
Biostatistics (2017) 18, 2, pp. 338–351
doi:10.1093/biostatistics/kxw051
Advance Access publication on December 24, 2016

Incorporating social contact data in spatio-temporal
models for infectious disease spread

SEBASTIAN MEYER∗

Institute of Medical Informatics, Biometry, and Epidemiology, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Waldstraße 6, DE-91054 Erlangen, Germany

seb.meyer@fau.de

LEONHARD HELD
Epidemiology, Biostatistics and Prevention Institute, University of Zurich,

Hirschengraben 84, CH-8001 Zürich, Switzerland

SUMMARY

Routine public health surveillance of notifiable infectious diseases gives rise to weekly counts of reported
cases—possibly stratified by region and/or age group. We investigate how an age-structured social contact
matrix can be incorporated into a spatio-temporal endemic–epidemic model for infectious disease counts.
To illustrate the approach, we analyze the spread of norovirus gastroenteritis over six age groups within
the 12 districts of Berlin, 2011–2015, using contact data from the POLYMOD study. The proposed age-
structured model outperforms alternative scenarios with homogeneous or no mixing between age groups.
An extended contact model suggests a power transformation of the survey-based contact matrix toward
more within-group transmission.

Keywords: Age-structured contact matrix; Areal count time series; Endemic–epidemic modeling; Infectious disease
epidemiology; Norovirus gastroenteritis; Norwalk virus; Spatio-temporal surveillance data.

1. INTRODUCTION

The social phenomenon of “like seeks like” produces characteristic contact patterns between subgroups of
a population. If suitably quantified, such social mixing behavior can inform models for infectious disease
spread (Read and others, 2012). One of the largest social contact surveys to date was conducted as part
of the EU-funded POLYMOD project, recording conversational contacts of 7 290 individuals in eight
European countries (Mossong and others, 2008). Contact patterns were found to be similar across the
different countries and highly assortative with respect to age, especially for school children and young
adults.

The basic idea behind the combination of social contact data with epidemic models has been termed the
“social contact hypothesis” (Wallinga and others, 2006): The age-specific numbers of potentially infectious
contacts are proportional to age-specific numbers of social contacts. For instance, for pathogens transmitted
via respiratory droplets, face-to-face conversation and/or physical contact are frequently used as proxy
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measures for exposure. Many studies have now made use of the POLYMOD contact data (Rohani and
others, 2010; Goeyvaerts and others, 2010, 2015; Birrell and others, 2011; Baguelin and others, 2013),
but none of them accounts for the spatial characteristics of disease spread. The distance of social contacts
from the home location of each participant has only recently been investigated by Read and others (2014).
Their finding that “most were within a kilometer of the participant’s home, while some occurred further
than 500 km away” reflects the power-law distance decay of social interaction as determined by human
travel behavior (Brockmann and others, 2006). Meyer and Held (2014) found such a power law to translate
to the spatial spread of infectious diseases.

The purpose of this paper is to combine the social and spatial determinants of infectious disease spread
in a multivariate time-series model for public health surveillance data. For notifiable diseases, such data
are routinely available as weekly counts of reported cases by administrative district and further stratified
by age group or gender. Social contact matrices reflect the amount of mixing between these strata. Our
focus is on age-structured models, but the methods equivalently apply to other or multiple strata. We
investigate if a (possibly adjusted) contact matrix captures disease spread better than simple assumptions
of homogeneous or no mixing between the subgroups. The approach also allows us to estimate how much
disease incidence in each group can be linked to previous cases in their own and in other groups—while
adjusting for the spatial pattern of disease spread.

This paper is organized as follows. Section 2 introduces our case study on norovirus gastroenteritis,
including contact data from the POLYMOD study. Section 3 outlines the spatio-temporal modeling frame-
work and describes how to incorporate additional stratification with a contact matrix. Section 4 shows
results of the case study and Section 5 concludes the paper with a discussion. The supplementary material
contains additional figures, an animation of the data, as well as the R source package hhh4contacts
with the data and code to reproduce the presented analysis (run demo(“hhh4contacts”) after installing
and loading the package).

