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Abstract 

Background:  Chitosan, the N-deacetylated derivative of chitin, is a cationic polyelectrolyte due to the presence of 
amino groups, one of the few occurring in nature. The use of chitosan in protein and drug delivery systems is being 
actively researched and reported in the literature.

Results:  In this study, we used chitosan-coated levodopa liposomes to investigate the behavioral character and the 
expression of phosphorylated extracellular signal-regulated kinase (ERK1/2), dopamine- and cAMP-regulated phos-
phoprotein of 32 kDa (DARPP-32) and FosB/ΔFosB in striatum of rat model of levodopa-induced dyskinesia (LID). We 
found that scores of abnormal involuntary movement (AIM) decreased significantly in liposome group (P < 0.05), 
compared with levodopa group. Levels of phospho-ERK1/2, phospho-Thr34 DARPP-32 and FosB/ΔFosB in striatum 
decreased significantly in liposome group lesion side compared with levodopa group (P < 0.05). However, both of 
two groups above have significantly differences compared with the control group (P < 0.05).

Conclusion:  Chitosan-coated levodopa liposomes may be useful in reducing dyskinesias inducing for Parkinson 
disease. The mechanism might be involved the pathway of signaling molecular phospho-ERK1/2, phospho-Thr34 
DARPP-32 and ΔFosB in striatum.
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Background
Levodopa-induced dyskinesia (LID) is difficult to treat, 
negatively affects quality of life, and increases the treat-
ment costs of Parkinson’s disease (PD) patients [1]. 
Although levodopa currently represents the most effec-
tive treatment for PD patients [2], ameliorating cardinal 
signs such as bradykinesia, akinesia and rigidity [3], these 
benefits are in some measure overshadowed by the emer-
gence of LID [4]. In the early stages, PD patients usually 
experience an acceptable quality of life that is impaired 
in the advanced stages by the emergence of these invol-
untary movements that frequently occur at the peak 
of the levodopa effect [5, 6]. In other words, when the 

patients experience motor complications such as a short-
ening motor response and the development of dyskine-
sia, the delivery of levodopa without inducing dyskinesia 
becomes increasingly difficult [7, 8].

Extracellular signal-regulated kinases 1 and 2 (ERK1/2) 
are critical mediators of activity-dependent plasticity as 
demonstrated by their role in long-term potentiation [8], 
classical conditioning [9], and memory formation [10]. 
Phosphorylation of ERK1/2 reflects a balance between 
the activities of upstream kinases and inactivating phos-
phatases [11]. Previous studies reported that selective 
agonists for D2-type DA receptors enhanced ERK1/2 
phosphorylation in the DA-denervated striatum [12, 13]. 
l-DOPA produces pronounced activation of ERK1/2 
signaling in the dopamine-denervated striatum through 
a D1-receptor-dependent mechanism, which was associ-
ated with the development of dyskinesia [14]. Phospho-
rylated ERK1/2 was localized to both dynorphinergic and 
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enkephalinergic striatal neurons, suggesting a general 
role of ERK1/2 as a plasticity molecule during l-DOPA 
treatment [14, 15]. In addition, the dopamine- and 
cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) 
is abundantly expressed in the medium spiny neurons 
of the striatum. Phosphorylation catalyzed by cAMP-
dependent protein kinase (PKA) converts DARPP-32 
into an inhibitor of protein phosphatase-1 [16]. Changes 
in the state of phosphorylation of DARPP-32 reinforce 
the behavioral effects produced by stimulation or inhibi-
tion of the cAMP pathway [16].

Chitosan, the N-deacetylated derivative of chitin, is 
a cationic polyelectrolyte due to the presence of amino 
groups, one of the few occurring in nature. This gives 
chitosan singular chemical and biological characteristics, 
such as: biocompatibility [17], antibacterial properties, 
heavy metal ion chelation ability, gel-forming properties 
and hydrophilicity [17]. Due to its chemical configuration 
and to features like abundance, low toxicity, hydropho-
bicity, biodegradability, biocompatibility and antimicro-
bial activity, chitosan is employed for the preparation of 
films, gels, microspheres and microcapsules. It has been 
used in various areas such as biotechnology, cosmet-
ics, food and pharmaceuticals, as a way to release active 
compounds, among others [18, 19]. The use of chitosan 
in protein and drug delivery systems is being actively 
researched and reported in the literature [20].

