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Abstract: A photocatalytic system for decolorization of double azo reactive black 5 (RB5) dye and
water disinfection of E. coli was developed. Sol gel method was employed for the synthesis of
Fe-TiO2 photocatalysts and were characterized using thermogravimetric analysis (TGA), Fourier
transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy
(SEM) coupled with energy dispersive X-ray analysis (EDX), transmission electron microscopy
(TEM), diffuse reflectance spectroscopy (DRS) and Brunauer–Emmett–Teller (BET) analysis. Results
showed that photocatalytic efficiency was greatly influenced by 0.1 weight percent iron loading
and 300 ◦C calcination temperature. The optimized reaction parameters were found to be the
ambient temperature, working solution pH 6.2 and 1 mg g−1 dose to completely decolorize RB5.
The isotherm studies showed that RB5 adsorption by Fe-TiO2 followed the Langmuir isotherm
with maximum adsorption capacity of 42.7 mg g−1 and Kads 0.0079 L mg−1. Under illumination,
the modified photocatalytic material had higher decolorization efficiency as compared to unmodified
photocatalyst. Kinetic studies of the modified material under visible light irradiation indicated the
reaction followed the pseudo-first-order kinetics. The illumination reaction followed the Langmuir-
Hinshelwood (L-H) model as the rate of dye decolorization increased with an incremental increase in
dye concentration. The L-H constant Kc was 1.5542 mg L–1·h–1 while Kads was found 0.1317 L mg–1.
The best photocatalyst showed prominent percent reduction of E. coli in 120 min. Finally, 0.1Fe-TiO2-
300 could be an efficient photocatalyst and can provide a composite solution for RB5 decolorization
and bacterial strain inhibition.

Keywords: water disinfection; photo inhibition activity of TiO2; RB5 reaction kinetics

1. Introduction

Wastewater generation whether industrial or domestic by rapid industrialization
and/or urbanization and its discharge into natural drainage system has severely affected
the fragile aquatic environment and thus becoming the principal source of toxic contami-
nants and pathogen dissemination. Higher volume of wastewater loaded with complex and
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versatile nature of contaminants including dyes is hot environmental issue and aggravating
the environmental concerns around the globe. Strict effluent discharge laws have made the
industry and wastewater researchers to explore the efficient technologies for the provision
of composite treatment solutions which could meet simultaneously the dye decolorization
and pathogens killing and ultimately meet the safe water quality standards. Currently dif-
ferent conventional methods are employed for industrial wastewater treatment including,
biological oxidation and physico-chemical methods, coagulation/flocculation [1], reverse
osmosis [2], membrane filtration [3], activated carbon adsorption [4,5]. All the above
methods are pollutant specific and are not capable to deactivate the harmful pathogen,
more precisely, biological method provide favorable conditions for these harmful human
pathogens. Moreover, the non-destructive action nature and just transferring the con-
tamination from one phase to another as well as secondary waste generation and further
necessity of treatment or pretreatment process disfavor the physico-chemical processes
adoption [6,7].

Advanced oxidation process (AOP) is best way to fully decolorize organic pollutants
and deactivate harmful pathogens as the non-selective nature of OH radicals offer this
approach an additional benefit. The heterogenous photocatalytic system follows the AOP
at the surface of photocatalysts due to production of electrons (e−) and holes (h+) in the
conduction and valence bands through excitation of photons and this charge separation
contributes to the production of OH radicals. TiO2 based photocatalysts are considered best
heterogenous photocatalysts due to the non-toxicity and availability. However, the only
hinderance in large scale application is activation requirement in UV region of the spectrum.
To overcome this problem, researchers have done marvelous work in reducing bandgap
through doping with impurities like Fe, Ni, Cu, N, P and S [8–10].

Doping with iron(III) has been widely investigated among different metal ions because
of its distinctive electronic structure and size, that closely matches the titanium (IV) [11–13].
The electronic states of iron ions in titania lead to the creation of effective electron and
holes trapping sites leading to the enhanced photocatalytic activity [14,15]. However,
the effect of metal doping on photocatalytic activity of the synthesized nanomaterial
depends on various factors including synthesis method, calcination temperature and
doping level [16,17]. Different synthesis procedures have been adopted for synthesis
of iron doped TiO2, including hydrothermal [18], solvothermal, wet impregnation [19],
co-precipitation [20,21] and sol gel method [22,23]. Sol gel method is regarded as the
most employed popular method to control the particle size and crystallinity [21]. Table 1
compares different Fe doped TiO2 studies reported previously.

Table 1. Comparative studies with Fe doped TiO2.

Synthesis Method Fe Contents Calcination
Temperature (◦C) Pollutant Photocatalytic Efficiency

and Reaction Time Reference

Sol-gel 5 wt% 500 Methylene blue 55.45%
240 min [24]

Sol-gel-
Hydrothermal 0.40 wt% Fe-TiO2 200 active yellow XRG 88.8% (UV), 64.1% (Vis)

60 min [15]

Sol-gel 3.0 mol% 400 E. coli 100% inactivation
120 min [25]

Sol-gel 3.0 mol% 500 Rhodamine 6G 100%
40 min [26]

Sol-gel 1.0Fe (at%) 550 methyl orange s >80%
120 min [27]

Sol-gel 0.15 mol% 500 RB5 100
60 min [14]

Hydrothermal Fe:Ti, 1:3 N.C RB5 90%
120 min [28]

Sol-gel 1.62% 450 RB5 100%
60 min [29]

Co-precipitation 500 RB5 91%
60 min [20]
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Although a lot of research work has been reported for air and water purification
through TiO2 photocatalysts, but a little attention has been given to water decontamination
and remediation of various kinds of microbial contaminants using these semiconduc-
tors. Recently, some researcher considered Ag doped metal oxides for destroying human
pathogens due to the antimicrobial activity of Ag [30,31] but the other doped metal or
nonmetal has not yet been explored for their antimicrobial activity. Current investigation
focused the synthesis and characterization of Fe-TiO2 photocatalyst and its application
in decolorizing the double azo reactive black 5 (RB5) dye, but focus has been given to
explore the potential of Fe doped TiO2 for deactivation of model human pathogen E. coli.
Initially Fe-TiO2 was screened out for Fe loading and calcination temperatures and the best
combination was optimized for RB5 decolorization and E. coli.

