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Immunological checkpoint blockade therapies benefit a limited population of cancer

patients. We have previously shown that vaccine immunotherapy with Toll-like recep-

tor (TLR)3-adjuvant and tumor antigen overcomes anti-programmed death ligand-1

(PD-L1) resistance in mouse tumor models. In the present study, 4 different ovalbumin

(OVA)-expressing tumor cell lines were implanted into syngeneic mice and subjected to

anti-tumor immunotherapy using ARNAX and whole OVA protein. ARNAX is a TLR3-

specific agonist that does not activate the mitochondrial antiviral-signaling protein

(MAVS) pathway, and thus does not induce systemic inflammation. Dendritic cell prim-

ing and proliferative CTL were induced by ARNAX + OVA, but complete remission was

achieved only in a PD-L1-low cell line of EG7. Addition of anti-PD-L1 antibody to the

ARNAX + OVA therapy brought complete remission to another PD-L1-high subline of

EG7. Tumor shrinkage but not remission was observed in MO5 in that regimen. We

analyzed tumor cells and tumor-infiltrating immune cells to identify factors associated

with successful ARNAX vaccine therapy. Tumors that responded to ARNAX therapy

expressed high levels of MHC class I and low levels of PD-L1. The tumor-infiltrating

immune cells in ARNAX-susceptible tumors contained fewer immunosuppressive mye-

loid cells with low PD-L1 expression. Combination with anti-PD-L1 antibody functioned

not only within tumor sites but also within lymphoid tissues, augmenting the therapeu-

tic efficacy of the ARNAX vaccine. Notably, ARNAX therapy induced memory CD8+ T

cells and rejection of reimplanted tumors. Thus, ARNAX vaccine + anti-PD-L1 therapy

enabled permanent remission against some tumors that stably present antigens.
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1 | INTRODUCTION

Cancer is a leading cause of death in humans, and peptide vaccine

immunotherapies have been proposed as a new therapeutic modality

Abbreviations: CBA, cytometric bead array; DC, dendritic cell; DLN, draining lymph nodes;

IFNAR, interferon alpha receptor; IFN, interferon; MDSC, myeloid-derived suppressor cell;

MFI, mean fluorescence intensity; PD-1, programmed death-1; PD-L1, programmed death

ligand-1; TAA, tumor-associated antigen; TAM, tumor-associated macrophage; TCM, central

memory T cells; TEFF, effector T cells; TEM, effector memory T cells; TICAM-1, Toll-

interleukin-1 receptor domain-containing adaptor molecule-1; TLR, Toll-like receptor.
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that harnesses the immune system to attack malignant cells. Since

then, rapid exploration into this field has been conducted using new

technologies that allow the detection of tumorigenic mutations, TAA

and tumor-specific CTL. In fact, immunological checkpoint blockade

therapies have led to complete remission in some progressive can-

cers when appropriate antigens are expressed.1-6

Responses to PD-1/PD-L1 blockade therapies are associated

with pre-existing tumor-reactive CD8+ T cells and non-synonymous

mutational burden in tumors.1,4,5,7 As the generation of tumor-speci-

fic CTL and the number of cancer neoantigens differ between tumor

types, and as T-cell infiltration is regulated by the tumor microenvi-

ronment,8-10 only approximately 20%-30% of solid tumors in

patients have responded to PD-1/PD-L1-targeted therapies.11,12 PD-

L1 levels in both tumor and host cells affect the efficacy of PD-1/

PD-L1 blockade therapy.13-17 Furthermore, even if tumor-specific

CTL are generated, they often become exhausted and acquire epige-

netic stability that limits the durability of reinvigoration by PD-1

blockade during continuous antigen stimulation.18

In PD-1 blockade-unresponsive tumors, fewer tumor-specific CTL

appear to be induced by intrinsic factors. We have previously shown that

forced tumor-specific CTL induction by vaccine immunotherapy TAA and

the TLR3-specific adjuvant, ARNAX, efficiently eradicates tumors in PD-

1/PD-L1 blockade-unresponsive mouse tumor models.19,20 Combined

ARNAX and TAA treatment induces tumor-specific CTL, facilitates T-cell

infiltration into tumors, modulates the tumor microenvironment to estab-

lish Th1-type anti-tumor immunity, and leads to tumor regression without

inflammation. However, the therapeutic efficacy of the ARNAX vaccine

depended on the tumor type.20 In the present study, we analyzed the

tumor microenvironment in ARNAX-sensitive and -resistant mouse

tumor models to uncover factors that influence the efficacy of TLR3 adju-

vant therapy. Our data show that tumor-specific memory CTL are gener-

ated in ARNAX-sensitive tumors, and that they inhibit the tumor growth

of reimplanted tumors.

2 | MATERIALS AND METHODS

2.1 | Mice

WT C57BL/6J mice were purchased from CLEA Japan (Tokyo,

Japan). Ticam1�/� mice were bred in our laboratory.21 Ifnar�/� mice

were kindly provided by Dr T. Taniguchi (Tokyo University, Tokyo,

Japan). Tlr3�/� and Myd88�/� were kindly provided by Dr S. Akira

(Osaka University, Osaka, Japan). All mice were back-crossed >8

times to C57BL/6 background and maintained under specific patho-

gen-free conditions in the animal faculty of the Hokkaido University

Graduate School of Medicine. All animal research protocols for this

work were reviewed and approved by the Animal Safety Center

(#17-0096) of Hokkaido University, Japan.