In this study, we investigated whether the develop-
ment of LID might be associated with a critical impair-
ment of the expression of p-ERK1/2, p-Thr34 DARPP-32 
and FosB/ΔFosB. To examine our hypothesis, 6-OHDA 
lesioned rat models of PD were set up and administrated 
separately with chitosan-coated levodopa liposomes/
benserazide and levodopa/benserazide.

Results
Behavioral characteristics
There were 18 of total 20 rats and 15 of total 20 rats 
produced abnormal involuntary movements (AIMs) 
in 6-OHDA-lesioned after levodopa and levodopa 
liposomes group, respectively, whereas no AIMs were 
observed on the saline control group and sham-oper-
ated rats. As expected, sham-operated rats did not show 
AIMs at any time point (data not shown). Most of the 
levodopa group were shown in severe axial and fore limb 
AIMs, which scored more than three. However, most of 
levodopa liposomes group were shown in slight orofa-
cial AIMs, which scored less than two. On the whole, the 
appearing time of AIMs of levodopa group was earlier 
than the levodopa liposomes group. The results of LTD 
rat’s rigid motion scores and rotating turns every 5 min 
were shown in Figs. 1 and 2, respectively.

Chronic levodopa induced FosB/ΔFosB expression 
in damaged lateral striatum
Levels of FosB/ΔFosB as quantified by western blotting 
revealed that chronic levodopa (levodopa group and 
levodopa liposomes group) had significantly induced 
FosB/ΔFosB expression (Fig.  3) in 6-OHDA-lesioned 
rats. Fluorescence in  situ hybridization/immunohis-
tochemistry showed that the increasing FosB/ΔFosB 
positive cells mostly expressed outside of the striatum 
(Fig. 4).

Chronic levodopa induced p‑ERK1/2 expression 
in damaged lateral striatum
Levels of ERK1/2 and p-ERK1/2 as quantified by west-
ern blotting revealed that chronic levodopa (levodopa 
group and levodopa liposomes group) had significantly 
induced p-ERK1/2 expression (Fig. 5) but had no effect 
on ERK1/2 expression in 6-OHDA-lesioned rats (data 
not shown). Fluorescence in  situ hybridization/immu-
nohistochemistry showed that the increasing p-ERK1/2 
positive cells had no obvious differences location distri-
bution (Fig. 6).

Chronic levodopa induced phospho‑Thr34 DARPP‑32 
expression in damaged lateral striatum
Levels of DARPP-32 and phospho-Thr34 DARPP-32 
as quantified by western blotting revealed that chronic 
levodopa (levodopa group and levodopa liposomes 
group) had significantly induced phospho-Thr34 
DARPP-32 expression but had no effect on DARPP-32 
expression in 6-OHDA-lesioned rats (Fig.  7). Western 
blot assay showed that the increasing phospho-Thr34 
DARPP-32 positive cells had no obvious differences 
location.

Fig. 1  The tendency of rigid motion scores of levodopa and levo-
dopa liposomes groups
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Discussion
LID can be modeled in rats with 6-OHDA unilateral 
nigro-striatal lesions via chronic administration of 
low doses of levodopa. In these rats, chronic levodopa 
induces increasingly severe axial, limb, and orofacial 
AIMs, which have been extensively characterized by dif-
ferent research groups and validated pharmacologically 
[21–23]. In present study, we used a unilateral 6-OHDA-
lesion PD rats model, which is one of the most frequently 
used for PD animal model. 6-OHDA must be directional 
injection because of hardly through the blood brain bar-
rier, which was proofed as the most radical way of dam-
aging nigra striatum pathways [24].

In present study, after chronic levodopa treatment, 
most animals appeared AIMs and had significantly influ-
ence on axial, limb, and orofacial motor function induced 
by 6-OHDA. There was an obvious individual differences 
of AIMs symptom which was getting heavier and heavier 
with the extension of levodopa treatment. This results 
were the same as the report of [25]. Clinical study shown 
that about 30–80 % of PD patients could appear LID after 
chronic levodopa treatment. And with the increase of 
diseases and the extension of treatment time, the degree 
of movement disorder and the frequency will increase 
[26]. In this study, the variation tendency of rotating 
behavior, rigid motion, and the total AIM score were dis-
crepancy, which was the most significantly in the levo-
dopa group.

