normalization Tools (ANTs) v1.9 package 
(Avants et al., 2009). The images were then submitted to the recon-all 
pipeline in FreeSurfer v5.3 (http://surfer.nmr.mgh.harvard.edu). 85 
ROI’s were extracted using the Desikan-Killiany parcellation of the MNI 
template (Desikan et al., 2006). 34 regions were extracted for each 
hemisphere and 17 subcortical regions (brain stem, and bilateral cere-
bellum, thalamus, caudate, putamen, pallidum, hippocampus, amyg-
dala, nucleus accumbens). The aparc2aseg tool in FreeSurfer was used to 
convert the surface parcellation of the cortex to a volume parcellation. 
The cortical parcellation was then expanded by 2 mm into the subcor-
tical white matter to ensure that the tracts would intersect the ROIs. 
Finally, the parcellation was transformed into DTI space using a trans-
formation based on the T1-weighted volume and the b0-weighted image 
of the diffusion sequence calculated using FreeSurfer’s bbregister. 

FA-weighted connection matrices were created for each participant 
using the FA values across the streamlines from the CSD model that 
connected each pair of ROIs. The corresponding element in the 
connection matrix for each pair of ROIs was either set to zero if no 
streamlines intersected both ROIs, or to the average FA of the stream-
lines intersecting both ROIs. In order to remove spurious connections, a 
common problem in connectome studies, the matrices were first 
thresholded using consensus thresholding, ensuring that only connec-
tions that are found in over 60 % of the sample are retained (de Reus and 
van den Heuvel, 2013). This resulted in 290 non-zero FA weighted 
connections between brain ROIs (see Fig. 2). Finally, the matrices for 
each subject were reshaped into a single vector and combined across 

Fig. 1. Overview of the pre-processing steps used to derive the DTI connectome. Reprinted with permission from ‘Whole-brain white matter organization, intelli-
gence, and educational attainment’ by Bathelt et al., 2019. 
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subjects, resulting in a 290 × 113 dataset in which each column repre-
sents the FA between each pair of regions for each of the 113 
participants. 

2.3. Childhood outcomes 

Cognitive ability was measured using the Vocabulary and Matrix 
Reasoning subtests from the Wechsler Abbreviated Scale of Intelligence 
II (WASI-II) (Wechsler, 2011). We used the raw scores and incorporated 
age in the PLS analysis. 

Academic ability was measured using reading and maths fluency 
subtests from the Woodcock Johnson III Form B Tests of Achievement 
(WJ III ACH)(McGrew et al., 2007; Woodcock et al., 2001). Raw scores 
were used, and age was incorporated in the PLS analysis. 

Behavioral problems were measured using the Strengths and Diffi-
culties Questionnaire (SDQ) (Goodman, 1997) completed by the pri-
mary caregiver. The SDQ has five subscales relating to externalising and 
internalising behavior (hyperactivity, emotional symptoms, conduct 
problems, peer problems and prosocial behavior), which were included 
in the PLS analysis as individual scales. 

2.4. Socio-economic status 

We used three validated measures of SES. This included traditional 
measures of SES: caregiver income (net household equivalised income 
using the modified OECD equivalence scale, Anyaegbu, 2010), average 
highest level of education for the caregivers (seven point scale based on 
the Hollingshead four-factor index of SES, Hollingshead, 1975) and a 
measure of neighbourhood SES (including average income, employ-
ment, education, health, crime, barriers to housing and services and 
living environment across their postcode), assessed using the Income 
Deprivation Affecting Children Index (IDACI, Office for National 

Statistics, 2015). This final measure is derived from large-scale national 
administrative data based upon the family’s postcode (i.e. which street 
they live on). 