2. CASE STUDY: NOROVIRUS GASTROENTERITIS IN BERLIN, 2011–2015

Most of the aforementioned studies relate contact patterns to the spread of influenza, whereas here we
investigate the occurrence of norovirus-associated acute gastroenteritis. Both diseases are highly infec-
tious, have a similar temporal pattern, and similar mortality in elderly persons (van Asten and others,
2012). However, in contrast to influenza, vaccines against noroviruses have yet to be developed (Pringle
and others, 2015). Absence of vaccination simplifies the analysis of infectious disease occurrence since
vaccination coverage—potentially varying across age groups, regions and over time—needs not to be
taken into account.

2.1. Epidemiology of norovirus gastroenteritis

Norovirus-associated acute gastroenteritis is characterized by “sudden onset of vomiting, diarrhea, and
abdominal cramps lasting 2–3 days” (Pringle and others, 2015). O’Dea and others (2014) estimate an
average symptomatic period of 3.35 days from outbreaks in hospitals and long-term care facilities, where
vulnerable individuals live closely together and norovirus outbreaks most commonly occur. Another
frequently affected subgroup are children in daycare centers. Norovirus incidence peaks during winter,
where outbreaks in childcare facilities were observed to precede those in private households, hospitals,
and nursing homes (Bernard and others, 2014b).

Noroviruses are highly contagious since only few viral particles are needed for an infection. Being
thermally stable and particularly persistent in the environment (Marshall and Bruggink, 2011), noroviruses
can also be transmitted indirectly via contaminated surfaces or food. The serial interval, i.e. the time
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between onset of symptoms in a primary and a secondary case, ranges from within a day to more than 1
week with a median of about 3 days (Götz and others, 2001).

2.2. Incidence data

In Germany, the national public health institute (the Robert Koch Institute, RKI) provides
access to incidence data of notifiable diseases through the SurvStat@RKI 2.0 online service
(https://survstat.rki.de). Since the last revision of the case definition for norovirus gastroen-
teritis in 2011, only laboratory-confirmed cases are reported to the RKI. The number of cases to be modeled
thus excludes all asymptomatic cases as well as all those symptomatic cases, who have not found their way
to laboratory testing (Gibbons and others, 2014). It is known that under-reporting of norovirus illness is
most pronounced in the 20- to 29-year-old persons and substantially lower in persons aged< 10 years and
70 years and over (Bernard and others, 2014c). A sensitivity analysis will indicate how under-reporting
may affect the interpretation of our model results.

As to the geographic region of interest, we chose the largest city of Germany, Berlin, which is divided
into 12 administrative districts. This enables the analysis of disease spread on a smaller spatial scale.
Furthermore, a large underlying population is required for our time-series model to be a reasonable
approximation of the epidemic process (Farrington and others, 2003).

We have downloaded weekly numbers of reported cases of norovirus gastroenteritis in Berlin from
SurvStat@RKI (as of the annual report 2015). These counts cover four norovirus seasons, from 2011-
W27 to 2015-W26, and are stratified by the 12 city districts and six age groups: 0–4, 5–14, 15–24,
25–44, 45–64, and 65+ years of age. The age groups were condensed from 5-year intervals to reflect
distinct social mixing of pre-school vs. school children, and intergenerational mixing. Similarly stratified
population numbers were obtained from the Statistical Information System Berlin-Brandenburg StatIS-
BBB (https://www.statistik-berlin-brandenburg.de/statis) at the reference date
December 31, 2011, when Berlin had 3 501 872 inhabitants in total.

Figure 1 (left) shows the weekly norovirus incidence stratified by age group and aggregated over all
city districts. The reported incidence is higher in pre-school children and the retired population than in the
other age groups. The yearly seasonal pattern, with overall counts ranging from 7 to 214 cases per week,
is approximately constant during the four years (supplementary Figure S1, See supplementary material
available at Biostatistics online). The typical bump during the Christmas break could be related to reporting
deficiencies and school closure (Hens and others, 2009). The time series of the 5- to 14-year-old children
contains an outbreak caused by contaminated frozen strawberries, which were delivered almost exclusively
to schools and childcare facilities (Bernard and others, 2014a). Comparing seasonality between the age
groups, the peak incidence in pre-school children seems to precede the peak in the highest age group. Our
age-structured modeling approach will help to address the question raised by Bernard and others (2014b),
“whether this reflects a pattern of disease transmission from young to old in the community”—taking the
spatial aspect of disease spread into account.