Seminal studies evaluating metabolic changes in the 
basal ganglia have suggested that hyperactivity of the 
direct pathway sustains dyskinesia [27]. Marked abnor-
malities in neuronal activity and long-lasting molecu-
lar mechanisms prime and/or sustain LID [28]. Among 
them, striatal FosB/ΔFosB accumulates in PD patients 
[29] and correlates with LID severity both in rat and 
monkey models of PD [30]. Molecular interference stud-
ies further highlighted a causal link between ΔFosB and 
LID apparition or expression [31]. In PD patients, the 
presence of LID is inevitably associated with a decreased 
duration and/or magnitude of the therapeutic benefit of 
l-DOPA [32]. In previous study, the selective silencing 
of FosB/ΔFosB-expressing neurons induced a reduction 
of LID together with an increased rotational behavior in 
rats and with an increase in good on time period with-
out changes in disability scores in primates [33]. In pre-
sent study, the FosB/ΔFosB-expressing of levodopa group 
and levodopa liposomes group were significantly higher 
than the saline control group and the sham-operated 

Fig. 2  The tendency of rotating turns every 5 min of levodopa and levodopa liposomes groups

Fig. 3  The western blotting results of FosB/ΔFosB expression in the 
four groups (1 = sham-operated, 2 = saline control, 3 = levodopa, 
4 = levodopa liposomes). *P < 0.05
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group. However, the FosB/ΔFosB-expressing of levo-
dopa liposomes group was significantly lower than the 
levodopa group, which suggested that application of chi-
tosan-coated levodopa nanoliposomes may reduces the 
different movement disorder in PD treatment, compared 
to ordinary levodopa tablets.

In chronically l-DOPA treated rats; the extent of stri-
atal ERK1/2 phosphorylation produced by the last drug 
dose was positively and strongly correlated with the 
AIMs scores recorded during the treatment period [33]. 
Levels of ERK1/2 activation in chronically l-DOPA 

treated nondyskinetic animals did not differ significantly 
from baseline values. Thus, the pronounced activation 
of ERK1/2 in DA-denervated striatal neurons provided 
a molecular counterpart to the induction of AIMs by 
l-DOPA [34]. Because an increased phosphorylation of 
ERK1/2 was also produced by acute l-DOPA treatment 
(which does not elicit significant AIMs), previous study 
suggested that the core signaling alteration associated 
with dyskinesia consists in an inability to desensitize 
the phospho-ERK1/2 response with repeated exposure 
to l-DOPA [35]. In present study, the phospho-ERK1/2 

Fig. 4  The immunohistochemistry results of FosB/ΔFosB expression in the four groups (a = sham-operated, b = saline control, c = levodopa, 
d = levodopa liposomes). Magnification: ×200 *P < 0.05
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expressing of levodopa group and levodopa liposomes 
group were significantly higher than the saline control 
group and the sham-operated group. However, the phos-
pho-ERK1/2 expressing of levodopa liposomes group 
was significantly lower than the levodopa group, which 
suggested that application of chitosan-coated levodopa 
nanoliposomes may reduces the different movement dis-
order in PD treatment, compared to ordinary levodopa 
tablets.

Many evidence highlights the importance of DARPP-
32 as a critical component of signal integration in striatal 
projection neurons. Once phosphorylated, the DARPP-
32 at Thr-34 inhibits protein phosphatase-1 (PP-1) activ-
ity [36], acting as a cAMP-dependent kinase inhibitor 
[37]. In fact, in the dorsolateral striatum, phosphoryla-
tion mechanisms play a physiological role in motor con-
trol, and the induction of both long-term depression 
(LTD) and long-term potentiation (LTP), two oppos-
ing forms of synaptic plasticity. Both forms of plasticity 
(LTP/LTD) are also critically linked to the activation of 
DA receptors, supporting the idea that in the striatum, 
a close interplay among DA receptors, DARPP-32 state 
phosphorylated/de-phosphorylated, and glutamatergic 
transmission might underlie the functional role of this 
structure in motor control and cognitive activities [38]. In 
present study, the phospho-Thr34 DARPP-32 expressing 
of levodopa group and levodopa liposomes group were 
significantly higher than the saline control group and 
the sham-operated group. However, the phospho-Thr34 
DARPP-32 expressing of levodopa liposomes group was 
significantly lower than the levodopa group, which sug-
gested that application of chitosan-coated levodopa 
nanoliposomes may reduces the different movement 

disorder in PD treatment, compared to ordinary levo-
dopa tablets.