2. Materials and Methods
2.1. Materials

Titanium tetra-isopropoxide (TTIP) with a purity of 98% was supplied by Daejung,
South Korea. Absolute ethanol and glacial acetic acid with a purity of 99% were purchased
from Merck Darmstadt, Germany. Deionized water was produced using B114 deionizer
in the laboratory. Iron nitrate and the commercial reactive black 5 (RB5), an azo dye,
were acquired from Sigma Aldrich, Munich, Germany.

2.2. Synthesis of TiO2 and Fe-TiO2 Photocatalysts

The modified sol-gel method was used to synthesize TiO2 photocatalysts [32].
Precisely, 37 mL TTIP was poured to 60 mL absolute ethanol and designated as solu-
tion A. In addition, a second solution B was generated by blending 10 mL deionized water
and 15 mL acetic acid in 20 mL absolute ethanol. Under intense stirring, solution B was
added dropwise to solution A. The solution was stirred at room temperature (25 ◦C ± 1)
until gel was formed. The obtained gel was aged for 24 h under ambient conditions, dried in
oven (UN 30, Memmert-Kupfer, Dominik, Germany), and ground to powder. Fe-TiO2
photocatalysts were synthesized by the modified synthesis method. The iron precursor
was introduced to solution B prior to adding solution B to solution A, pursued by the
process as reported above. Different Fe weight percent including 0.01, 0.05, 0.1, 0.5, 1 and 5
were synthesized. The photocatalysts sample were denoted as mFe-TiO2-T, where small m
represents the weight percent, Fe represents the iron, TiO2 shows the titanium and capital
T represents the calcination temperature for example 0.1Fe-TiO2-200 shows the 0.1 weight
percent iron loading onto titania and calcined at 200 ◦C.

2.3. Photocatalyst Characterization

The best performing photocatalysts were chosen for characterization of the various
physicochemical properties like thermal stability, functional groups, identification of phases
and crystallite size, surface morphology, bandgap estimation and surface area analysis
using thermal gravimetric analyses (TGA-STA 8000, Boston, Massachusetts, United States),
Fourier-transformed infrared spectroscopy (FTIR-Alpha Bruker, Karlsruhe, Germany),
X-ray diffraction (XRD-Bruker, Billerica, Massachusetts, United States), scanning electron
microscopy coupled with energy dispersive X-ray analysis (JEOL, JSM-6510LA, Tokyo,
Japan), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy
(DRS-UV-2600i, Kyoto, Japan) and Brunauer–Emmett–Teller (BET) analyses, respectively.
XRD was realized at 40 kV, 40 mA in the scanning angle (2θ) range of 10–80◦ at scan rate
of 2◦ min−1 using diffractometer equipped with a Cu Kα radiation source. The standard
diffraction data was compared, and unknown components were recognized. Scherrer
formula (Equation 1) was utilized for estimation of particle sizes (D) of nanomaterial [33].

D =
Kλ

βcosθ
(1)
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The Scherrer constant (K) represents the particle shape and usually the K value is
considered to be 0.9 [34], λ exhibits the wavelength, θ indicates the diffraction angle and β
denotes the full width at half maximum (FWHM) of the reflection peak.

2.4. RB5 Decolorization

RB5 decolorization was investigated at 30 ppm of dye, initial pH 6.2 and Fe-TiO2 dose
of 1 g L−1 under a visible light source at ambient temperature. The required amount of
RB5 was taken to constitute 30 ppm solution in total volume of 30 mL. Initially the Fe-TiO2
was weighed and blended with distilled water followed by 10 min of ultrasonication.
For the dark reaction, the mixture was stirred with a magnetic stirrer for 30 min, and later
the same suspension was illuminated for 60 min under visible light source of 500 W
with 30798 lux light intensity (Halogen lamp, Hi Luminar-Germany,) at 25 cm distance.
Figure S1, supplementary information represents the light spectrum reported in current
investigation. RB5 adsorption (dark) and decolorization (light) was monitored in the
samples collected at pre-determined time intervals.

2.5. Optimization Studies

RB5 decolorization was examined through absorbance measurements at 598 nm
wavelength by UV-visible spectrophotometer (PG instruments T80+, Lutterworth, UK).
The standard solutions of RB5 with 1, 10, 20, 30, 50, 60 and 100 ppm concentrations were
used to develop the calibration curve. The reaction mixture was centrifuged to remove
suspended particles of photocatalysts each time prior to the absorbance measurement.
RB5 decolorization efficiency was determined using the Equation (2).

RB5 Decolorization(%) =

(
C0 − Ct

C0

)
100 (2)

where C0 and Ct indicate, respectively, the initial and the residual RB5 concentration at time, t.
The photocatalytic system was optimized based on RB5 decolorization investigations for
reaction parameters including the contact time, pH, Fe-TiO2 dose and RB5 concentration.

2.6. Adsorption Isotherms

The best performing photocatalyst, 0.1Fe-TiO2-300, were used to study the adsorption
pathways of RB5 in the dark. The two well-known adsorption isotherms namely Freundlich
and Langmuir were fitted to RB5 adsorption data analyzed under in the dark and the
mechanism of RB5 adsorption was delineated. The linearly transformed Langmuir model
(Equation (3)) was applied to determine the value of Qm and Kads from the intercept (1/Qm)
and slop (1/Qm·Kads) of plot 1/Qe versus1/Ce.

