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There are two competing views on how humans make decisions
under uncertainty. Bayesian decision theory posits that humans
optimize their behavior by establishing and integrating internal
models of past sensory experiences (priors) and decision outcomes
(cost functions). An alternative hypothesis posits that decisions are
optimized through trial and error without explicit internal models for
priors and cost functions. To distinguish between these possibilities,
we introduce a paradigm that probes the sensitivity of humans to
transitions between prior–cost pairs that demand the same optimal
policy (metamers) but distinct internal models. We demonstrate the
utility of our approach in two experiments that were classically
explained by Bayesian theory. Our approach validates the Bayesian
learning strategy in an interval timing task but not in a visuomotor
rotation task. More generally, our work provides a domain-general
approach for testing the circumstances under which humans explic-
itly implement model-based Bayesian computations.
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Bayesian decision theory (BDT) provides a normative frame-
work for how to make optimal decisions under uncertainty

(1–4). Imagine an agent whose decision has to be adjusted based
on the state of the environment. According to BDT, the optimal
decision policy can be computed from three sources of informa-
tion (Fig. 1A): the prior probability distribution of the underlying
state, the likelihood function of the state derived from noisy
sensory evidence, and a cost (or reward) function that specifies
possible decision outcomes. Optimal integration of these ingre-
dients would enable the agent to maximize its expected reward (or
minimize expected cost).
BDT can capture human behavior in a variety of domains in-

cluding perception (5–10), sensorimotor function (11–14), multi-
modal integration (15–18), and high-level cognitive function
(19–21). Based on the remarkable success of BDT, it has been
proposed that the brain performs Bayesian computations by ex-
plicitly representing the sensory likelihood, prior knowledge, and
cost function (22–26).
However, the notion of the Bayesian brain is fiercely debated

(27–29). Some proponents have taken the strong view that the
brain has distinct representations of the likelihood, prior, and cost
function (22, 24, 30), while many others remain agnostic about the
underlying mechanism (31–33). Critics argue that the success of
Bayesian models is unsurprising given the degrees of freedom
researchers have in choosing the prior distribution, likelihood
function, and cost function. The crux of the disagreement is about
the value of formulating the optimization process in terms of a
specific prior distribution and a specific cost function given that
learning these components is not essential for learning the optimal
policy (22, 34, 35). A perfectly reasonable alternative (Fig. 1A) is
that humans use trial-by-trial observations to incrementally arrive
at the optimal solution without explicit reliance on the prior dis-
tribution and/or cost function (36–40). Moreover, from a theo-
retical perspective, the choice of the prior and cost function is not
unique. For example, an optimal agent may choose an option
more frequently either because it is more probable or because it is
more rewarding. More generally, in decision-making tasks, there

are usually numerous pairs of priors and cost functions that, when
combined, could lead to indistinguishable decision policies
(Fig. 1B). Analogous to the notion of metamers in perception
(41–43), we will refer to such pairs of priors and cost functions as
prior–cost metamers. Because of the existence of such metamers,
it remains an important and unresolved question whether deci-
sions are made based on independently learned priors and cost
functions.
Here, we turn the problem of prior–cost metamers on its head

to develop a general experimental strategy to test whether human
decisions rely on independently learned priors and cost functions.
The key idea behind our approach is to ask whether human be-
havior in a decision-making task exhibits signs of relearning when
we covertly switch from one prior–cost pair to another pair that is
associated with exactly the same optimal decision policy (Fig. 1 C
andD for model simulation). According to BDT, optimal behavior
depends on having learned the prior and cost function indepen-
dently. Under this model-based hypothesis, changing to a new pair
would lead to a transient change in decision policy until the ob-
server relearns the new pair (“explicit” in Fig. 1 C and D). Al-
ternatively, if the optimal behavior were to emerge through trial
and error without learning the prior and cost, then the observer
should show no sensitivity to the switch and the behavior should
remain optimal (“implicit” in Fig. 1 C and D). We applied this
approach to two tasks—a time-interval reproduction task (44, 45)
and a visuomotor rotation (VMR) task (11)—both of which were
classically explained in terms of BDT. Our results substantiated the
role of independently learned priors and cost functions in the timing
task but not in the VMR task. Accordingly, future behavioral
studies can take advantage of our approach based on metamers to
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rule out the possibility of non-Bayesian strategies in Bayesian-
looking behaviors (37, 46).

Results
Although we can use Newton’s Laws to explain how an apple falls
from a tree, we would not conclude that the apple “implements”
Newton’s Laws. In the same vein, the fact that we can explain a
person’s behavior in terms of the BDT does not necessarily mean
that their brain relies on explicit representations of priors and cost
functions. Here, we develop an experimental approach to investi-
gate whether Bayesian computations rely on explicit knowledge
about priors and cost functions. We explore this question in the
context of two behavioral tasks, a time-interval reproduction task
and a VMR task. Previous work has shown that human behavior in
both tasks is nearly optimal and can be explained in terms of in-
tegrating priors and cost functions (11, 44). Here, we test whether
optimal performance in these tasks can indeed be attributed to
explicit reliance on priors and cost functions.
Our experimental approach for both tasks is the same. We start

the experiment with a specific choice of prior and cost function;
after performance saturates, we covertly switch to a prior–cost
metamer associated with the same optimal policy. The key ques-
tion we ask is whether the behavior immediately after the switch
reflects any sign of transient relearning of the new prior–cost pair.
Under one hypothesis (H1, Fig. 1 C and D), the optimal behavior
emerges through trial and error without explicit learning of the

prior and cost (e.g., model-free reinforcement learning [RL]). We
will refer to this strategy as implicit learning since the optimality
does not rely on an explicit model of the prior and/or cost. This
hypothesis predicts that behavior shows no sensitivity to the switch
and remains optimal because the optimal policy is the same as the
one associated with the originally learned prior–cost pair. Under
another hypothesis (H2), optimal behavior depends on learning
the prior and cost as prescribed by the BDT. We will refer to this
strategy as explicit learning since the agent has to build an internal
model for the prior and cost. This hypothesis predicts that the
behavior transiently deviates from optimality while the new
prior and cost are being learned, but the asymptotic behavior
would be optimal, as H1. For comparison, we will also test two
additional hypotheses, one in which the behavior is assumed to
be solely sensitive to the prior (H3) and one in which the be-
havior is assumed to be solely sensitive to the cost function
(H4). These hypotheses provide an informative benchmark to
examine whether participants exhibit differential sensitivity to
the prior or cost function.