Conclusion
The molecular adaptations produced by chronic l-DOPA 
treatment in indirect pathway neurons are poorly under-
stood. Some recent studies performed on rats with 
6-OHDA lesions have specifically addressed the relative 
localization of l-DOPA-induced changes in striatal gene 
expression to dynorphinergic or enkephalinergic neurons 
and have consistently found a selective upregulation of 
transcription factors and plasticity genes in the former 
population [39]. In present study, it is tempting to pro-
pose involvement of FosB/ΔFosB, phospho-ERK1/2, and 
phospho-Thr34 DARPP-32 in these effects [40]. And 
compared with ordinary levodopa tablets, chitosan-
coated levodopa liposomes may be a more useful agent in 
reducing dyskinesias inducing for Parkinson disease.

Methods
Animals
Experimental procedures were carried out on 60 adult 
male Sprague–Dawley rats (Tongji Medical College 
Laboratory Animal Center of Huazhong University 
of Science and Technology, Wuhan, China) weighting 
180–250 g corresponding to ~6 weeks of age. All proce-
dures were performed minimizing animal discomfort and 
strain. Rats were maintained on a regular light–dark cycle 
(lights on at 10:00 a.m., lights off at 10:00 p.m.; room 
temperature 20–22 °C; and maximum three animals per 
cage) and were given food and water ad  libitum before 
habituation to the behavioral paradigm. We employed a 
6-OHDA-based parkinsonian rat model inducing abnor-
mal involuntary movements (AIMs) comparable with 
LID observed in PD patients by chronic treatment with 
levodopa. The Institute Research Medical Ethics Com-
mittee of Huazhong University granted approval for this 
study.

Unilateral 6‑OHDA‑lesion model of PD
Unilateral (left hemisphere) DA denervation was per-
formed according to a standard protocol [41]. Briefly, rats 
were anaesthetized with 1.5–2.5  % isoflurane in oxygen 
and mounted on a stereotaxic instrument (Stoelting Co, 
Wood Dale, IL, USA). Body temperature was maintained 
at 37–38  °C with a heating pad (Stoelting Co) placed 
beneath the animal. After a subcutaneous injection of the 
local anesthetic bupivacaine, a midline scalp incision was 
made, and a hole (diameter of ~1.0  mm) was drilled in 
the skull on the left side. The neurotoxin (30-mM solu-
tion of 6-OHDA containing 0.03 % of ascorbic acid) was 
injected into the medial forebrain bundle (coordinates: 
4.0 mm posterior of the bregma, 1.3 mm laterally of the 

Fig. 5  The western blotting results of p-ERK1/2 expression in the four 
groups (from left to right): sham-operated, saline control,  levodopa, 
and levodopa liposomes. *P < 0.05
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midline, and 7.0 mm beneath the cortical surface). Injec-
tions of 3 μL of 6-OHDA were administrated through a 
30-gauge cannula connected to a 10 μL Hamilton syringe 
over a period of 3 min. The injection of neurotoxin was 
preceded by a bolus of desipramine (25  mg/kg, intra-
peritoneally) to minimize the uptake of 6-OHDA by 
noradrenergic neurons. Two weeks later, an apomor-
phine-induced rotation test (0.05 mg/kg, subcutaneously) 
was performed to assess the severity of nigral lesions [41]. 
Animals performing at least 100 rotations opposite to the 

Fig. 6  The immunohistochemistry results of p-ERK1/2 expression in the four groups (a = sham-operated, b = saline control, c = levodopa, 
d = levodopa liposomes). Magnification: ×200 *P < 0.05

Fig. 7  The western blot results of DARPP-32 and phospho-Thr34 
DARPP-32 expression in the four groups (sham-operated, saline 
control, levodopa, levodopa liposomes)
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lesion site within 20  min from the apomorphine treat-
ment were considered successfully lesioned and included 
in the study [42].

Chitosan‑coated levodopa nanoliposomes
We used the chitosan-coated levodopa nanoliposomes as 
previously described [40].