1
Qe

=
1

Qm
+

(
1

KadsQm

)
1

Ce
(3)

The linear expression of Freundlich model can be represented by Equation (4).

ln(Qe) = ln(KF) +
1
n

ln Ce (4)

Qe (mg·g−1) indicates the quantity of RB5 adsorbed per unit weight of Fe-TiO2 at
the equilibrium time, Qm (mg·g−1) exhibits the maximum adsorption capacity of Fe-
TiO2 for RB5, Ce (mg·L−1) denotes the residual concentration of the dye at equilibrium.
Kads (L·mg−1) indicates Langmuir adsorption constant. The Freundlich constants, i.e.,
KF and n, exhibit the adsorption capacity and heterogeneity factor, respectively.
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2.7. Photocatalytic Kinetics

In the presence of Fe-TiO2 photocatalyst, the Langmuir-Hinshelwood model [35] can
be employed to elaborate the rate of the photocatalytic decolorization of RB5 dye over time.
Langmuir-Hinshelwood model for photocatalytic system can be explained as:

1
r0

=
1
kc

+
1

kcKLH
.

1
[RB5]e

(5)

The dependency of 1/r0 for the corresponding 1/[RB5]e concentration values of RB5
can be translated by Equation (5). In comparison, the kc and KLH values demonstrate the
effect of the RB5 concentration on the equilibrium constant.

2.8. Photocatalytic Disinfection Performance Evaluation

To check the photocatalytic disinfection ability of the Fe-TiO2 photocatalyst, bacteri-
cidal activity was conducted using the best performing Fe-TiO2 photocatalyst (screened
from RB5 decolorization experiments). Antibacterial activities of Fe-TiO2 photocatalyst
were tested using different parameters (irradiation time and photocatalyst calcination
temperatures) against Escherichia coli (ATCC-25922) as model pathogen. Detailed antimi-
crobial protocol followed is reported in our recent publication [30,36]. Data were presented
with the following formula in relation to a percent reduction before and after inhibition
treatment of model pathogen.

Reduction (%) =

(
A − B

A

)
× 100 (6)

A and B reveal the number of viable bacteria, respectively, before and after photocat-
alytic oxidation.

2.9. Energy Efficiency and Cost Analysis

Energy efficiency was estimated through electrical energy consumption (EE/O) for the
best synthesized photocatalysts from each combination using the following equation [37].

EE/O =
(pt)1000

[(V)60 ln
(

C0
C f

) (7)

3. Result and Discussion
3.1. Thermal Analysis

Thermogravimetric studies were conducted for as synthesized raw 0.1Fe-TiO2 pho-
tocatalyst to select the suitable calcination temperature. Figure 1 shows the weight loss
profile of raw 0.1Fe-TiO2 photocatalyst. Two weight loss steps are evident from the TGA
profile, 5.98% weight loss occurred in step I that is from room temperature to 260 ◦C while
2.30% weight loss was observed in step II from 260 to 490 ◦C. Total weight loss in these
two steps was 8.28%.

In step I, from room temperature to 200 ◦C, solvents were evaporated while thermal
decolorization of loosely bound organics occurred up till 260 ◦C. In step II, thermal decom-
position of tightly bound organic residues and crystallization of the anatase phase occurred
above 260 ◦C. Our results support the previous work [38].
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Figure 1. TG weight loss profile of 0.1Fe-TiO2 photocatalyst.

3.2. Functional Group Identification

The FTIR spectra provides evidence about the molecular geometry and interactions of
the functional groups existing in the system. FTIR spectra of TiO2-300 and 0.1Fe-TiO2-300
photocatalysts can be observed in Figure 2. The band at 3450 cm−1 is ascribed to the
stretching mode of OH group on the TiO2 in both samples [39], corresponds to the presence
of water molecules. The OH group serves as a scavenger for the produced charge carrier,
leading OH radical formation. In decolorization of the RB5 dye, this OH radical plays a
major role as they are highly reactive species with high redox potential (2.8 V), and able to
oxidize soluble inorganic and organic substances. FTIR spectrum also indicates that the
absorbance rate is higher in the IR region (1632 cm−1) [36], indicating the surface hydrox-
ylation upon doping TiO2 with Fe. Ti-O stretching appeared between 520–735 cm−1 [40].
These bands serve an active role in improving the efficiency of photocatalysts for RB5
decolorization [39].

Figure 2. FTIR spectra of (a) TiO2-300; (b) 0.1Fe-TiO2-300.

3.3. X-ray Diffraction Analysis

Figure 3 displays X-ray diffraction analysis of TiO2 (pure anatase) and 0.1Fe-TiO2-300
nanomaterials. The diffraction peaks are well allocated to the crystalline TiO2 anatase
(JCPDS 84-1286). In addition, no peaks for the rutile and brookite phases were observed
at 0.1Fe-TiO2-300. The development of TiO2 crystals is evident in the anatase phase
of TiO2 as the XRD peak intensities are weakened and expanded upon doping with
iron. Similar observations were documented for Fe-N/TiO2 [41]. No indications were
seen for the presence of Fe species in all the XRD patterns. This may be due to high
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dispersion of Fe species and the low metal content. This is well explained in our previous
studies [33,42]. The FWHM of prominent anatase (2θ = 25.2◦) exhibits the (1 0 1) plane
diffraction. The crystallite size was calculated using equation (1). The broad peaks confirm
the occurrence of small crystallite having mean size of 5.93 nm and 45.11 nm, respectively,
for 0.1Fe-TiO2-300 and TiO2 anatase. Crystallite size for 0.1Fe-TiO2-350 was exhibited
as 9.91 and reduction in crystallite size of TiO2 by Fe doping has also been reported
previously [43,44].