2.5. Partial least squares 

PLS was used to identify the set of FA connections that most strongly 
covaried with childhood SES. PLS is ideally suited to summarising the 
complex relationships between connectomes and other datasets (e.g. 
SES measures), owing to the large number of variables in connectomes, 
which are often multicollinear. PLS is in essence a data reduction 
technique, not unlike a Principal Components Analysis (PCA). But 
instead of deriving latent factors within each dataset separately, it finds 
a set of orthogonal latent variables for each dataset that maximally 
explain the covariance between the datasets (Wold, 1975, 1982). That is, it 
establishes whether there is a relationship between two or more datasets 
and identifies the sets of measures that best model this relationship (e.g. 
SES measures and edges in an FA connectome). Furthermore, when PLS 
is applied using a slight adjustment to Wold’s original algorithm 
(RGCCA with new Mode A, see Tenenhaus and Tenenhaus, 2011, 2014), 
the weights identified for each individual measure (known as outer 
weights) are proportional to the sum covariance between this measure 
and each of the latent variables for the other datasets (Tenenhaus and 
Tenenhaus, 2011, 2014). This means that we can use the outer weights 
to identify the SES measures and structural connections that most 
strongly relate to each other. There are a growing number of applica-
tions of this statistical approach. For example, it has been used to 
establish the relationship between brain structure across 308 regions 
and the cortical expression profiles of 20,737 genes (Whitaker et al., 
2016). 

The ‘PLS’ function from the MixOmics Package (Rohart et al., 2017) 
and a series of in-house scripts developed for this project in R were used 

Fig. 2. Group-average connectome matrix indicating the ROI-by-ROI FA weighted connections, after 60 % consensus thresholding. The ROIs are grouped cortical 
versus subcortical and hemisphere (L = left hemisphere, R = right hemisphere, BS = brain stem (bilateral)). 
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to apply 2-Block Canonical PLS (RGCCA with new Mode A and Horst’s 
scheme function) to investigate the relationships between the 
socio-economic measures and the structural connectome (these scripts 
can be found at https://github.com/ajohnson62). The three SES mea-
sures and the connectome data were used as the two data blocks 
respectively and each variable was standardized (with a mean of zero 
and standard deviation of one). The significance of each pair of latent 
variables extracted was tested using permutation (N = 1000), whilst 
controlling for age and residual head motion, defined as maximum 
frame-wise displacement. Bootstrapping was used to assess the reli-
ability of each outer weight (N = 1000 with replacement). Procrustes 
rotation was applied to the imputed outer weights to account for the sign 
flipping (Bastien, 2008). We then used the bootstrapped weightings to 
construct 95 % confidence intervals. Loadings with bootstrapped con-
fidence intervals not passing zero were considered to load significantly 
onto the latent variables. 

3-block Canonical PLS was implemented using the ‘block.pls’ func-
tion from the MixOmics Package and in-house scripts in order to 
investigate whether the structural connectome partially mediates the 
association between SES and cognitive, academic and behavioral out-
comes in children. The three SES measures, the connectome data and 
either the cognitive, academic or behavioral datasets were used as the 
three data blocks respectively and each variable was standardized. The 
significance of the indirect effect and the reliability of the outer weights 
and path coefficients were tested using 3000 bootstrap samples with 
replacement (Taylor and MacKinnon, 2012). 95 % confidence intervals 
were found for the distribution of the indirect effects from the bootstrap 
samples (Nitzl et al., 2016). If the upper and lower confidence intervals 
did not include zero between them, the structural connectome was 
considered to (partially) mediate the relationship between SES and the 
outcomes. 

3. Results 

3.1. Descriptive analysis 

Prior to our main analyses we calculated some descriptive statistics 
for our measures. These can be seen in Table 1. 

We also checked that none of these measures varied significantly 
with head motion (defined as maximum displacement, using FSL Eddy). 
For each domain we calculated the mean score (except for the SES 
measures where we took the first PC from a PCA, because the scales for 
the individual measures are in different units). None of these correlated 
with head motion: SES: r = 0.01, p = 0.89; cognition r = 0.09, p = 0.35: 
academic ability r=− 0.05, p = 0.61: behavior r = 7.6452e-04, p = 0.99: 

We also tested that childhood SES was not significantly correlated with 
age (r=− 0.13, p = 0.15). Nonetheless, in the subsequent PLS analysis we 
partialled out age and head motion. 

3.2. Age effects in the structural connectome 

Before we proceeded with addressing our two main questions, we 
first tested for significant developmental changes within the structural 
connectome. This was done by simply applying a general linear model, 
with age as the predictor and edge strength as the response. This was 
looped over all 290 edges, revealing that 27.28 % of the edges were 
significantly associated with age if an uncorrected (p < 0.05) threshold 
is used. However none of these survive a family-wise error correction for 
multiple comparisons. Nonetheless, in all subsequent analyses age was 
controlled for by partialling it out of the latent factors identified in the 
PLS analyses. 