Drug treatment and behavioral tests
6-OHDA-lesioned rats randomly divided into three 
groups (saline control group, n  =  10; levodopa group, 
20  mg/kg levodopa and 5  mg/kg benserazide, n  =  20; 
levodopa liposomes group, 4.7 mL/kg 34.34 % chitosan-
coated levodopa nanoliposomes PBS solution and 5 mg/
kg benserazide, n = 20) and sham-operated rats (n = 10) 
intragastric administrated twice a day up to 21 days. Ani-
mals were placed individually in a Plexiglas box and their 
axial, limb, and orofacial AIMs were monitored daily 
between 10:00 a.m. and 04:00 p.m. for 5 min per animal 
at 1, 3, 6, 9, 12, 15, 18, 21 days after levodopa adminis-
tration by two trained researchers blind to the treatment. 
AIMs were scored on a severity scale ranging from 0 
to 4 (1 =  occasional; 2 =  frequent; 3 =  continuous but 
interrupted by sensory distraction; and 4 =  continuous, 
severe, not interrupted by sensory distraction) as previ-
ously described [43].

Western blotting
An independent group of rats treated with either rosigli-
tazone (RGZ) (10 mg/kg) or vehicle (n = 8/group) were 
anesthetized with isoflurane on day 21 of levodopa 
treatment, 120 min after the last administration of levo-
dopa, and sacrificed by decapitation. Brains were rapidly 
removed and frozen in cold 2-methylbutane (−50  °C). 
Brain coronal sections (1  mm) were cut in an ice-cold 
stainless steel mold using razor blades and the striatum 
dissected out and homogenized in a glass Potter–Elve-
hjem, homogenized in ice-cold lysis buffer (50  mM 
Tris–HCl, 100  mM NaCl, 0.1  % Triton X-100, 0.1  % 
SDS, 1  mM Na3VO4, 10  mM NaF, and 1  mM EDTA) 
and 1 % protease inhibitor cocktail (Sigma Chemical, St. 
Louis, USA), and centrifuged at 16,000g for 30  min at 
4 °C. Equal amounts of protein (20 μg) were resolved by 
SDS-PAGE (10  %), transferred onto PVDF membranes 
(0.2 μm), and incubated for 1 h in 5 % fat-free milk in Tris 
buffer saline + 0.05 % Tween-20 (TBS-T buffer) at room 
temperature. Membranes were then incubated overnight 
at 4  °C using the following primary antibodies: FosB/
ΔFosB, ERK1/2, p-ERK1/2, p-Thr43 DARPP-32, DARPP-
32 (Santa Cruz, 1:1000), and β-actin (Sigma, 1:10, 000). 
After three 5-min washes in TBS-T, membranes were 
incubated with the appropriate secondary horseradish 
peroxidase-linked antibodies (Santa Cruz, 1:2000) for 

60 min at room temperature. Protein bands were visual-
ized using the ECL kit (Amersham, CE Healthcare, Buck-
inghamshire, England) followed by exposure to X-ray 
film. Band immunoreactivity was quantified by densi-
tometry using NIH image software.

Immunohistochemistry
The FosB/ΔFosB, ERK1/2 and p-ERK1/2 immunohis-
tochemical analyzed by the ABC-peroxidase method 
on day 21 of levodopa treatment, 120 min after the last 
administration. The tissue and cells samples were pre-
pared as frozen sections. After fixation with acetone and 
washing with PBS, the sections were incubated with a 
primary FosB/ΔFosB, ERK1/2 and p-ERK1/2 antibody 
(1:1000 dilution, Santa Cruz, USA) overnight at 4  °C, 
then incubated with a biotinylated secondary antibody 
(1:200 dilution) at room temperature for 1 h. After that, 
the ABC-peroxidase reagent (Vector, USA) was added for 
an additional 1 h. With the PBS washing and 3, 3-diam-
inobenzidine (30  mg dissolved in 100  mL Tris buffer 
containing 0.03 % H2O2) staining for 5 min, the samples 
rinsed in water and counterstained with hematoxylin. 
Total ten visual fields were examined randomly in each 
section under 200× magnification under the light micro-
scope and the positive stained cells were counted in a 
total number of 500–1000 cells.

Statistical analysis
Behavioral data and group comparison of dyskinesia 
intensity scores were analyzed by repeated measures 
(ANOVA) and relevant differences between groups were 
analyzed pairwise by Bonferroni post hoc test. Global 
AIMs comparison between two groups was performed 
by using Student’s t test. The null hypothesis was rejected 
when P < 0.05.

For analysis of WB and IHC quantification data, Stu-
dent’s t test was used (minimum level of significance 
P < 0.05) provided by GraphPad PRISM 5 software.
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