Time-Interval Reproduction Task: Ready-Set-Go. In the Ready-Set-Go
(RSG) task (Fig. 2A), participants measure a time interval be-
tween the first two beats of an isochronous rhythm (“Ready” and
“Set” flashes) and are asked to press a button at the expected time
of the third omitted beat (“Go”). We refer to the sample interval
between Ready and Set as ts and the production interval between

A B

C D

Fig. 1. Testing Bayesian models of behavior using prior–cost metamers. (A) Ideal-observer model. An agent generates an optimal estimate (e) of stimulus (s)
based on a noisy measurement (m). To do so, the agent must compute the optimal decision policy (rectangular box; e = f(m)) that maximizes expected reward.
The decision policy can be computed using either an implicit (Top) or explicit (Bottom) learning strategy. In implicit learning, the policy is optimized through
trial and error (e.g., model-free reinforcement learning) based on measurements and decision outcomes (arrows on top). In explicit learning, the agent
derives the optimal policy by forming internal models for the stimulus prior probability, p(s), the likelihood of the stimulus after measurement, p(m|s), and the
underlying cost function, c(e,s). (B) Prior–cost metamers are different p(s) and c(e,s) pairs that lead to the same decision policy. Red box: an original pair
(subscript o) showing a Gaussian prior, po(s), and a quadratic cost function, co(e,s). Green box: a metameric pair (subscript m) whose Gaussian prior, pm(s), and
quadratic cost function, cm(e,s), are suitably shifted to the right and left, respectively. (Bottom) The optimal decision policy (e = f(m)) associated with both the
original (red) and metamer (green) conditions is shown as a line whose slope is less than the unity line (black dashed line; unbiased). The colored dashed lines
show suboptimal policies associated with an agent that is only sensitive to the change in prior (blue) or only sensitive to the change in the cost function
(orange). The policy is overlaid on a gray scale map that shows expected reward for various mappings of m to e. (C) Simulation of different learning models
that undergo an uncued transition (vertical dashed line) from the original pair to its metamer. H1 (implicit): after the transition, the agent continues to use the
optimal policy associated with the original condition. Since this is also the optimal policy for the metamer, probability of behavior being optimal (SI Appendix,
Eq. S16), p(optimal), does not change. H2 (explicit): immediately after the transition, the agent has to update its internal model for the new prior and cost
function. This relearning phase causes a transient deviation from the optimality (blue-to-green and yellow-to-green lines after the switch). After learning, the
behavior becomes optimal since the optimal policy for the metamer is the same as the original. H3 (prior sensitive): the agent only learns the new prior, which
leads to a suboptimal behavior. H4 (cost sensitive): same as H3 for an agent that only learns the new cost function. (D) Same as C for the response biases as a
behavioral metric. Similar to p(optimal) in C, bias of the implicit model (H1) remains at the optimal level and expected reward remains at the maximum level
(Right). The explicit model (H2) shows transient deviation from the optimal bias (blue-to-green and yellow-to-green lines) and expected reward decreases
(Right). Prior-sensitive and cost-sensitive models have opposite signs of biases and larger decrease in expected reward (Right).
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Set and Go as tp. We evaluated performance in RSG by what we
refer to as a “metronomic function,” which quantifies tp as a
function of ts. On each trial, ts is sampled from a prior probability
distribution, and participants receive graded numeric feedback as
reward (R) depending on the absolute error between tp and ts. We
set the value of R according to a truncated quadratic function with
a maximum of 100 and a minimum of 0 (Fig. 2C). We will use the
terms reward and cost function interchangeably to refer to the
functional relationship between R and error (tp – ts).
Before analyzing the participants’ behavior, we characterized the

predictions of various hypotheses regarding behavior in the context
of two metameric pairs. Under both H1 (implicit) and H2 (explicit),
the behavior is expected to be asymptotically optimal (i.e., after
learning). We determined the form of the optimal policy by char-
acterizing the behavior of an ideal observer performing the RSG
task. An ideal observer integrates the likelihood function associ-
ated with the measured interval (tm) with the prior and the cost
function to derive an optimal estimate (te) that maximizes expected
reward. This Bayes-optimal integration manifests as a nonlinear
relationship between te and tm (Fig. 2 C, Bottom Right). Accord-
ingly, the tp values for a participant that employs an optimal
strategy should exhibit characteristic biases toward the mean of the
prior. At first glance, the bias in the optimal policy may seem
counter intuitive. However, biasing responses in this way reduces
the variance of responses such that the performance improvement
due to reduced variance is larger than the performance drop due to
the addition of biases. We also predicted the behavior for the prior-
sensitive (H3) and cost-sensitive (H4) hypotheses after the switch to
its metamer. According to H3, tp values should exhibit an overall
positive bias toward longer intervals. In contrast, under H4, tp
values should exhibit an overall negative bias. Moreover, since
both hypotheses are suboptimal, they predict an overall drop in
expected reward.

Next, we collected data from 11 participants performing the
RSG task in the context of two distinct metameric prior–cost pairs
across five daily sessions (Fig. 2B). In the first session, participants
performed the task under the “original” pair, which consisted of a
Gaussian prior distribution and a cost function that was centered
at zero error, when tp = ts (Fig. 2C, red). For the original pair,
participants’ tp increased with ts and exhibited systematic biases
toward the mean of the prior (Fig. 2D, red). Similar to numerous
previous studies (44, 45, 47–50), this behavior was consistent with
predictions of the ideal-observer model (SI Appendix, Fig. S1).
Our goal for the subsequent four sessions was to test partici-

pants’ behavior after a covert switch between the original pair and
its metamer. To design the metamer (green in Fig. 2C), we used
the same truncated quadratic form for the cost function but shif-
ted it by −150 ms (Δt) such that the maximum value of R was now
associated with responding 150 ms earlier than the third beat (tp =
ts − 150 ms). Next, we designed the metameric prior. Intuitively,
the new prior has to be shifted in the positive direction to counter
the negative shift in the cost function and lead to the same deci-
sion policy. However, to achieve a perfect metamer, the new prior
cannot be Gaussian (see Materials and Methods). We modeled the
new prior as a Gaussian mixture model (GMM) whose parameters
were adjusted such that the integration of the GMM and shifted
cost function produced the same optimal policy. Note that the
exact form of the GMM depends on measurement noise level and
was therefore customized for each participant independently (see
Materials and Methods). For each subject, we verified that the
optimal policy for the original and metamer were indeed the same
(SI Appendix, Fig. S2).
Participants’ behavior in the context of the metamer showed