3.3. Childhood SES and the structural connectome 

The relationship between the three SES measures (equivalised in-
come, IDACI and parental education) and the structural connectome 
dataset was significant for the first component from the PLS (i.e. the first 
latent variables for each dataset, that best explain the covariance be-
tween datasets). The correlation between the first pair of latent variables 
from each dataset was r = 0.772, p = 8.4405e-23, p(permuted) = 0.037. 
This explained 67.15 % of the covariance between the datasets. Subse-
quent components did not survive the permutation testing procedure. 

Bootstrapping determined the outer weights for the individual 
measures that load significantly onto this pair of latent components. 
Note that the higher the outer weight, the stronger the relationship 
between this individual measure and the other dataset (for example, the 
connectome edges with the highest outer weights indicate the connec-
tions most strongly associated with SES). The edges from the structural 
connectome that were reliably non-zero can be seen in Fig. 3, in total 
they are just under 24 % of the possible connections in our thresholded 
connectome, and are all positively associated with the SES latent vari-
able. The outer weights for all the SES measures were non-zero 
(equivalised income: 1.97, 95 % CI [1.89,2.05]; IDACI: 1.92, 95 % CI 
[1.88,2.18]; and parental education: 2.33, 95 % CI [2.10,2.49]. It was 
entirely possible that we would identify multiple PLS components, each 
explaining unique variance in the structural connectome, and with each 
SES measure loading onto a different component. But instead we see a 
single latent component, upon which all three SES measures load 
significantly. This implies that we are capturing their shared variance. 

The brain connections identified by the PLS are widespread across 
the brain (Fig. 3). In general, these were longer-range connections be-
tween different lobes rather than within a lobe. Connections radiating 
from the parietal and temporal lobes were particularly strongly associ-
ated with SES, with connections to the frontal, occipital, cingulate 
cortices and subcortical areas. There are also temporo-parietal connec-
tions and connections between the left and right cingulum and left and 
right subcortical regions that were strongly associated with childhood 
SES. These data are also plotted as a network diagram in Fig. 4, where 
readers will be able to see the specific regions and connections associ-
ated with SES more clearly. 

Does the structural connectome mediate the relationship between 
childhood SES, and cognition, academic ability and behavior? 

The structural connectome significantly mediated the relationship 
between childhood SES (Income, Education, IDACI) and cognitive 
measures (matrix reasoning and vocabulary) (indirect path coefficient 
ab = 0.14, 95 % CI [0.06,0.24]). All of the other paths were significant, 
the coefficients can be seen in Fig. 5. However the structural connectome 
did not significantly mediate relationships between the SES measures 
and academic ability (indirect path coefficient ab = 0.11, 95 % CI [-0.17, 
0.19]), and behavior (indirect path coefficient ab = 0.09, 95 % CI 
[− 0.09, 0.17]). In all cases, there is a significant association between the 

Table 1 
Descriptive statistics for the main SES, cognitive (WASI Vocabulary and Matrix 
Reasoning), Academic Ability (WJ-III Reading and Maths Fluency) and Behavior 
(SDQ).    

Mean STD Skewness Kurtosis 

SES      
Equivalised Income 29277 16034 0.77 2.61  
IDACI 17290 8458 0.17 2.14  
Parental Education 4.70 1.54 0.11 1.81 

Cognition      
Vocabulary 31.37 7.94 − 0.76 3.84  
Matrix Reasoning 18.95 6.44 1.12 6.16 

Academic Ability      
Reading 47.52 16.90 0.29 2.99  
Maths 45.48 19.95 1.06 4.04 

Behavior      
Emotional Problems 2.50 2.51 0.80 2.59  
Conduct Problems 1.63 1.83 1.53 5.57  
Hyperactivity 3.76 2.78 0.46 2.41  
Peer Problems 1.77 1.86 1.19 3.80  
Prosocial Behaviors 8.43 2.01 − 1.57 5.21  
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SES measures and the respective outcomes, and, mirroring the result of 
the 2-block PLS, between the SES measures and the structural con-
nectome. However, in the case of both academic ability and behavior, 
the SES-associated connectome is not significantly predictive of the 
respective outcome. Again, all coefficients can be seen in Fig. 6A and B, 
respectively. 