How disease incidence varies across the 12 city districts of Berlin is shown in Figure 1 (right). The
south-western district Steglitz-Zehlendorf tends to be affected more and the central districts tend to be
affected less than the remaining districts. This pattern is roughly consistent across age groups.An exception
are the two younger age groups, which exhibit a relatively high incidence in Marzahn-Hellersdorf. District-
specific seasonal shifts are not apparent (supplementary Figure S2, See supplementary material available
at Biostatistics online).

Animated, age-stratified maps of the weekly counts encompass the full information from all three data
dimensions. Such an animation (supplementary material) may provide additional insight into the dynamics
of disease spread. However, epidemic models estimated from these data offer a more structured view and
take population heterogeneity directly into account.

https://survstat.rki.de
https://www.statistik-berlin-brandenburg.de/statis
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw051/-/DC1
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Fig. 1. Age-stratified time series and maps of norovirus gastroenteritis incidence (per 100 000 inhabitants) in Berlin,
2011-W27 to 2015-W26. The weekly incidence plots on the left all use the same √-scale. The Christmas break in
calendar weeks 52 and 1 is highlighted. The group-specific maps on the right show the mean yearly incidence by city
district.
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Fig. 2. Age-structured contact matrix estimated from the German POLYMOD sample using 5-year intervals (left),
and aggregated to the age groups of the surveillance data (right). The entries refer to the mean number of contact
persons per participant per day.

2.3. Contact data

We use contact data from the German subset of the POLYMOD study (Mossong and others, 2008), where
both physical and non-physical (conversational) contacts have been recorded. We will report results based
on all contacts and on physical contacts only. The age-structured social contact matrix C = (cg′g) contains
the mean numbers of contact persons in age group g during one day reported by a participant in age
group g′. Instead of using sample means, we estimate C by the approach of Wallinga and others (2006),
which accounts for the reciprocal nature of contacts. Each entry cg′g is assumed to be the mean of a
negative binomial distribution, under the restriction cg′gng′ = cgg′ng , where ng is Berlin’s population in
age group g. We estimate a detailed contact matrix with 5-year intervals, which we subsequently aggregate
to the above six age groups (Figure 2). Direct estimation of the aggregated contact matrix leads to similar
numbers.

The strong diagonal pattern in the social contact matrix reflects that people tend to mix with people of
the same age. The other prominent pattern is produced by the contacts between parents and children. The
matrix for physical contacts shows similar patterns (supplementary Figure S3, See supplementary material
available at Biostatistics online). Aggregation of the contact matrix is done by summing over the contact
groups (columns) to be joined and calculating the weighted average across the corresponding participant
groups (rows), with weights equal to the group sizes. The aggregated contact matrix is asymmetric because
of the different sizes of the involved age groups, but reciprocity at the population level still holds. For
the models described in the next section, only the row-wise distributions will be relevant, i.e. the contact
pattern of an infectious participant across the different age groups.

3. AN AGE-STRUCTURED SPATIO-TEMPORAL MODEL FOR INFECTIOUS DISEASE COUNTS

We review an endemic–epidemic modeling framework for areal time series of infectious disease counts
(Meyer and Held, 2014, Section 3), into which we subsequently incorporate an additional stratification
variable featuring a contact matrix.

3.1. Spatio-temporal formulation

Conditionally on past observations, the number of reported infections in region r and time period t, Yrt ,
is assumed to follow a negative binomial distribution with mean μrt and region-specific overdispersion
parameters ψr such that the conditional variance of Yrt is μrt(1 +ψrμrt). The lower bound ψr = 0 yields

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw051/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw051/-/DC1
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the Poisson distribution as a special case, and a common simplifying assumption is that ψr = ψ is shared
across regions. In its most general formulation, the mean μrt is additively decomposed into endemic and
observation-driven epidemic components as