similar biases toward the mean (Fig. 2D, green; reference SI Ap-
pendix, Fig. S2 for all subjects) and was asymptotically matched to
that of the ideal observer (Fig. 2E, green; P = 0.137, t test for equal
bias between data and optimal model). In other words, participants’
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Fig. 2. Prior–cost metamers in the RSG task. (A) Time-interval reproduction task (“Ready-Set-Go”). While looking at a central spot, participants measure a
sample interval (ts) demarcated by two flashes (Ready and Set) and initiate a delayed button press (Go) to produce a matching interval (tp) immediately after
Set. At the end of each trial, participants received a numerical score whose value was determined by a cost/reward function (see panel C). (B) Experimental
sessions. In the first session that served as a baseline, participants performed the task with the original prior–cost set (“O”). In the subsequent four sessions, we
introduced an uncued transition between the original and metamer (“M”) in an alternating fashion. In these sessions, the pre- and posttransition included
∼170 and ∼500 trials, respectively. In all panels, we use red for the original condition and green for the metamer. (C) Prior–cost metamers. (Top Left) The
original prior, po(ts), is a Gaussian distribution (mean: 750 ms, SD: 144 ms) and its metamer, pm(ts), is a mixture of Gaussian distribution (see Materials and
Methods). (Top Right) Reward (or cost) function is an inverted quadratic function of the error, tp − ts, that is truncated to have only positive values. The
original cost function is centered at zero error, and the metamer is the same function shifted by Δt. (Bottom Left) The likelihood function for ts based on noisy
measurement, tm, denoted p(tm|ts). The likelihood function is asymmetric and broader for longer ts because measurement noise is assumed to scale with ts.
(Bottom Right) The optimal policy function that prescribes how an ideal observer should derive an estimate, te, from tm. By design, the optimal policy for the
original (H1) and metamer (H2) are identical. The plot also shows suboptimal policies for a prior sensitive (blue; H3) and cost sensitive (orange; H4) overlaid on a
gray scale map showing average expected reward for different mapping of tm to te. When the original pair switches to its metamer, H3 and H4 predict positive
and negative offsets, respectively, relative to the optimal policy. (D) Data from a representative session showing tp as a function of ts (dots: individual trials;
solid lines: running average across trials; shaded area: SEM). Prediction from H1 to H4 are shown in the same format as C. (Bottom) The original and metamer
priors. (Top Right) The original and metamer cost functions. (E) Bias in the original and metamer contexts. Violin plot showing the difference between the
observed and optimal bias across all participants and all sessions with transitions (n = 40; shaded region: distribution; open circles: grand averages; error bars:
SD). Bias was computed as the root-mean-squared difference between running average of tp and ts.
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behavior during both the original and its metamer was captured by
the same optimal policy. This finding is consistent with both the
implicit (H1) and explicit (H2) learning strategy.
Our main interest, however, is to distinguish between the im-

plicit (H1) and explicit (H2) learning strategies. Recall that any
transient deviation from the behavior of an ideal observer after the
switch would provide evidence against the implicit learning strat-
egy of using the original policy (no relearning). Therefore, we
estimated the log probability of behavioral data under the ideal-
observer model before, immediately after, and long after the co-
vert switch. As expected, the magnitude of bias across the par-
ticipants was nearly matched to that of an ideal observer before
the switch (Fig. 3 A, Right Inset). After the transition, the proba-
bility of data under the ideal-observer model dropped sharply and
transiently (Fig. 3 A, Left) and within ∼50 trials, moved back to the
pretransition level (nonparametric Friedman test for effect of
transition on mean P (optimal policy) across [−25 to 0], [1 to 25],
[26 to 50] trials with respect to the transition, P = 0.020; post hoc
signed rank test for 25 trials before versus after the transition, P =
0.081; post hoc signed rank test for 1 to 25 trials versus 26 to 50
trials after the transition, P = 0.003). Note that the transient de-
viation from the ideal-observer behavior was small in comparison
with what is expected from a purely prior-sensitive (H3; Fig. 3B) or
cost-sensitive (H4; Fig. 3C) strategy.
We performed several control analyses to rule out alternative

explanations for the transient deviation from optimal policy. First,
it is possible that the transient deviation from optimality was due to
the fact that participants experienced new ts values after the prior
was switched. We ruled out this possibility by analyzing only the
trials whose ts values overlapped with the distribution of ts before
the transition (SI Appendix, Fig. S3). Second, the suboptimal be-
havior after transition could be a manifestation of the nonlinear
optimal policy. Specifically, if subjects were to linearly extrapolate
from the learned optimal policy for the new ts values after transi-
tion, we would expect their behavior to transiently deviate from the
optimal nonlinear policy. Given the concave shape of the optimal
policy in RSG (Fig. 2C), the linear extrapolation scheme predicts
that subjects should consistently overestimate ts; that is, behavior
appears prior sensitive for the original-to-metamer transitions and
cost sensitive for the metamer-to-original transitions (SI Appendix,
Fig. S4). This was not consistent with data from individual subjects
(see Fig. 5 C–E for examples), and further analyses of learning
dynamics augur poorly for the plausibility of the extrapolation
model (SI Appendix, Fig. S4).
The transient deviation from optimality may also be a manifes-

tation of subjects’ exploring new solutions after detecting changes
in the stimuli and/or reward, much like bouts of exploration during
an e-greedy learning strategy (39). A key prediction from such
“exploration” periods is an increase of variance. We tested this
prediction by quantifying tp variance after transitions and found no
evidence of such increase (SI Appendix, Fig. S3). The idiosyncratic
biases of subjects during learning were also inconsistent with ran-
dom explorations. Specifically, some subjects were more sensitive
to the change in prior, whereas others responded more rapidly to
the change in the cost function (prior sensitive versus cost sensitive;
see Fig. 5). These sensitivities are inconsistent with random ex-
plorations (SI Appendix, Fig. S3) and suggest instead that explo-
rations about the prior and cost function were distinct and
advanced independently. We also note that any explanation of the
transient behavior in terms of increased explorations would need a
mechanism for detecting covert changes in the prior and cost
function. In theory, subjects could detect the change either by
detecting the presence of new stimuli or by detecting a change in
reward frequency. Detecting a change in the stimulus would only
be possible if subjects already had a memory of past stimuli, which
is equivalent to having a prior representation in the first place.
Detecting a change in reward can be accomplished if subjects have
a prior estimate of expected reward that they can use to compute