Some caution is required when interpreting the 3-block PLS result, 
for reasons outlined in the Discussion. In a final analysis, to corroborate 
the effects in our 3-block PLS, we conducted a general linear model. In 
this model, the response variable was each outcome type (cognitive, 
academic and behavioral), and the predictors were a set of control re-
gressors (age in months and SES (the first PC from a PCA analysis of the 
three SES measures) and the connectome latent factor from the initial 2- 
block PLS. If the SES-associated elements of the child connectome, 
established in the permuted 2-block PLS analysis, significantly predict 
an outcome then this last regressor should explain significant variance in 
that outcome, despite SES itself being incorporated in the model. By 
contrast, if SES predicts an outcome, but this is unrelated to the impact 
SES has on the connectome, then the SES-associated elements of the 
connectome should not be significant within the GLM. All of the pre-
dictors and response variables were scaled to produce standardised beta 
coefficients. 

Cognitive ability (mean of the vocabulary and matrix reasoning 
measures) was marginally predicted by age (β = 0.15, p = 0.0835), and 
significantly predicted by their connectome (β = 0.34, p = 0.0037), but 
not by the SES regressor (β = 0.09, p = 0.4376). Academic ability (mean 
of the reading and maths fluency measures) was significantly predicted 
by age (β = 0.64, p < 0.001) and SES (β = 0.21, p = 0.0274), with no 
additional variance being explained by the SES-associated elements of 
their connectome (β = 0.08, p = 0.3901). Finally, behavior (total 

problems scale from the SDQ) was only predicted by SES (β=− 0.30, p =
0.0157), and not by age (β = 0.05, p = 0.5557) or connectome (β = 0.06, 
p = 0.6099). In short, these general linear models mirror the results from 
the 3-block PLS. The SES-associated elements of the childhood con-
nectome significantly predict cognitive ability, but not academic ability 
or behavior. 

4. Discussion 

Multiple previous studies have identified associations between 
measures of childhood SES – like parental income – and FA in specific 
neural tracts, such as localized areas within the Inferior Longitudinal 
Fasciculus, Superior Longitudinal Fasciculus, Cingulum Bundle, Supe-
rior Corticostriatal and Corticospinal tracts (Dufford and Kim, 2017; 
Gullick et al., 2016; Noble et al., 2013; Ursache et al., 2016). In the 
current study we constructed white-matter whole-brain connectomes. 
We used PLS – a multi-block data-reduction method – to test whether 
these connectomes were significantly associated with childhood SES. We 
show that when the analytical approach considers wider brain organi-
sation, SES associations are widespread. This suggests that there is a 
more global relationship between childhood SES and FA that univariate 
techniques such as ROI analyses and TBSS are likely to underestimate 
(Bathelt et al., 2018). This SES-connectome association mediated the 
SES-cognition relationship, but did not mediate SES relationships with 
academic attainment or behavior. 

There are a number of possible reasons for such a global association 
between brain structure and SES. A generally lower SES may contribute 
to a systematic reduction in FA, such as an association with fibre density, 
diameter or myelination at a global scale. For example, exposure to 
excessive levels of stress hormones can suppress glial cell division which 

Fig. 3. SES and the structural connectome: a topographic and circle plot of the edges that are significantly associated with childhood SES based on the bootstrap of 
the first PLS component, coloured by the sign of the loading onto the first component (orange, positive; blue, negative). Edges are grouped by brain hemisphere (L/R) 
and lobe (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 
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is critical for myelination (Lauder, 1983). In another example, poorer 
health (increased BMI) was associated with decreased global FA and in 
regions across the brain (Bettcher et al., 2013; Verstynen et al., 2012). In 
addition, the developing brain is a highly dynamic and interactive sys-
tem. Differences in one region or connection between regions are likely 
to generate further differences in other areas, resulting in cascading 
effects across the brain (M. H. Johnson, 2011). 