Nanomaterials 2021, 11, x FOR PEER REVIEW 7 of 20 
 

 

observations were documented for Fe-N/TiO2 [41]. No indications were seen for the pres-

ence of Fe species in all the XRD patterns. This may be due to high dispersion of Fe species 

and the low metal content. This is well explained in our previous studies [33,42]. The 

FWHM of prominent anatase (2θ = 25.2°) exhibits the (1 0 1) plane diffraction. The crys-

tallite size was calculated using equation (1). The broad peaks confirm the occurrence of 

small crystallite having mean size of 5.93 nm and 45.11 nm, respectively, for 0.1Fe-TiO2-

300 and TiO2 anatase. Crystallite size for 0.1Fe-TiO2-350 was exhibited as 9.91 and reduc-

tion in crystallite size of TiO2 by Fe doping has also been reported previously [43,44]. 

 

Figure 3. XRD peaks of anatase TiO2-300 and 0.1Fe-TiO2-300. 

3.4. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) 

Analyses 

SEM was used to study the crystallite shape, size, and metal dispersion while ele-

mental composition was quantified using EDX analysis. Figure 4 demonstrates the spher-

ical morphology of particles with increased agglomeration, and no localized metal parti-

cles have been observed exhibiting high iron dispersion on the surface of TiO2. The EDX 

spectrum shows very small intensities of Fe in the 0.1Fe-TiO2-300 photocatalysts. Similar 

observations were reported previously for different Fe doped TiO2 photocatalysts [38,45].  

TEM micrograms have been used to observe the microstructure for further study of 

individual grain and grain boundaries. TEM micrographs of 0.1Fe-TiO2-300 photocata-

lysts are displayed in Figure 5a while histogram of particle size distribution is shown in 

Figure 5b. It can be seen from the TEM micrographs that particles adhere to each other 

and are in good agreement with SEM images. The average particle size of 0.1Fe-TiO2-300 

was 7.82 ± 4.22 nm. These results are in close agreement with that obtained for crystallite 

size in XRD analysis. The particles stickiness can be associated to different phenomenon, 

as explained by previous study [46]. Moreover, in one of the previous works by Solani et. 

al., 2019, the average crystalline size reported was 13±2.52 nm [44] 

Figure 3. XRD peaks of anatase TiO2-300 and 0.1Fe-TiO2-300.

3.4. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) Analyses

SEM was used to study the crystallite shape, size, and metal dispersion while elemen-
tal composition was quantified using EDX analysis. Figure 4 demonstrates the spherical
morphology of particles with increased agglomeration, and no localized metal particles
have been observed exhibiting high iron dispersion on the surface of TiO2. The EDX
spectrum shows very small intensities of Fe in the 0.1Fe-TiO2-300 photocatalysts. Similar
observations were reported previously for different Fe doped TiO2 photocatalysts [38,45].
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Figure 4. Scanning electron micrographs (SEM-EDX) of 0.1Fe-TiO2 calcined at 300 ◦C.

TEM micrograms have been used to observe the microstructure for further study of
individual grain and grain boundaries. TEM micrographs of 0.1Fe-TiO2-300 photocata-
lysts are displayed in Figure 5a while histogram of particle size distribution is shown in
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Figure 5b. It can be seen from the TEM micrographs that particles adhere to each other
and are in good agreement with SEM images. The average particle size of 0.1Fe-TiO2-
300 was 7.82 ± 4.22 nm. These results are in close agreement with that obtained for
crystallite size in XRD analysis. The particles stickiness can be associated to different
phenomenon, as explained by previous study [46]. Moreover, in one of the previous works
by Solani et. al., 2019, the average crystalline size reported was 13 ± 2.52 nm [44].
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3.5. Bandgap Analysis

The task of allowing TiO2 to operate in the visible light source is to modify its lattice
structure by adding some impurities. Diffuse reflectance spectroscopy was used to observe
this shift. Figure 6a shows the reflectance spectrum of TiO2-300, and 0.1Fe-TiO2-300
photocatalysts. A visible shift of the optical absorption thresholds was observed for 0.1Fe-
TiO2-300 compared to TiO2-300. The sharp absorption edge of around 390 nm was assigned
to the excitation of the electron from VB to CB [47]. Tauc model is generally used to
describe the light absorption process of amorphous semiconductors and estimate the band
gap [48]. From the plot of (F(R).hv)1/2 versus hv, the photocatalysts’ bandgap energy was
calculated. The photocatalyst’s bandgap yielded by extrapolating it to the tangent of the
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graph in the low energy range (hv) axis when [F(R).hv]1/2 = 0 as shown in Figure 6b,
while method of estimation is explained in Figure S2. The bandgap TiO2-300, and 0.1Fe-
TiO2-300 photocatalysts was found to be 3.20 and 2.99 eV, respectively. This demonstrates
a significant increase in the light absorption ability in the visible region for the iron-doped
TiO2 sample.
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3.6. BET Analysis

Figure 7 demonstrate the nitrogen adsorption-desorption curve for 0.1Fe-TiO2-300.
The adsorption isotherms of nitrogen at 77 K were obtained using eight values of relative
pressure ranging from 0.05 to 1. Pore size distribution curve was calculated from the desorp-
tion (DES) branch of the nitrogen isotherm by the Barrett–Joyner–Halenda (BJH) method
and the corresponding nitrogen adsorption–desorption isotherms (ADS-DES) of the pho-
tocatalysts [49,50]. BET type II curve was observed, indicating the mesoporous nature of
0.1Fe-TiO2-300 photocatalyst with mean pore diameter of 6.83 nm. In type II isotherm the
flat region in the middle represents the formation of monolayer. Such mesoporous photocat-
alysts are preferred generally for photocatalytic decolorization because higher porosity of
photocatalysts favors adsorption of dye molecules. BET results showed the surface area for
0.1Fe-TiO2-300 as 70 m2 g−1 with pore volume of 0.115 cm3 g−1. Results from adsorption
studies best fit with Langmuir adsorption isotherm showing the formation of monolayer
chemisorption mechanism, which agree with N2 adsorption desorption analysis.
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3.7. Photodecolorization Studies
3.7.1. Effect of Photocatalyst Dose