μrt = ert νrt + λrt Yr,t−1 + φrt

∑

r′ �=r

�wr′r� Yr′ ,t−1 (3.1)

with log-linear predictors

log(νrt) = α(ν)r + β(ν)
�

z(ν)rt ,

log(λrt) = α(λ)r + β(λ)
�

z(λ)rt ,

log(φrt) = α(φ)r + β(φ)
�

z(φ)rt ,

(3.2)

and normalized transmission weights �wr′r� := wr′r/
∑

j wr′j, wrr = 0. The regression terms in (3.2) often

include sine–cosine effects of time to reflect seasonally varying incidence (Held and Paul, 2012), but z(·)rt

may also involve other explanatory variables, such as vaccination coverage (Herzog and others, 2011).
The first, endemic component in (3.1) is typically modeled proportional to a (population) offset ert , and
partially captures infections not directly linked to observed cases from the previous time period, e.g. due
to traveling outside the study region (edge effects). The epidemic component splits up into autoregressive
effects, i.e. reproduction of the disease within region r, and neighborhood effects, i.e. transmission from
other regions r′. It has proven useful to account for population size also in log(φrt) = α(φ)r + τ log(ert),
such that τ determines how “attraction” to a region scales with population size (Xia and others, 2004).
Furthermore, transmission weights wr′r reflect the flow of infections from region r′ to region r. These
weights may be based on additional movement network data (Paul and others, 2008; Schrödle and others,
2012; Geilhufe and others, 2014), but may also be estimated from the data at hand. A suitable parametric
model is a power-law distance decay wr′r = o−ρ

r′r in terms of the adjacency order or′r in the neighborhood
graph of the regions (Meyer and Held, 2014).

Estimating separate dynamics for the reproduction of the disease within a region on the one hand,
and transmission from other regions on the other hand, goes back to the original model formulation of
Held and others (2005), where only first-order neighbors have been incorporated. The parametric distance
weights offer an appealing alternative to reflect predominant local autoregression in a simpler model with
a single epidemic component:

μrt = ert νrt + φrt

∑

r′
�wr′r� Yr′ ,t−1 , (3.3)

where the choice wr′r = (or′r + 1)−ρ gives unit weight to local transmission (r′ = r) and then decays as a
power law in terms of adjacency order. With such a power law and the suggested population dependence of
φrt , the epidemic component of (3.3) constitutes a so-called gravity model (Xia and others, 2004; Höhle,
2016). Furthermore, this formulation uses fewer parameters and extends more naturally to an additional
stratification variable.

3.2. Extension for stratified areal count time series

Extending the above spatio-temporal model to fit multivariate time series of counts Ygrt stratified by (age)
group in addition to region enables us to relax the simple assumption of homogeneous mixing within each
region. More complex strata such as the interaction of age group and gender are equally possible and can
be subsumed in the single group index g.
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We assume that a contact matrix C = (cg′g) is given, where each entry cg′g ≥ 0 quantifies the
average number of contacts of an individual of group g′ with individuals of group g. The spatio-temporal
model (3.3) then extends to a three-dimensional version as

μgrt = egrt νgrt + φgrt

∑

g′ ,r′
�cg′g wr′r� Yg′ ,r′ ,t−1 , (3.4)

where both the endemic and epidemic predictors may gain group-specific effects. How the counts from the
previous period affect the current mean in group g and region r is now determined by a product of contact
and spatial weights. The product ensures that cases from group g′ in region r′ are ignored if there are no
contacts to group g or if there is no flux of infections from region r′ to region r. The weights are row-
normalized over all combinations of group and region:

∑
g,r�cg′gwr′r� = 1. Note that this normalization

removes any differences in group-specific overall contact rates (the row sums of C). Our model therefore
does not distinguish between proportionate mixing, where the rows of the contact matrix only differ by
a proportionality factor, and a matrix with identical rows. The weighted sum of past cases transmitted
to group g in region r is scaled by φgrt . If φgrt = φ(G)g φ(R)r , the group-specific effects φ(G)g will adjust the
columns of the contact matrix.