Cognitive ability is strongly associated with FA development in 
childhood, for example, FA is significantly associated with cognitive 
performance in children who are struggling at school (e.g. Astle et al., 
2018; Siugzdaite et al., 2020). Furthermore, in one case FA has been 
found to fully mediate the association between SES (measured by 
parental education level) and a wide range of cognitive skills like 
memory performance and executive functions (Noble et al., 2013). In 
addition, using an alternative measure of structural brain development, 
Brito et al. found that cortical surface area mediates the relationship 
between income and executive function performance (Brito et al., 2017). 
Within this context, our finding that the FA connectome mediates the 
relationship between SES variables (income, education and IDACI) and 
cognitive ability (vocabulary and matrix reasoning) is consistent with 
the literature. 

It is perhaps surprising that we did not observe significant mediation 
for our academic measures (reading and maths fluency measures). This 
is surprising firstly because the association between FA and academic 
outcomes is well established in the literature (Flöel et al., 2009; Hoeft 
et al., 2011; Keller and Just, 2009; Matejko and Ansari, 2015; Vander-
mosten et al., 2012), likely because academic tasks such as reading or 
maths depend on effective communication across distributed networks 
of brain regions (Pugh et al., 2001; Tau and Peterson, 2010). Secondly, it 
is surprising because differences in cognitive ability (like our measures 
of fluid reasoning and vocabulary), which we show to be significantly 

linked with the FA connectome, are often strongly associated with dif-
ferences in academic abilities like reading and maths (Bathelt et al., 
2019). Indeed, whilst they use different methods, Gullick et al. found 
that parent SES moderated the association between FA and reading skills 
in children (Gullick et al., 2016). Similarly, Hair et al. found that 
development of grey matter volumes (another marker of structural brain 
development) in the frontal and temporal lobes and the hippocampus 
accounted for 15–20 % of the income-related academic attainment gap 
(Hair et al., 2015). And finally, Rosen et al. (2018) show that FA within 
the superior longitudinal fasiculus, alongside prefrontal activity during 
a working memory task, significantly mediate the relationship between 
childhood SES and parental ratings of children’s academic achievement 
(Rosen et al., 2018). 

There are a few possible reasons why we failed to identify the 
mediating role of the structural connectome for SES and academic re-
lationships. Firstly, we only used two particularly quick academic 
measures (maths and reading fluency) which are likely to be relatively 
noisy measures of academic ability. With more sensitive and compre-
hensive set of academic measures (such as the battery of reading and 
maths subtests from the WJ III ACH) we may have found significant 
mediation. Secondly, the studies described earlier included older chil-
dren (8–14, 4–22 and 6–19 years old respectively) and it is possible that 
an observable relationship between SES, structural connectivity and 
academic ability takes longer to manifest. Finally, it could be that our 
environmental measures are too narrow. A wider range of environ-
mental measures capturing more social aspect of the childhood envi-
ronment (such as the parental attitude to education or the level of 
reading at home (Gorard et al., 2012; The Reading Agency, 2015)) may 
provide a better characterisation of their environment. An unpublished 
version of our analysis with a wider academic battery and a broader set 
of environmental measures did indeed find a significant mediating effect 

Fig. 4. SES and the structural connectome: the same associations displayed in Fig. 3, but depicted as a network diagram showing the nodes and connections within 
the white-matter connectome that are significantly associated with childhood SES, as indexed by non-zero 95 % confidence intervals from the bootstrap procedure. 
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of the FA connectome (A. Johnson, 2019). 
The FA connectome did not mediate the relationship between 

childhood SES and behavioral problems, which is perhaps less surpris-
ing. These results are echoed in a recent literature review of white 
matter and antisocial behavior by Waller et al. (2017), which would 
mirror some of the behavior scales in our analysis, in particular conduct 
problems. Results were inconclusive across the 12 studies of white 
matter in children that met their inclusion criteria. In contrast to the 
adult studies, which demonstrated a consistent association between 
reduced FA and antisocial behavior, there were null, positive and 
negative associations between FA and behavior across the child studies. 
It is possible that a significant association between FA and behavior 
takes longer to manifest and is not reliably related during development. 
It is also possible that associations between FA and behavioral problems 
might not be strong enough in our sample of typically developing chil-
dren to identify a significant effect. For example, Loe et al. found sig-
nificant associations between FA and internalizing behavior in preterm 
children but not in full-term children, aged 9–16 years (Loe et al., 2013). 
These behaviors would correspond to scales in our own analysis, in 
particular emotional regulation problems. Ikuta et al. found that poorer 