Mass of the photocatalyst is directly proportional to the rate of reaction, however after
a certain amount of dose the reaction rate levels off. This phenomenon is well explained
in previous studies through masking of the photocatalyst surface by high dose [19,51,52].
Therefore, it is essential to optimize the photocatalytic system with optimum dose of the
photocatalysts. Experiments were performed with different 0.1Fe-TiO2-300 dose i.e., 0.25,
0.5, 1, 2, 4 and 8 mg mL−1. Figure 8a shows that there is an increase in % RB5 decolorization
from 57% to 91% with an increase in 0.1Fe-TiO2-300 dose from 0.25 mg mL−1 to 1 mg mL−1

but after 1 mg mL−1 decrease in % RB5 decolorization was observed and at 8 mg mL−1

only 48% RB5 decolorization was exhibited. It was also observed during the experimental
proceedings that at higher dose of 0.1Fe-TiO2-300 the solution become turbid and light
penetration into the solution was hindered, so lower e−/h+ generation can be assumed,
which resulted in lower % RB5 decolorization. Moreover, previous studies reported the
aggregation of nanoparticles at higher dose thus reduces the photocatalytic activity [53,54].
Therefore, the optimum dose of 0.1Fe-TiO2-300 was chosen as 1 mg mL−1.
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3.7.2. Effect of Reaction pH

The photocatalyst’s surface charge, the acid base property of the metal oxide and the
generation and scavenging of hydroxyl radicals are affected due to the amphoteric behavior
of the semiconductor, eventually affecting the semiconductor’s decolorization efficiency.
Hence it is important to optimize the photocatalytic performance of 0.1Fe-TiO2-300 under
different pH conditions. Figure 8b depicts the effect of variable pH and optimum dose
of 1 mg mL−1 on decolorization of 0.1Fe-TiO2-300 photocatalyst for RB5 dye. Best results
were obtained for lower pH as compared to higher pH. 100% decolorization was observed
at pH 2 while 40% decolorization of RB5 dye was observed at pH 12. The effect of pH can be
explained based on point of zero charge (PZC) on the surface of using 0.1Fe-TiO2-300 under
different pH conditions. The PZC for Fe-TiO2 is between 5.6 and 6.4 [55], the Fe doped
photocatalyst shall be positively charged in acidic medium while it shall be negatively
charged in alkaline medium. The higher decolorization of anionic RB5 dye under acidic
and lower under alkaline conditions are best explained by the above phenomenon. Due to
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similar charges on the surface of the photocatalysts and the pollutant, the electrostatic
repulsion between similar charges reduces the efficiency of the system as explained in
previous studies [51,56,57]. A similar study on rhodamine B photocatalysis by Fe-TiO2
reported that the performance of the photocatalyst was increased when initial pH was
augmented from 2.0 to 6.0, because the charge of the catalyst surface was opposite to that
of rhodamine B and, thus, the attraction tendency was observed high [56,58].

3.7.3. Effect of Initial Dye Concentration

It is essential to investigate the effect of pollutant concentration on the photocatalyst’s
decolorization efficiency from an application point of view. It is widely accepted that with
an increase in dye concentration to a certain level, photocatalytic decolorization increases
and further increase lower the decolorization efficiency of photocatalytic. Figure 8c illus-
trates the effect of different initial RB5 concentration at the working pH and 1 mg mL−1 of
photocatalyst dose on percent RB5 decolorization. Initially at lower concentration, 10 and
20 and 30 mg L−1, the decolorization was observed to be 100 and 91% but further increase
in RB5 concentration, 40, 50, 60 and 100 mg L−1, the percent decolorization decreased from
87%, 80%, 72% and 60%, respectively. The reduction in photocatalytic efficiency of 0.1Fe-
TiO2-300 with increase in RB5 concentration can be attributed to different reasons as stated
in previous studies like non-availability of active adsorption sites due to high pollutant
load, interference in light penetration to the surface of 0.1Fe-TiO2-300 photocatalysts for
activation and lower radical production to proceed the photocatalytic process [51,56,59,60].
Shima et al. reported the possible reason that when the initial concentration is increased,
more dye molecules are adsorbed on the surface of the Fe doped TiO2, thus all the surface
sites for the adsorption of hydroxyl ions are blocked and, hence, lower tendency of the
generation of hydroxyl radicals [57].

3.7.4. Fe-TiO2 Adsorption Studies

Photocatalysis is an advanced oxidation process and a surface phenomenon, which leads
to the decomposition of organic pollutants to CO2 and H2O. Adsorption of organic com-
pound on to the surface of photocatalysts is a crucial step in measuring the effectiveness
of photocatalysts in RB5 decolorization. 0.1Fe-TiO2-300 was selected, based on screening
studies of iron loading and calcination temperature, to verify the adsorption mechanism.
Figure 9a shows the effect of initial RB5 concentration (10 to 100 mg L−1) onto adsorption
capacity at equilibrium (Qe) as a function of time. Qe was calculated from the experimental
data of initial concentration (Ci) minus concentration at equilibrium (Ce) multiplied by
volume divided by mass of the photocatalysts. Equilibrium time was determined when
most of the adsorption sites are occupied and no further adsorption-desorption took place
at the surface of 0.1Fe-TiO2-300. Similar results were reported in previous studies for the
effect of initial dye concentration on the adsorption behavior of the TiO2 photocatalysts,
where the higher percent decolorization was observed at lower concentration and with the
passage of time it gets slow and becomes constant at equilibrium time [61,62]. Figure 9b
illustrates the amount of RB5 adsorbed at equilibrium on 0.1Fe-TiO2-300 as a function of
concentration at equilibrium.