There are two special cases of the contact structure involved in the epidemic component. First, a contact
matrix with identical rows implies that the mixing pattern of the Yg′ ,r′ ,t−1 infectious cases does not depend
on the group g′ they belong to. An example of such homogeneous mixing is a contact matrix where each
row equals the vector of group sizes (cg′g = eg). If φgrt contains group-specific effects, a simple matrix
of ones (C = 1) will induce the same contact structure. The other special case is a diagonal contact
matrix C = I , which reflects complete absence of mixing. This is equivalent to formulating a separate
spatio-temporal model (3.3) for each group. However, also in this case of no between-group mixing, the
joint model formulation has the advantage of allowing for parsimonious decompositions of νgrt and φgrt

into group and region effects. Borrowing strength across groups is especially useful in applications with
low counts.

3.3. Parameterizing the contact matrix

Contact patterns derived from sociological studies might not fully match the characteristics of disease
spread. For example, social networks are known to change during illness (van Kerckhove and others,
2013) and brief contacts are frequently not reported (Smieszek and others, 2014). We therefore suggest a
parsimonious single-parameter approach to adaptively estimate the transmission weights as a function of
the given contact matrix C .

Our proposal is borrowed from Küchenhoff and others (2006), who progressively transform a misclas-
sification matrix to establish an association between the amount of misclassification in a covariate and the
corresponding parameter estimate. The proposed transformation is based on the eigendecomposition of
the matrix C to raise it to the power of κ ≥ 0,

Cκ := E�κE−1 , (3.5)

where � is the diagonal matrix of eigenvalues and E is the corresponding matrix of eigenvectors. Trans-
lated to our setting, the parameter κ measures the amount of transmission between the subgroups of the
population. Specifically, κ = 0 corresponds to complete absence of between-group transmission (C = I ),
whereas κ = 1 leaves the contact matrix unchanged. If C is row-normalized, all rows of Cκ converge to
the same distribution as κ → ∞. The transmission pattern thus becomes independent of the group the
infected individual belongs to. Because of this useful interpretation, we assume a pre-normalized contact
matrix C in the remainder of this paper.
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Fig. 3. The power transformation Cκ (3.5) applied to the row-normalized POLYMOD contact matrix for different
values of κ . The right-hand plots show the values of the diagonal entry [3, 3] and the off-diagonal entry [3, 6] of Cκ .

The basic requirement that C can be factorized by an eigendecomposition will hold in most practical
cases. However, we also need to make sure that Cκ has non-negative entries for κ < 1. With our contact
matrix, two entries in Cκ become negative (but close to 0) for small κ . We follow a pragmatic approach
and truncate negative entries at 0. Figure 3 exemplifies Cκ for the row-normalized version of the contact
matrix from Figure 2, and illustrates how diagonal and off-diagonal entries, respectively, are affected by
the power transformation.

3.4. Inference

Likelihood inference for the multivariate count time-series model (3.1) has been developed by Paul and
Held (2011) and Meyer and Held (2014). The log-likelihood is maximized numerically using the quasi-
Newton algorithm provided by the R function nlminb (R Core Team, 2016). Supplied with analytical
formulae for the score function and Fisher information, convergence is fast, even for a large number of
parameters. The modeling framework is implemented in the R package surveillance (Meyer and
others, 2016, Section 5) as function hhh4.

The age-structured model (3.4) is built on top of the existing inference framework. The power parameter
κ of (3.5) is conveniently estimated via a profile likelihood approach (see, e.g. Held and Sabanés Bové,
2014, Section 5.3), which avoids the cumbersome implementation of additional derivatives with respect
to all model parameters. We numerically maximize the log-likelihood of a model with fixed contact matrix
Cκ as a function of κ . The profile confidence interval for κ thus incorporates the uncertainty of all other
parameter estimates (but not vice versa).

4. RESULTS

We apply an age-structured spatio-temporal model of the form (3.4) to the norovirus data described in
Section 2. As the number of cases varies strongly by age group, we use group-specific overdispersion
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Table 1. Model summaries for the age-stratified, areal surveillance data of norovirus gastroenteritis
in Berlin. For reference, the first row represents the purely endemic model, which assumes independent
counts. The remaining rows correspond to endemic–epidemic models with a spatial power law, but
varying assumptions on the age-structured contact matrix C . The columns refer to the following
model characteristics: the number of parameters, the difference in AIC compared to the purely
endemic model, the power τ of the population scaling factor, the decay parameter ρ of the spatial
power law, and the power adjustment κ of the contact matrix. The parameter columns contain the
estimates and 95% Wald confidence intervals