reward prediction error (RPE) and initiate explorations. However,
we already anticipated this possibility in our experimental design
(see Materials and Methods) and adjusted the cost function to en-
sure that subjects did not experience any change in average
expected reward during the transition. Finally, one could still argue
that subjects use a representation of prior and cost to detect the
change but then engage in a process of implicit learning. To test
this “hybrid” model, we considered three RL models, a Q agent
(51) with an action-value table, a Deep Q network (52), and a
Deep Deterministic Policy Gradient algorithm (53). We trained
these RL models on the original prior–cost pair and then examined
their behavior after metameric transitions. To make these models
as strong of a contender as possible, we assumed that they could
detect transitions immediately.
After excessive training (see Materials and Methods), all three

models were able to find the optimal policy for the original
prior–cost through implicit learning (i.e., trial-and-error explora-
tion; SI Appendix, Fig. S5). We then exposed the models for the
transition assuming that they immediately detect the transition
and start exploration. However, none of the models were able to
capture the observed learning dynamics in data regardless of the
choice of hyperparameters such as learning rate and exploration
rate (SI Appendix, Fig. S5). Notably, the models were simply in-
adequate in terms of how fast they could reach back to the optimal
policy (i.e., sample inefficient). Together, these results reject H1
(implicit), H3 (prior sensitive), and H4 (cost sensitive) but not H2
(explicit), suggesting that participants were sensitive to both the

C

BA

Fig. 3. Behavior immediately after the switch to a new prior–cost condition
in the RSG task. (A) (Top) Log probability of the optimal policy, denoted
“logP(optimal)” under the data across a few hundred trials before and after
the transitions (vertical dashed line) averaged across subjects and sessions
(n = 40; shaded area: SEM; purple: pretransition; magenta: posttransition;
horizontal dotted line: log probability of the optimal policy averaged across
100 pretransition trials). Data from individual trials are smoothed using a
causal Gaussian kernel (SD: 10 trials), separately for the pre- and post-
transition. Twenty-five posttransition trials are also highlighted as a window
of interest for later analyses. Legend on the right illustrates the alternating
transitions between the original (red) and metamer (green) across four
sessions. (Right Inset) The average difference between observed and optimal
bias in the pre- and posttransition epochs plotted in the same format as
Fig. 2E. Pretransition includes all trials before transition. Posttransition in-
cludes the last 200 trials (to avoid misestimation due to the transient).
(Bottom) Response bias in the same format as logP(optimal). The bias was
computed as the absolute difference between tp and the optimal estimate
(toptimal = fideal(ts); SI Appendix, Eq. S3) to better illustrate the time course of
the transient suboptimality. (B) Comparison of the optimal policy, logP(op-
timal), with the suboptimal prior-sensitive policy, denoted logP(prior-sensi-
tive), based on the data in the 25 posttransition trials across participants and
sessions (n = 40; see legend in A). (C) Same as B for the cost-sensitive model.
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prior and cost function despite the metameric relationship be-
tween the prior–cost pairs before and after the switch.

Learning Dynamics of the Prior–Cost Metamer. So far, we have
established that participants were sensitive to transitions between
prior–cost metamers, which suggests an underlying dynamic pro-
cess for learning the new prior and cost function. To characterize
this dynamic process, we sought to track the participants’ internal
estimate of the prior and cost function during the learning process.
To do so, we built an observer model in which the prior and cost
function could change dynamically during learning. From a sta-
tistical (fitting) perspective, parameterizing the full prior distri-
bution and cost function throughout learning is not feasible. We
therefore built a simplified model in which the profile of the prior
and cost function was the same as those associated with the
original pair (i.e., Gaussian and quadratic, respectively). However,
we allowed the mean (μ) and SD of the prior and the shift in the
cost function (Δt) in the model to be determined dynamically
based on the observed behavior. We will use “subjective prior”
and “subjective cost function” to refer to μ and Δt, respectively.
We fitted this observer model to each participant’s behavior

using a running window of 100 trials and tracked the fits to sub-
jective prior and cost function from before to after the transition.
Across participants, μ and Δt changed systematically and in ac-
cordance with the changes in the experimentally imposed prior and
cost function (Fig. 4 A and B; reference SI Appendix, Fig. S6 for the
SD of the prior). We also use Bayesian Information Criterion to
evaluate the data with respect to the implicit (H1), explicit (H2),
prior-sensitive (H3), and cost-sensitive (H4) hypotheses (Fig. 4C).
Results provided clear evidence in support of the explicit hypoth-
esis. Together, these analyses substantiate the presence of a dy-
namic learning process for the prior and cost function after the
transition and provides an estimate of the underlying time course
of learning in this task.
One important observation from the learning dynamics was that

the prior and cost function changed in parallel and at comparable
speeds (Fig. 4 A and B). Indeed, fitting the learning curve for the
prior and cost function with an exponential function led to com-
parable learning time constants (Fig. 5A; P = 0.42, signed rank
test). To gain a deeper understanding of the computational con-
sequences of this parallel learning, we performed a series of
simulations in which we varied the learning time constant for the
prior and cost function (Fig. 5F). The simulations indicated that
when the prior learning was faster than the cost function, the
behavior after the transition became more like the prior-sensitive
model (H3) and led to a reduction of expected reward. A higher
learning rate for the cost function also reduced performance by
causing the behavior to become more like the suboptimal cost-
sensitive model (H4). The best performance during transition was
associated with cases when two learning time constants were
comparable. This result provides a normative argument that it may
be beneficial to have comparable learning time constants for the
prior and cost.
To further explore the desiderata for optimal relearning, we

estimated the expected reward in a state space (Fig. 5 F and G)
comprised of the mean of the subjective prior (μ) and the shift in
the cost function (Δt). As expected, when the subjective prior
mean and cost shift match the objective values (original and
metamer in Fig. 5 F and G), the expected reward is maximum.
Any other point in the space would give rise to suboptimal reward
amounts. However, we unexpectedly found a continuum of the
prior–cost pairs that can achieve almost the maximum reward, in
between the original and metamer sets we devised. Therefore, if
the subjects learned the new prior and cost in parallel—that is,
navigating the state space diagonally—the expected reward would
not decrease as subjects remain in the continuous regime of the
optimal reward. In contrast, the reward would decline rapidly as
subjects sequentially update their internal prior or cost function.