The distribution of dye molecules between liquid and solid phase at equilibrium can
be modelled through fitting the data to different isotherm models. Our data best fitted
into the linear form of the Langmuir model (plot 1/Qe vs 1/Ce), graphically described in
Figure 10a. Qm and Kads for 0.1Fe-TiO2-300 are calculated as 42 mg g−1 and 0.0079 L mg −1

respectively. To get more overview of the surface of the synthesized material, the adsorption
data was fitted into Freundlich adsorption isotherm model. Plot of lnQe vs lnCe was
constructed and shown in Figure 10b. The KF and 1/n were obtained as 1.78 L g−1 and
29.51 mg g−1 respectively. Summary of the isotherm constants are presented in Table 2.
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Figure 10. Transformation of (a) Langmuir; (b) Freundlich adsorption isotherm of RB5 decolorization
using 0.1Fe-TiO2-300.

Table 2. Summary of isotherms constants.

Isotherm Model Plot Parameters R2

Langmuir
1/Qe vs 1/Ce Qm = 42 mg g−1

0.9696Kads = 0.0079 L mg−1

Freundlich lnQe vs lnCe n = 1.78
0.9446KF = 29.51 mg g−1

3.8. Heterogenous Photocatalytic Kinetic Studies for Iron Doped TiO2 Photocatalysts

Kinetic studies were performed for the photocatalytic decolorization of RB5 azo dye
using Fe-TiO2 photocatalysts. The optimized experimental conditions such as working pH
(6.2), room temperature (23 ± 1 ◦C), photocatalysts dose of 1 mg mL−1 were used for the
kinetic study. For quantitative evaluation of different kinetic models, the data was plotted
in pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models. The plot of
these kinetic models are given in Figure 11a,b respectively. To fit the data into PFO kinetics,
the natural logarithm of the ratio ln([RB5]e/[RB5]) versus the illumination time (min)
was fitted. The least square regression was used to calculate the Kapp and R2 for each
concentration, the slope of linear regression shows the apparent PFO rate constant kapp.
The kinetic data best fit the PFO kinetic model with R2 values ranging from 0.980–0.996
for different concentration, while for PSO fitting the R2 value ranges from 0.650–0.981.
Therefore, the visible light driven decolorization of RB5 by 0.1Fe-TiO2-300 corresponds
to the PFO reaction kinetics. Generally, this model is appropriate for the whole range of
RB5 from few ppm (10 mg L−1) to higher concentration (100 mg L−1), in agreement with
several other previous studies on the decolorization of aqueous pollutants through TiO2



Nanomaterials 2021, 11, 436 13 of 19

based photocatalysts [59,60,63–65]. The PSO kinetics (Figure 13b) does not represent the
fitting of decolorization data.
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Langmuir-Hinshelwood isotherm model (L-H) is most used to express the heteroge-
nous photocatalytic process [66,67]. The L-H kinetic expression is shown in Figure 11.
The L-H isotherm is expressed by plotting ln([RB]0/[RB]t) verses irradiation time. The PFO
constant, kapp (min−1), was calculated from the slope of the plots. To calculate the values
of PFO rate constant, KC (mg L−1 h−1), and L-H constant, KLH (L mg−1), for Langmuir-
Hinshelwood isotherm, the plot of 1/Kapp against [RB5]o is constructed, shown in inset
Figure 12, depicted a straight line. The KC value, 1.554 mg·L–1·h–1, obtained from the slope
(1/KC) of the straight line (R2 = 0.9985) and KLH 0.1317 L·mg–1, obtained from intercept
(1/KC KLH), elaborate the effect of initial concentration of RB5 on the equilibrium constant
for the adsorption-desorption processes.

Nanomaterials 2021, 11, x FOR PEER REVIEW 14 of 20 
 

 

 

Figure 12. Effect of RB5 concentration on the initial rate of decolorization: Inset- Plot of reciprocal 

of apparent rate (Kapp). 

3.9 TOC Analysis 

TOC analysis was conducted for the optimized photocatalyst under optimized con-

ditions including working pH, 1 mg mL-1 dose and 30 mg L−1 dye concentration at room 

temperature (23 ± 1). As can be seen in Figure 13. 60% TOC and 91% color removal was 

achieved in first 60 min for 0.1Fe-TiO2-300 under visible light irradiation. Prolong expo-

sure of 120 min under visible light can eliminate the color as well as TOC, so, under the 

optimized conditions 0.1Fe-TiO2-300 photocatalysts has the ability to eliminate the RB5 

dye. A similar kind of results are reported previously, 52% TOC removal was achieved 

for 5%Fe-TiO2 photocatalysts in 120 min of irradiation [58]. 

 

Figure 13. Comparison between decolorization and TOC removal of RB5 using 0.1Fe-TiO2-300. 

3.10. Photocatalytic Disinfection Performance Evaluation 

Photocatalytic inhibition was conducted for 0.1Fe-TiO2 photocatalysts to check the 

antibacterial activity against selected bacterial strain E. coli (ATCC-25922). Experiments 

were conducted for control (C), bare TiO2-300 (T), 0.1Fe-TiO2-200 (200), 0.1Fe-TiO2-300 

(300), and 0.1Fe-TiO2-400 (400). Control experiments are without addition of photocata-

lysts, and the effect of only light was observed on the deactivation of the selected bacterial 

strain. Initial screening results in Figure 14a shows the evidence of biocidal performance 

0

20

40

60

80

100

60 120

R
em

o
v

al
 (

%
)

Time (min)

TOC Color

Figure 12. Effect of RB5 concentration on the initial rate of decolorization: Inset-Plot of reciprocal of
apparent rate (Kapp).