dim 
AIC τ ρ κ

Purely endemic model 36 0.0 — — —

Homogeneous mixing (C = 1) 55 −415.4 1.19 (0.83–1.55) 2.43 (2.04–2.88) —
No mixing (C = I ) 55 −602.8 0.61 (0.24–0.98) 2.18 (1.89–2.53) —
Original contact matrix C 55 −631.9 0.97 (0.66–1.28) 2.34 (2.03–2.70) —
Adjusted contact matrix Cκ 56 −659.4 0.86 (0.53–1.19) 2.27 (1.98–2.61) 0.47 (0.34–0.66)
Based on physical contacts only 56 −655.3 0.85 (0.52–1.19) 2.27 (1.98–2.61) 0.48 (0.35–0.66)

parameters ψg . For the mean, we assume the endemic–epidemic structure

μgrt = egr exp
{
α(G)g + α(R)r + βxt + γg sin(ωt)+ δg cos(ωt)

}

+ eτgr φ
(G)
g φ(R)r

∑

g′ ,r′
�(Cκ)g′g (or′r + 1)−ρ� Yg′ ,r′ ,t−1 . (4.1)

The endemic predictor allows for age- and district-specific incidence levels, fewer cases during the Christ-
mas break (xt = 1 in calendar weeks 52 and 1, otherwise xt = 0), as well as age-specific seasonality
(ω = 2π/52). Transmission between age groups is modeled using the power transformation (3.5) for
the row-normalized contact matrix estimated from the POLYMOD study. Transmission between districts
is quantified by a power law with respect to adjacency order. The intercepts are identifiable by fixing
α
(G)
1 = α

(R)
1 = 0, φ(G)1 = φ

(R)
1 = 1, where φ(G)g and φ(R)r are estimated on the log-scale, and including

overall intercepts in both model components.
Table 1 summarizes competing models with respect to the assumed contact structure between age

groups. It turns out that a superposed epidemic component improves upon a purely endemic model,
and that incorporating the contact matrix from the POLYMOD study outperforms naive models with
homogeneous or no mixing between age groups. Akaike’s Information Criterion (AIC) is minimal for the
model with a power-adjusted contact matrix Cκ (penultimate row), where the exponent is estimated to be
κ̂ = 0.47 (95% CI: 0.34–0.66). This means that the epidemic part subsumes more information from cases
in the own age group than suggested by the original contact matrix (cf. Figure 3). The change in AIC
associated with this adjustment, however, is minor compared to the improvement achieved by employing
the POLYMOD contact matrix in the first place. Results are very similar for physical contacts, but the fit
is slightly worse.

The spatial spread of the disease across city districts is estimated to have a strong distance decay with
ρ̂ = 2.27 (95% CI: 1.98–2.61), such that the adjacency orders 0–4 have weights 1.00, 0.21, 0.08, 0.04,
and 0.03. Supplementary Figure S4, See supplementary material available at Biostatistics online, shows
age-dependent power laws (replacing ρ by ρg′ in (4.1)), as well as unconstrained estimates of the order-
specific weights, which are close to the power law. In accordance with the idea of a gravity model, we find
that the epidemic part scales with the population size of the “importing” district and age group. Similar to

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw051/-/DC1
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Fig. 4. Fitted mean components from the AIC-optimal model with adjusted contact matrix, aggregated over all
districts. The dots correspond to the reported numbers of cases.

a previous application on influenza (Meyer and Held, 2014), the corresponding estimate τ̂ = 0.86 (95%
CI: 0.53–1.19) is slightly below unity and provides strong evidence for such an association.