executive function behaviors were associated with lower FA in young 
autistic adults in the cingulum bundle, but not non-autistic young adults 
(Ikuta et al., 2014). However, despite identifying large differences in 
behavior outcomes across a large sample of children, Decety et al. found 
no association between FA and the number of conduct disorder symp-
toms across the white matter skeleton in 10 year old children (Decety 
et al., 2015). As a result, whilst behavior has consistently been associ-
ated with the environment (e.g. see Cooper and Stewart, 2013; Dashiff 
et al., 2009; Qi and Kaiser, 2003; Reiss, 2013), evidence for the role of 
FA in relation to this association remains inconclusive. 

In addition to the limitations already mentioned, namely the range of 
measures available, there are a number of constraints inherent in the 
methods applied here. Despite its attractive properties for integrating 
large multivariate datasets, PLS methods remain in their infancy, and as 
a result it is likely their application will need continued refinement in 
future. With datasets containing a very large number of variables, like a 
connectome, it is possible that noise is linearly combined to create 
apparent correlations with the other dataset. In our own data, the cor-
relation between childhood SES and connectome latent components is 
almost certainly being inflated by noise. This is why the permutation 

Fig. 5. PLS mediation analysis between the SES measures, the structural connectome and cognitive ability. The significant weights for each dataset are shown, 
according to bootstrapped confidence intervals. Note that the topographic structural connectome plot shows only the connections found to be reliably associated with 
the mediation effect. The coefficients for each path correspond to the 95 % confidence intervals from the 3-block bootstrap procedure. 
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testing is essential for establishing genuinely significant relationships. It 
creates a null distribution of the strength of relationships possible by 
structuring noise. But despite knowing that the relationship between 
childhood SES and the connectome is significant, this approach is 
currently limited because it is difficult to ascertain the overall strength 
of that relationship. In the case of the 3-block PLS it has been shown that 
the permutation approach has a strong tendency towards type I errors. 
So instead, as we applied here, significance based on bootstrapping of 
the indirect path coefficient, ab, is recommended (Taylor and MacK-
innon, 2012). In addition, the indirect effect does not typically follow a 
normal distribution as it is the product of two path coefficients. There-
fore, it is recommended to calculate the asymmetric confidence intervals 
from the distribution of indirect effects from each bootstrap (Nitzl et al., 
2016), as we have done here. It is also recommended that non-bias 
corrected confidence intervals are used as it has been shown that bias 
correction can also inflate type I error rates (Taylor and MacKinnon, 
2012). However, without permuting the PLS components there remains 
a risk of overfitting. Secondly, recent work has shown that it is difficult 
to estimate reliably the bootstrapped loadings without large samples 
(Helmer et al., 2020). Which may mean that to establish reliably which 
edges in a connectome are most strongly associated with the childhood 
environment will require larger scale cohorts. And finally, we have 
controlled for age-related changes in our analyses, but in reality the 
childhood environment may be differentially associated with the con-
nectome at different points within development. Larger cohorts, with a 
wider age range, will be needed to explore age interactions, in order to 
establish how connectome development itself is associated with the 

childhood environment. 

5. Conclusions 

In summary, this study had two aims. Firstly to establish associations 
between the childhood environment (operationalized as their SES) and 
whole-brain white-matter connectome. Secondly, to test whether these 
relationships can account for environment-outcome relationships. The 
association between childhood SES and their brain architecture is not 
localized to specific regions. Rather, whole-brain connectomics identi-
fied a set of widespread connections between brain regions across which 
the white matter structural integrity was significantly related to child-
hood SES. In addition, we have demonstrated that the structural con-
nectome mediates the relationship between childhood SES and cognitive 
ability (matrix reasoning and vocabulary), suggesting that differences in 
white matter integrity might provide a mechanism underpinning the 
relationship between the environment and cognitive ability. 
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