One intriguing conclusion from these simulations is that when
prior and cost learning are suitably coordinated, the behavior may
remain optimal throughout the relearning process. In other words,
a participant’s behavior may show no sign of learning (i.e., no
deviation from ideal-observer model) even while they are in the
process of learning the new prior and cost function. With this
consideration in mind, we analyzed the behavior of individual
participants asking whether such coordinated learning for the
prior and cost function was evident in their behavior (Fig. 5 B–E).
Results revealed a diversity of learning time constants for the prior
and cost function ranging from relatively faster prior learning
(Fig. 5B), to comparable learning time constants for the prior and
cost function (Fig. 5 C and D), to faster cost learning (Fig. 5E).
However, there was no systematic difference between the two time
constants across participants (Fig. 5A).
The diversity of learning time constants for the prior and cost

function across participants provides a coherent explanation for
various findings that we originally found puzzling. First, it explains
why we were able to infer the prior mean and the shift in the cost
function across participants (Fig. 4 A and B). If the learning dy-
namics were identical across participants, we would have not been
able to infer those dynamics because of the metameric relation-
ship between the two conditions. Second, since the prior and cost
learning time constants were comparable across participants, the
deviation from the ideal-observer policy after prior–cost switches
was small (Fig. 3A) compared with the prior-sensitive and cost-
sensitive strategies (Fig. 3 B and C). Third, the parallel learning
enables participants to maintain a steady performance after
prior–cost switches (SI Appendix, Fig. S7).

VMR Task. In the VMR task (Fig. 6A), participants use a manipu-
landum to move a cursor from the center of a visible ring to the
remembered position of a target flashed briefly on the circumfer-
ence of that ring. As soon as the cursor begins to move, we make
the cursor invisible and change its angular position relative to the
angular position of the hand by a rotation angle, xs. While moving,
the cursor reappears briefly (100 ms) when it is midway, which
provides limited sensory information about xs to the participants.
On each trial, xs was sampled from a Gaussian prior distribution
(Fig. 6C), and a numerical feedback, R, was provided depending on
the error between xs and the corresponding correction, xp, which we
defined as the angle between the hand position and the target on
the ring. We set the value of R according to a truncated quadratic
function with a maximum of 100 and a minimum of 0 (Fig. 6C).

CBA

Fig. 4. Time course of learning the new prior and cost function across sub-
jects. (A and B) The inferred mean of the prior (μ) during two types of tran-
sitions between the original and metamer conditions (red and green above
the abscissa). The mean was inferred from fits of an observer model to be-
havior in running windows of 100 trials at different time points before and
after the transition (black circles: average across participants and sessions, n =
40; shades: SEM; black dotted line: exponential fit; dashed line: the experi-
mentally imposed prior mean). (B) The inferred shift in the subjective cost
function (Δt) during transitions between the original and metamer conditions
shown with the same format as A. (C) Model comparison using Bayesian in-
formation criteria (BIC). The smaller BIC values indicate the better models.
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Similar to the RSG task, we characterized the predictions of
various hypotheses regarding behavior in the context of two
metameric pairs. Under the implicit (H1) and explicit (H2)
learning strategies, the behavior is expected to be asymptotically
optimal (i.e., after learning). We determined the form of the op-
timal policy by characterizing the behavior of an ideal observer
that integrates the likelihood function based on a noisy mea-
surement, xm, with the prior and the cost function to derive an
optimal estimate, xe, that maximizes expected reward (Fig. 6C).
With a Gaussian likelihood function, a Gaussian prior, and a
quadratic cost function, the optimal policy is to map xm to xe lin-
early with a bias toward the mean (i.e., slope of less than 1; see
Materials and Methods). Under the prior-sensitive (H3) and cost-
sensitive (H4) hypotheses, xp values would exhibit an overall pos-
itive and negative bias, respectively (Fig. 6C), and would lead to
lower reward than expected under the optimal policy. Note that
linearity of the optimal policy in the VMR task is due to the
relatively simple form of the likelihood function (Gaussian with a
fixed SD) compared with the RSG task in which variability scales
with the base interval.
We collected data from 10 of the participants who also per-

formed the RSG task (with task sequence counterbalanced across
subjects). Our experimental procedure was the same as in RSG:

an original prior–cost pair in the first session and alternations
between the original and its metamer in the subsequent four
sessions (Fig. 6B). The original prior was centered at −12 degrees,
and the original cost function was centered at 0. Participants’
behavior exhibited biases toward the mean as expected by the
optimal policy, indicating that subjects did not fully compensate
for the rotation based on the midmovement measurement
(Fig. 6D for representative data; reference SI Appendix, Fig. S9 for
all participants; Fig. 6E, red, P = 0.561, t test, null: equal bias
between data and optimal model).
Next, we designed the prior–cost metamer (Fig. 6C). For the

prior, we shifted the Gaussian distribution by 10 deg so that the
new mean was at −2 deg. For the cost function, we derived the
appropriate shift in the cost function (Δt) needed to create a
metameric pair (i.e., matching optimal policy). Note that the shift
in the cost function had to be customized separately for each
participant depending on the measurement noise fits in the first
session. Participants’ behavior in the context of the metamer
showed similar biases toward the mean (Fig. 6D, green; SI Ap-
pendix, Fig. S9 for all participants) and was asymptotically
matched to that of the ideal observer (Fig. 6E, green; P = 0.052,
t test for equal bias for data and optimal model). In other words,
participants used the same optimal policy for both the original and