Figure 12 confirms that the decolorization rate of 0.1Fe-TiO2 augments with rising con-
centration of RB5, which corresponds to Langmuir-Hinshelwood adsorption model [68–70].
This plot showed that adsorption was the start of the photocatalytic process and clearly
confirmed the Langmuir-Hinshelwood relationship.

According to the mechanism of the Langmuir-Hinshelwood kinetic model, the adsorp-
tion of the dye is a significant step in deciding photocatalytic degradation rates. The amount
of RB5 molecules adsorbed on the surface of the photocatalyst are more vulnerable to de-
colorization during the photocatalytic phase. As reported previously, the heterogenous
photocatalytic process is surface phenomenon and the radicals generated by excitation of
photocatalysts could readily react with adsorbed dye molecules on the surface, moreover,



Nanomaterials 2021, 11, 436 14 of 19

this can reduce the recombination of electrons and holes and increase the photocatalytic
efficiency [35,71].

3.9. TOC Analysis

TOC analysis was conducted for the optimized photocatalyst under optimized condi-
tions including working pH, 1 mg mL−1 dose and 30 mg L−1 dye concentration at room
temperature (23 ± 1). As can be seen in Figure 13. 60% TOC and 91% color removal
was achieved in first 60 min for 0.1Fe-TiO2-300 under visible light irradiation. Prolong
exposure of 120 min under visible light can eliminate the color as well as TOC, so, under the
optimized conditions 0.1Fe-TiO2-300 photocatalysts has the ability to eliminate the RB5 dye.
A similar kind of results are reported previously, 52% TOC removal was achieved for
5%Fe-TiO2 photocatalysts in 120 min of irradiation [58].

Nanomaterials 2021, 11, x FOR PEER REVIEW 14 of 20 
 

 

 

Figure 12. Effect of RB5 concentration on the initial rate of decolorization: Inset- Plot of reciprocal 

of apparent rate (Kapp). 

3.9 TOC Analysis 

TOC analysis was conducted for the optimized photocatalyst under optimized con-

ditions including working pH, 1 mg mL-1 dose and 30 mg L−1 dye concentration at room 

temperature (23 ± 1). As can be seen in Figure 13. 60% TOC and 91% color removal was 

achieved in first 60 min for 0.1Fe-TiO2-300 under visible light irradiation. Prolong expo-

sure of 120 min under visible light can eliminate the color as well as TOC, so, under the 

optimized conditions 0.1Fe-TiO2-300 photocatalysts has the ability to eliminate the RB5 

dye. A similar kind of results are reported previously, 52% TOC removal was achieved 

for 5%Fe-TiO2 photocatalysts in 120 min of irradiation [58]. 

 

Figure 13. Comparison between decolorization and TOC removal of RB5 using 0.1Fe-TiO2-300. 

3.10. Photocatalytic Disinfection Performance Evaluation 

Photocatalytic inhibition was conducted for 0.1Fe-TiO2 photocatalysts to check the 

antibacterial activity against selected bacterial strain E. coli (ATCC-25922). Experiments 

were conducted for control (C), bare TiO2-300 (T), 0.1Fe-TiO2-200 (200), 0.1Fe-TiO2-300 

(300), and 0.1Fe-TiO2-400 (400). Control experiments are without addition of photocata-

lysts, and the effect of only light was observed on the deactivation of the selected bacterial 

strain. Initial screening results in Figure 14a shows the evidence of biocidal performance 

0

20

40

60

80

100

60 120

R
em

o
v

al
 (

%
)

Time (min)

TOC Color

Figure 13. Comparison between decolorization and TOC removal of RB5 using 0.1Fe-TiO2-300.

3.10. Photocatalytic Disinfection Performance Evaluation

Photocatalytic inhibition was conducted for 0.1Fe-TiO2 photocatalysts to check the
antibacterial activity against selected bacterial strain E. coli (ATCC-25922). Experiments
were conducted for control (C), bare TiO2-300 (T), 0.1Fe-TiO2-200 (200), 0.1Fe-TiO2-300
(300), and 0.1Fe-TiO2-400 (400). Control experiments are without addition of photocatalysts,
and the effect of only light was observed on the deactivation of the selected bacterial strain.
Initial screening results in Figure 14a shows the evidence of biocidal performance of
0.1Fe-TiO2 calcined at different calcination temperatures against tested bacterial pathogen.
120 min was estimated best for 0.1Fe-TiO2-300 during kill time analysis with maximum
growth inhibition through Kill-time analysis. A noticeable viability of the test pathogens
with the passage of time can be seen in Figure 14b.

3.11. Energy Efficiency Analysis

The energy consumption and price estimation for the removal of RB5 dye in 1000 L
of wastewater was conducted through the equation 7. The energy consumption for Bare
TiO2 was found higher as compare to 0.1Fe-TiO2-300. The energy consumption for iron
doped TiO2 was 207 KWh m−3 while the cost was 5309 PKR (33 USD) for 1000 L of
textile wastewater.
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4. Conclusions