Figure 4 shows the endemic–epidemic decomposition of the estimated mean aggregated across districts
(supplementary Figures S5–S7, See supplementary material available at Biostatistics online for the district-
level and overall fits). When reformulating the model as a multivariate branching process with immigration
(Held and Paul, 2012), the largest eigenvalue of the matrix holding the estimated coefficients of Yg′ ,r′ ,t−1

is 0.71, which can be interpreted as the overall epidemic proportion of disease incidence. However, this
value mostly reflects the situation for the 65+ age group where the within-group spread is dominating.
In contrast, for the groups of 5–14 and 15–24 year-old persons, almost no dependence on past counts of
the same or the other age groups can be identified. Interestingly, the groups of 25–44 and 45–64 year-old
persons seem to inherit a relevant proportion of cases from other age groups. The youngest age group,
though, mostly depends on the endemic component and its own cases, which is probably related to their
early onset. The age-dependent sine–cosine effects capture these shifts and are shown in supplementary
Figure S8, See supplementary material available at Biostatistics online. The modal endemic incidence is
in calendar weeks 48 (0–4), 45 (5–14), 52 (15–24), 51 (25–44), 52 (45–64), and 3 (65+), respectively. The
largest amplitude is estimated for the youngest and oldest groups.

The estimated group-specific overdispersion parameters are 0.24 (0–4), 1.98 (5–14), 0.30 (15–24), 0.03
(25–44), 0.15 (45–64), and 0.40 (65+) in the model with adjusted contact matrix. The large overdispersion
for the 5- to 14-year-old children may be partly due to the food-borne outbreak in 2012, for which the
model does not explicitly account. The estimates are similar for the other epidemic models of Table 1, but
slightly larger in the endemic-only model.

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw051/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw051/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw051/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw051/-/DC1


348 S. MEYER AND L. HELD

5. DISCUSSION

We have incorporated a social contact matrix in a regression-oriented, endemic–epidemic time-series
model for stratified, area-level infectious disease counts. This three-dimensional approach provides a
more detailed description of disease spread than unstratified or non-spatial models, which inherently
assume homogeneous mixing within each region or subgroup, respectively.

In our application to age-stratified counts of norovirus gastroenteritis in Berlin’s city districts, the contact
model was superior to homogeneous or no mixing between age groups. The model further improved when
adjusting the POLYMOD contact matrix toward more within-group transmission. This could be related to
biases in contact reporting (Smieszek and others, 2014) with more unreported (short) contacts along the
diagonal. The two age groups involving parents were affected the most by preceding infections in other
age groups. This is in accordance with the leading role of school children in influenza epidemics (Worby
and others, 2015).

Furthermore, new infections predominantly depend on past cases from the same district, as suggested
by the estimated spatial transmission weights. An age-dependent distance decay could not be identified
from the disease counts. One could thus try to replace the parametric formulation by a social contact matrix,
stratified by spatial distance in addition to age group. Separate movement data for school children and adults
could then be used to quantify the strength of epidemiological coupling between regions (Kucharski and
others, 2015). However, integration of movement network data does not necessarily improve predictions
(Geilhufe and others, 2014).

A potentially more severe simplification of our model is the assumption of a time-constant contact
matrix. Although weekday vs. weekend differences in contact patterns are not relevant for weekly time-
series models, there are possibly relevant seasonal effects on larger time scales. For instance, the contact
structure of school children changes considerably between regular and school holiday periods (Hens and
others, 2009). Our model could be further tuned both by incorporating a time-varying contact matrix
and by estimating seasonality also in the epidemic component (Held and Paul, 2012), which the hhh4
implementation already supports.

To check the robustness of our results with respect to under-reporting, we re-estimated the models with
age-specific multiplication factors applied to the reported numbers of cases. Roughly following Bernard
and others (2014c, Table 1), we used factors of 1.5 (0–4), 2.5 (5–14), 3.0 (15–24), 3.0 (25–44), 2.5 (45–
64), and 2.0 (65+), respectively. While the overdispersion increases, the parameters of the mean are close
to the original fit and the epidemic proportion is similar (supplementary Figure S9, See supplementary
material available at Biostatistics online). For small strata with a low number of cases, a drawback of this
simple deterministic approach is that zero reported counts remain zero regardless of the amount of under-
reporting. More sophisticated adjustments are currently being investigated within a Bayesian modeling
framework. In principle, asymptomatic infections could be similarly accounted for as missing cases, but
they seem to play a minor role in disease transmission (Sukhrie and others, 2012). One-week-ahead
forecasts or long-term simulations of the number of (symptomatic) infections, however, are of particular
relevance for public health planning. Whether the improved model with social contact data also leads to
better predictions will be described elsewhere.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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