A B C

D E

F G

Fig. 5. Parallel learning of prior and cost function and its computational consequences. (A) Learning time constant for adjusting the mean of the prior (μ) and
the shift in the cost function (Δt) after prior–cost transitions. We inferred the learning time constants by fitting exponential curves to learning dynamics
(Fig. 4). For many participants, the learning time constants were comparable as evident by the points near the unity line (“parallel,” magenta dotted line).
Points above the unity line indicate faster adjustment for μ relative to Δt, which is expected from a participant that is more prior sensitive (blue circle). Points
below the unity line indicate faster adjustment for Δt relative to μ, which is expected from a participant that is more cost sensitive (orange circle). Two outlier
data points on the Top Right were not included in the plot (n = 40 across subjects and sessions). (B–E) Behavior of four example participants in the first 45
posttransition trials (dots: individual trials; solid line: average across bins; shaded region: SEM). The title of each plot indicates the participant (e.g., S2) as well
as the session with transitions (e.g., “second”), and the colors correspond to the specific points in A. For each example, the predictions from various optimal
and suboptimal models are also shown (legend). (F) Simulation with varying learning time constants. (Top Left) We selected five pairs of the learning time
constants for μ and Δt, indexed by the corresponding time constants, τ, and τΔt, respectively. The pairs ranged from faster prior learning (blue), to parallel
learning (brown), to faster cost learning (orange). (Right) Learning trajectory of μ and Δt for three example points in the Top Left (with the corresponding
colors) during the transition from the original prior–cost set (red circle) to its metamer (green circle). Faster prior learning first moves the state toward the
prior-sensitive model (open blue circle) and then toward the end point. Faster cost learning first moves the state toward the cost-sensitive model (open
orange circle). When the learning time constants are identical (brown), the state moves directly from the original to the metamer. The gray scale color map
shows expected reward as a function of μ and Δt (SI Appendix, Eq. S19). (Bottom Left) Average reward along the learning trajectory for the points in the Top
Left. Results correspond to the averages of 500 simulated trials (error bar: SEM). (G) Learning trajectories across participants based on average learning time
constants in A shown separately while transitioning from original to metamer (red to green) and from metamer to original (green to red). Note that, on
average, the expected reward (gray scale color map, same as F) remains high.
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its metamer, consistent with both the implicit (H1) and explicit
(H2) learning strategy.
To distinguish between the implicit (H1) and explicit (H2)

learning strategy, we tested whether there was any transient
change in decision policy immediately after the switch between the
two prior–cost pairs. Unlike RSG, participants’ behavior did not
exhibit any transient deviation from the optimal policy after the
switch (Fig. 7A and SI Appendix, Figs. S10 and S13 for reward) and
was better explained by the optimal policy than a purely prior-
sensitive (H3) or cost-sensitive (H4) strategy, even with the first 25
trials after the switch (Fig. 7 B and C and SI Appendix, Fig. S10).
Together, these results suggest that, in VMR, participants rely on
an implicit learning strategy (H1) without explicit learning of the
prior and cost function.
Although direct comparison of the different results across RSG

and VMR tasks is not feasible due to their distinct task domains
and noise characteristics (see Discussion), we performed several
control analyses to rule out alternative explanations for the dif-
ference between RSG and VMR. First, one possibility is that
subjects might experience a smaller drop of reward during transi-
tions in VMR than in RSG, being less likely to detect the transition
in VMR. We however did not observe any noticeable difference in
the amount of reward change across transitions between the two
tasks (SI Appendix, Fig. S17). In fact, the actual reward subjects
received remained steady for both tasks (SI Appendix, Fig. S17) as
we matched the overall expected reward across transitions with
careful design of the cost functions. Second, we tested whether
subjects who participated first in the RSG task showed the tran-
sient suboptimality only in RSG but not in VMR that they com-
pleted afterward (and vice versa). We did not find any effect of the
task sequence and observed the transient deviation from optimality
in RSG, but not in VMR, consistently across both groups of sub-
jects (SI Appendix, Fig. S16). Finally, participants might exhibit the
transient suboptimality only in earlier sessions and adapt more
rapidly in later sessions. However, this pattern of “saving” or
metalearning (54, 55) was not observed when we analyzed the time
course of optimality and bias separately for individual sessions (SI
Appendix, Fig. S14; see also SI Appendix, Fig. S8 for RSG).

One experimental advantage of the VMR task was that it
provided a continuous readout of subjective estimate of the ro-
tation angle. For instance, the angle of initial hand movement
(x0p) can serve as a proxy for the internal prior that subjects had
before the midmovement measurement was made. If the subjects
learned the prior distribution of xs, they would aim at the target
with an angle that roughly corresponds to the mean of the prior
at the beginning of the trials. As the prior changed across the
transition, x0p may track changes of the internal prior if subjects
updated the prior. To test whether the x0p reflects the prior, we
analyzed its time course around the transition (SI Appendix, Fig.
S15). We made two observations: First, x0p was indeed overall

D EC

B

A

Fig. 6. Prior–cost metamers in the VMR task. (A) VMR task. Participants move a manipulandum (vertical cylinder) to maneuver a cursor on a horizontal
display (Top Right) from the center of the screen (red square) to a target flashed briefly on the circumference of a visible ring (“Target”: black circle on the
ring). The moving cursor is occluded while moving except from a brief reappearance halfway along the path (“Sample”: black circle). The cursor position is
covertly rotated by an angle (xs) relative to the position of the hand (gray circle). Participants have to use xs and apply a matching counterrotation (xp) to bring
the cursor to the target position (“Adjustment”). At the end of each trial, participants received a numerical score whose value was determined by a cost/
reward function (see panel C). (B) Experimental sessions shown in the same format as Fig. 2B. (C) Prior–cost metamers shown in the same format as in Fig. 2C.
(Top Left) The original prior, po(xs), is a Gaussian distribution (mean: −12 deg, SD: 7.5 deg) and its metamer, pm(xs), is also a Gaussian distribution shifted by 10
deg (see Materials and Methods). (Top Right) Reward (or cost) function is an inverted quadratic function of the error, xp − xs, that is truncated to have only
positive values. The original cost function is centered at zero error, and the metamer is the same function shifted by Δx. (Bottom Left) The likelihood function
for xs based on noisy measurement, xm, denoted p(xm|xs). (Bottom Right) The optimal policy function that prescribes how an ideal observer should derive an
estimate, xe, from xm. By design, the optimal policy for the original (H1) and metamer (H2) are identical. The plot also shows suboptimal policies for a prior
sensitive (blue; H3) and cost sensitive (orange; H4) overlaid on a gray scale map showing average expected reward for different mapping of xm to xe. H3 and H4

predict positive and negative offsets, respectively, relative to the optimal policy. (D) Data from a representative session showing xp as a function of xs shown in
the same format as in Fig. 2D. (E) Bias in the original and metamer contexts (n = 36) in the same format as in Fig. 2E.