An efficient photocatalytic system for decolorization of double azo RB5 dye and water
disinfection of E. coli was successfully developed. Screening studies were conducted with
a series of Fe-TiO2 photocatalysts synthesis via sol–gel technique and characterized using
TGA, FTIR, XRD, SEM coupled with EDX, TEM, DRS and BET analyses. Iron loading
and calcination temperature highly affected the photocatalytic performance of the synthe-
sized photocatalysts. Complete decolorization of RB5 azo dye was achieved by the best
selected photocatalyst 0.1Fe-TiO2-300 at ambient temperature, solution working pH 6.2
and 1 mg g−1 dose in 60 min of visible light irradiation. The isotherm studies for the ad-
sorption showed that the modified material followed the Langmuir with Qm, 42.7 mg g−1

and Kads 0.0079 L mg−1. Under illumination the modified photocatalytic material had
higher decolorization efficiency as compared to unmodified photocatalyst. Kinetic studies
of the modified material under visible light irradiation showed that the reaction follows the
PFO kinetics. The illumination reaction followed the Langmuir-Hinshelwood model as the
rate of dye decolorization increased with increment in initial dye concentration. The L-H
constant kc was 1.5542 mg L–1·h–1 while Kads was found 0.1317 L mg–1. Furthermore,
maximum growth inhibition and photocatalytic disinfection activity of 0.1Fe-TiO2-300
photocatalyst showed a drastic decrease in viability of the test pathogens. Moreover,
0.1Fe-TiO2-300 photocatalysts was more energy efficient as compared to bare TiO2. It is
recommended to use solar light for higher energy efficiency.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-499
1/11/2/436/s1, Figure S1. Light spectrum of the visible light and Figure S2. Bandgap estimation
from DRS spectra.

Author Contributions: Conceptualization, M.B., M.A. (Muhammad Arshad 5,*); methodology,
M.S.K., J.A.S.; software, N.R.; A.J.K.; M.A. (Muhammad Arshad 3), A.U.-H.; validation, M.S.K.,
J.A.S., N.R., A.J.K., M.A. (Muhammad Arshad5,*), and M.B.; formal analysis, M.S.K., and J.A.S.; inves-
tigation, M.S.K., and J.A.S.; resources, T.A.B., W.K., H.H.G., E.R.L., A.A.A.A.-N., A.U.-H., and M.A.
(Muhammad Arshad 3); M.A. (Muhammad Arshad 5,*), and M.B., data curation, M.S.K., and J.A.S.;
writing—original draft preparation, M.S.K., and J.A.S.; writing—review and editing, N.R., A.J.K.,
W.K., H.H.G., E.R.L., A.A.A.A.-N., M.A. (Muhammad Arshad 5,*), and M.B.; visualization, M.S.K.,
J.A.S., A.U.-H., M.A. (Muhammad Arshad 3), M.A. (Muhammad Arshad 5,*) and M.B.; supervision,
M.B., and M.A. (Muhammad Arshad 5,*); project administration, W.K., H.H.G., E.R.L., A.A.A.A.-N.,
M.A. (Muhammad Arshad 5,*) and M.B.; funding acquisition, W.K., H.H.G., E.R.L., A.A.A.A.-N.,
M.A. (Muhammad Arshad 5,*) and M.B. All authors have read and agreed to the published version
of the manuscript.

Funding: This research has been funded by Scientific Research Deanship at University of Ha’il-Saudi
Arabia through project number RG-191313.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/2079-4991/11/2/436/s1
https://www.mdpi.com/2079-4991/11/2/436/s1


Nanomaterials 2021, 11, 436 16 of 19

Appendix A. Effect of Calcination Temperature and Iron Loading

A range of Fe-TiO2 photocatalysts were synthesized to screen out the best combination
of metal loading and calcination temperature. Different metal loading in the range of
0.01–5wt% while calcination temperatures for the activation of Fe-TiO2 photocatalysts were
selected based on the TGA thermograms. Therefore lower (200 ◦C), moderate (300 ◦C),
and higher (400 ◦C) temperatures were selected to analyze the effect of calcination. List of
photocatalyst synthesized along with performance using iron as a dopant with different
metal loading and calcination temperature is shown in following Table A1.

Table A1. Effect of calcination temperatures on RB5 decolorization for different Fe-TiO2 loadings.

Photocatalyst
Calcination Temperature (◦C)

200 ◦C 300 ◦C 400 ◦C

0.0Fe-TiO2 40.16 47.73 28.35
0.01Fe-TiO2 74.46 76.11 70.37
0.05Fe-TiO2 78.64 82.31 79.45
0.1Fe-TiO2 86.63 91.06 88.63
0.5Fe-TiO2 79.13 86.80 84.01
1.0Fe-TiO2 69.53 83.39 80.72
5.0Fe-TiO2 61.30 79.30 75.97

Reaction Conditions: Reaction temperature 22 ◦C, photocatalyst dose 1 g L−1, pH 6.2,
dye conc. 30 mg L−1, illumination 500 w halogen lamp.

Table A1 also explains the effect of iron loading on the decolorization capability of
synthesized photocatalysts for RB5 dye. Similar trend was found for iron loading at
different calcination temperatures, percent decolorization increased with increasing iron
loading but it started decreasing after an optimum loading level. In our case the optimum
iron loading was observed to be 0.1 weight percent, where maximum decolorization
was found to be 86, 91 and 88 percent at 200, 300 and 400 ◦C calcination temperatures,
respectively. Similar results were reported previously, where 100% RB5 decolorization
was obtained for 1.65Fe-TiO2-450 [29]. When the iron load is high on the photocatalyst,
metal oxides are formed and function as charge recombination centres which decrease
the photocatalytic activity by the interference with mass transfer, avoiding the charge
carrier species to continue the photocatalytic process [70,72]. Another study found that
iron spread across the surface of TiO2 which serve as charged species trappers which
decrease electron/hole pairs’ recombination rate, favouring the formation of a growing
number of radical species and improving photocatalytic efficiency [68]. It is also well
understood from previous studies that iron loading restrains the increase in grain size and
refine the crystallite size, which ultimately increase the photocatalyst performance [73].
It can be concluded that the proposed nanoparticle i.e., 0.1Fe-TiO2-300 showed better
decolorization performance in 60 min, low calcination temperature and low level of dopant
when compared with the reported literature.
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