B

C

A

Fig. 7. Behavior immediately after the switch to a new prior–cost condition
in the VMR task. (A–C) Results are shown in the same format as in Fig. 3.
Unlike the RSG task, behavior does not exhibit any transient deviation from
optimal policy after the switch. Note that, in A, no smoothing was used to
not mask any transient.
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negative and close to the mean of the original prior (−12 deg),
suggesting that subjects internalized the prior and prepared their
movement accordingly to minimize later adjustments with mid-
movement feedback. Second, we did not find any systematic
changes in x0p across the transition. These results provide addi-
tional evidence supporting the conclusion that subjects used a
fixed learned decision policy (i.e., implicit learning strategy).

Discussion
The success of the BDT in capturing human decision making
under uncertainty (2–4, 22, 25) has been taken as evidence that
the human brain relies on internal models for prior probability,
sensory likelihoods, and reward contingencies. However, the suc-
cess of BDT does not necessarily mean that the human brain es-
tablishes such internal models. Indeed, numerous researchers
have argued instead that the brain relies on heuristics (27, 56) and
gradual learning of optimal policies (29, 39, 40).
There have been numerous attempts to experimentally test the

key prediction of BDT. For example, some studies have changed
one element of the BDT during experiments and studied how
human observers adapt to the change (45, 57–59). However, this
approach inevitably changes the corresponding optimal decision
policy and therefore could not be used to distinguish between ex-
plicit and implicit learning hypotheses. One potential approach for
tackling this problem is to ask whether knowledge about the prior
and cost would transfer to a new behavioral setting (36, 37). For
example, one can expose participants to two prior–cost conditions,
P1,C1, and P2,C2, and ask whether behavior remains optimal when
participants are tested in cross conditions, that is, P1,C2 and P2,C1.
If task performance stays at the optimal level under the new pair, it
indicates that participants can flexibly integrate learned priors and
cost functions in accordance with BDT. However, implementation
of this approach can be challenging since it requires participants to
fully learn and flexibly access distinct priors and cost functions. As
such, deviations from optimality using this approach may be due to
bounded computational capacity that humans have in switching
between internal models.
To fill this gap, we developed an experimental paradigm that

capitalizes on the issue of model identifiability in BDT (60). Since
there is no one-to-one correspondence between an optimal deci-
sion policy and its underlying BDT elements (likelihood, prior,
and cost function), it is possible to design Bayesian metamers that
involve different prior–cost pairs but are associated with the same
optimal policy. This approach parallels fruitful uses of metamers
in perception (41–43) and machine learning (61). The key idea is
that an observer whose decisions rely on implicit learning should
“see” the pairs as metamers because they correspond to the same
policy. In contrast, an observer that makes direct use of priors and
cost functions will see the two pairs as distinct and will therefore
be sensitive to transitions between them.
We demonstrated the utility of our approach in the RSG and

VMR tasks that humans perform nearly optimally. Switching be-
tween metamers led to transient deviations from the optimal
policy in the RSG but not VMR task. These findings are consis-
tent with the interpretation that the optimal policy in the
RSG—not VMR—task relies on internal models for the prior and
cost function. What factors might underlie the difference between
the two tasks? Although we ruled out potential differences across
the tasks in the detectability and awareness of the transition (see
Results), one remaining important factor that differs between the
two tasks is the complexity of the decision policies. Recall that the
optimal policy in the VMR task was a linear mapping between
measurements and estimates. It is conceivable that the sensori-
motor system has powerful machinery to rapidly adapt to new
linear sensorimotor mappings without the need to relearn internal
models of the prior and cost function. In contrast, the nonlinear
optimal policy in the RSG task may necessitate the relearning of
the prior and cost function for making adjustments to the policy

although we tested and ruled out an alternative model with linear
extrapolation for RSG (SI Appendix, Fig. S4). It may also be that
the difference is due to inherent differences between sensorimotor
timing (RSG) and sensorimotor reaching (VMR). Future studies
can apply our methodology to experiments involving different
forms of priors, cost functions, and optimal policies to understand
the conditions under which the brain adopts explicit versus implicit
learning strategies (62, 63).
An additional insight from our study was the importance of

learning dynamics. Our simulations indicated that when learning
time constants for the prior and cost function are comparable,
learning new internal models would not incur any transient per-
formance loss. One would therefore not be able to reject implicit
learning if learning time constants for prior and cost were matched.
This may however not be a problem in practice when individual
learning time constants vary considerably, as was the case across
subjects in our study (Fig. 5). Our framework may also fail to
discriminate between explicit and implicit learning when learning
takes only a few trials (40, 64). This is likely not a problem in our
experiment since it takes more than a few trials to adjust to new
statistics in the presence of intrinsic sources of variability (e.g.,
internal timing variability). More generally however, our frame-
work is not suitable for experimental settings in which learning
does not impact behavioral responses or when learning dynamics
are too fast to measure. Currently, it is not clear what methodology
one could use to dissociate between implicit and explicit learning
for such challenging scenarios.
Our framework can be flexibly extended in different ways. For

example, one can further validate BDT using likelihood-cost and
likelihood-prior metamers. The use of likelihood-cost metamers
may be particularly valuable when the likelihood and cost can be
manipulated (6, 11, 15) but the prior is thought to be hardwired,
perhaps as a result of development and/or evolution (10). For the
prior–cost metamers that we focused on, there is a great deal of
flexibility in choosing the parametric form of the prior and cost
function. This flexibility can be used to validate conclusions that
previous studies made about the role of a specific form of prior
distribution (65) and/or cost function (44, 66) in human sensori-
motor behavior. Finally, the specific design considerations for the
metamer are not limited to linear shifts of the prior and/or cost
function, which contributes to generation of the continuum of
prior–cost metamerism (Fig. 5) but can be adjusted based on
experimental needs.
It is important to carefully titrate the prior and cost function in

our framework. If the stimuli associated with the new prior are
widely different from the original prior, participants may have to
engage in a learning process to establish the optimal decision
policy for the new stimuli. This learning may present itself as a
transient deviation from optimality and can thus be misinterpreted
for explicit learning. One strategy that can reduce the chance of
such misinterpretation is to design metamers that involve fully
overlapping ranges of stimuli (i.e., have the same domain) but with
different probability profiles (e.g., different variance or skewness).
This strategy would ensure that participants have observed all
possible stimuli in the metamer before the transition. Further-
more, if the transition to the metamer leads to an overall in-
crease or decrease in reward, participants might notice the
change and initiate exploratory behavior to update the decision
policy. This concern is unlikely to have impacted our results
since we adjusted the metamer cost function to ensure the
overall expected reward was unchanged after the transition.
Nevertheless, it is important to design the cost function meta-
mers carefully so as to avoid misattributing implicit learning of
a new policy to explicit Bayesian learning.
Care must be taken in interpreting the results of metameric

experiments such as ours. For example, one implicit assumption of
our methodology is that the implicit learning strategies do not in-
volve updating the decision policy. This is a reasonable assumption
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for certain kinds of implicit learning such as model-free RL with
direct policy optimization (39, 67, 68) because the metamer by
design generates no incentive (or “gradient”) for updating policy.
We further showed that the transient behavior in RSG cannot be
explained by alternative models based on random exploration,
linear extrapolation, and sophisticated deep RL (52, 53). However,
the model space for implicit learning is enormous, and the di-
chotomy between the implicit and explicit learning can become
blurred when it comes to latent representations of reward expec-
tation and decision policy. For example, the explicit model-based
learning can take a form of directed exploration guided by sensory
prediction error (SPE) between the prior expectation and current
measurement as well as RPE between the expected and actual re-
wards. It is noteworthy that the internal model of prior (i.e., memory
of previous stimuli) and cost function (i.e., reward expectation) in the
explicit learning can provide a natural means for detecting need for
changing decision policy and for rapidly generalizing over new priors
and cost functions in a sample-efficient way (40, 64). However, given
that the implicit learning model does not have the latent represen-
tation of the prior and cost function, one still has to invoke a sep-
arate change-detection mechanism to adjust the learning rate after
change detection.
Our analysis of learning dynamics in RSG suggests that updating

priors and cost functions likely involves different neural systems.
This conclusion is consistent with the underlying neurobiology (69).
Humans and animals update their prior beliefs when observed
stimuli deviate from predictions, which can be quantified in terms
of the SPE (22, 30, 70, 71). The cerebellum is thought to play a
particularly important role in supervised SPE-dependent learning
of stimulus statistics in sensorimotor behaviors (72–75). In contrast,
learning cost functions is thought to depend on computing RPEs
between actual and expected reward (76–78). This type of learning
is thought to involve the midbrain dopaminergic system (79) in
conjunction with the cortico-basal ganglia circuits (69, 80–82). Fi-
nally, the information about the prior and cost function has to be
integrated to drive optimal behavior. Currently, the neural circuits
and mechanisms that are responsible for this integration are not
well understood (83–85). Future work could take advantage of our
methodology to systematically probe behavioral settings that rely
on model-based BDT as a rational starting point for making in-
quiries about the underlying neural mechanisms.

Materials and Methods
Eleven participants (age: 18 to 65 y, sixmale and five female) participated in the
experiments after giving informed consent. All participants were naive to the
purpose of the study, had normal or corrected-to-normal vision, and were paid
for their participation. All experiments were approved by the Committee on
the Use of Humans as Experimental Subjects at the Massachusetts Institute of
Technology.

Procedures. All 11 participants completed five experimental sessions of the RSG
time-interval reproduction task, and 10 of them completed five sessions of the

VMR task. The testing sequence for the two tasks was counterbalanced across
participants. In each session, a participant was seated in a dark quiet room and
asked to perform the task of interest for ∼60 min. For both tasks, stimuli and
behavioral contingencies were controlled by an open-source software
(MWorks; mworks-project.org/) running on an Apple Macintosh platform.

Before the first session, participants received detailed instruction about task
contingencies and completed dozens of practice trials. We used the data from
the first session to make baseline measurements of various participant-specific
parameters needed for adjusting experimental parameters in the remaining
sessions (see SI Appendix for details). The data from the remaining sessions
were used to ask whether humans use implicit versus explicit Bayesian
integration strategy (Fig. 1).

RSG Time-Interval Reproduction Task. In RSG, subjects have to measure an in-
terval between two cues (Ready followed by Set) and reproduce that interval as
accurately as possible immediately afterward. Details of the RSG task are
provided in SI Appendix.

VMR Reaching Task. In VMR, subjects have to use a manipulandum to move a
cursor from a center position to a target position. Experimentally, the move-
ment vector of the cursor is rotated relative to that of the hand. Subjects are
provided sensory feedback about the cursor position midway along the path to
make corrections. Details of the VMR task are provided in SI Appendix.

Prior–Cost Metamers. Each experiment was associated with a prior distribution
(interval distribution in the RSG task and rotation angle distribution in the VMR
task) and a cost function (how subjects received feedback based on their
performance). We tested subjects in each task using two prior–cost metamers.
Details about designing prior–cost metamers for are provided in SI Appendix.

Models and Analysis. All analyses were performed using custom code in
MATLAB (MathWorks, Inc.). We first removed outlier trials for each data set
across all participants and sessions. We applied different algorithms to the two
tasks as their response profile was inherently different (i.e., nonlinear metro-
nomic function for theRSG task and linear policy for the VMR). For theRSG task,
we excluded trials in which the relative error, defined as (tp – ts)/ts, deviated
more than 3 SDs from its mean (mean: 0.50%; SD: 0.28% across subjects). For
the VMR task, we first fitted a linear regression model relating xp and xs and
excluded trials for which the error from the linear fit was more than 3.5 times
larger than the median absolute deviation (mean: 3.4%; SD: 2% across data
sets). We verified that outlier trials were not concentrated immediately after
the switch between the prior–cost pairs.

Details regarding Models and Analysis are provided in SI Appendix.

Data Availability. Anonymized MATLAB data have been deposited in Jazlab
Resources (https://jazlab.org/resources/) and can be found at https://github.
com/jazlab/HS_MJ_metamer_2021.
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