2.2 | Cells

EG7 (ATCC� CRL-2113TM) was purchased from ATCC (Manassas, VA,

USA) and cultured in RPMI 1640 supplemented with 10% heat-

inactivated FBS (catalog number: SH30910.03; Thermo Scientific,

Waltham, MA, USA), 10 mmol/L HEPES (15630-080; Gibco, Gaithers-

burg, MD, USA), 1 mmol/L sodium pyruvate (11360-070; Gibco),

55 lmol/L 2-mercaptoethanol (21985-023; Gibco), 100 IU penicillin/

100 lg/mL streptomycin (15070-063; Gibco) and 0.5 mg/mL G418

(04 727 894 001; Roche, Basel, Switzerland). PD-L1hi EG7 (sgPd-l1-

transfected EG7) cells were prepared as previously described.22

MO523 was kindly provided by Dr H. Udono (Okayama University,

Japan) and was cultured in RPMI 1640 supplemented with 10% heat-

inactivated FBS, 100 IU penicillin/100 lg/mL streptomycin and

0.1 mg/mL G418. LLC-OVA24 was kindly provided by Dr T. Nishimura

and Dr H. Kitamura (Hokkaido University, Japan) and was cultured in

Iscove’s Modified Dulbecco’s Medium (12440053; Gibco) supple-

mented with 10% FBS, 55 lmol/L 2-mercaptoethanol, 100 IU peni-

cillin/100 lg/mL streptomycin and 0.1 mg/mL G418.

2.3 | Reagents and antibodies

ARNAX having 120 and 140 bp dsRNA (named ARNAX-120 and

ARNAX-140, respectively) were synthesized as described19 by Gene-

Design, Inc. (Osaka, Japan). TLR3 agonistic activity of ARNAX-120

was comparable to that of ARNAX-140 (Figure S1). Poly(I:C)

(27-4732-01) was purchased from GE Healthcare Life Sciences;

recombinant mouse IFN-c (575302) was from BioLegend (San Diego,

CA, USA); EndoGrade� Ovalbumin (OVA) (321001) was from

Hyglos; OVA (H2Kb-SL8) tetramer (TS-5001-P) and OVA257-264 pep-

tide (SIINFEKL: SL8) (TS-5001-P) were from MBL. Anti-PD-L1 anti-

body (Ab) (clone: 10F.9G2, catalog number: BE0101) and rat IgG2b

isotype control Ab (LTF-2, BE0090) were purchased from Bio X Cell.

Abs used for flow cytometry analysis are listed in Table S1.

2.4 | Tumor challenge and ARNAX therapy

The backs of mice were shaved and s.c. injected with 2 9 106 WT

EG7 (PD-L1lo EG7), PD-L1hi EG7, MO5 and LLC-OVA cells, respec-

tively. Tumor volume was calculated by using the formula: tumor

volume [mm3] = 0.52 9 (long diameter [mm]) 9 (short diameter

[mm])2. PBS, 10 lg ARNAX-120 or -140 and 100 lg OVA were s.c.

injected around the tumor when the tumor volume reached 500-

600 mm3. For combination therapy with ARNAX + OVA and anti-

PD-L1 Ab, 200 lg isotype control Ab or anti-PD-L1 Ab was ip

injected into mice on the same day of PBS or ARNAX + OVA injec-

tion. After the first Ab injection, subsequent Ab treatment was car-

ried out 3-5 times every 2 or 3 days. Mice were killed when tumor

volume reached 2500 mm3. For the EG7 reimplantation model, EG7

cells were reimplanted into mice in which complete EG7 tumor

regression was induced by ARNAX + OVA treatment. EG7 cells were

reimplanted near the first implantation site.

2.5 | Gene expression analysis of tumor cell lines

PD-L1lo EG7, PD-L1hi EG7, MO5 and LLC-OVA were seeded in a

24-well plate. PBS, 10 lg/mL ARNAX-140 or 100 U/mL IFN-c was
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added to each well. For gene expression analysis, cells were lysed

with TRIzol reagent (15596018; Invitrogen, Carlsbad, CA, USA)

4 hours after incubation and total RNA was prepared following the

manufacturer’s instructions. RT-PCR was carried out using a High

Capacity cDNA Reverse Transcription kit (Applied Biosystems, Foster

City, CA, USA) according to the manufacturer’s instructions. Real-

time PCR was carried out using a StepOne Real-Time PCR System

(4368813; Applied Biosystems). Sequences of primers used in this

study are shown in Table S2. Levels of target mRNAs were normal-

ized to Gapdh and fold-induction of transcripts was calculated using

the DDCT method. Surface expression of PD-L1 and MHC class I on

tumor cells was analyzed by flow cytometry 24 hours after ARNAX

or IFN-c stimulation.

2.6 | Analysis of tumor microenvironment

After killing mice at the indicated time points, tumor tissues were

harvested. Tumors were finely minced and treated with 0.05 mg/mL

collagenase I (C0130-100MG; Sigma-Aldrich, St Louis, MO, USA),

0.05 mg/mL collagenase IV (C5138-1G; Sigma-Aldrich), 0.025 mg/

mL hyaluronidase (H6254-500MG; Sigma-Aldrich) and 0.01 mg/mL

DNase I (10 104 159 001; Roche) in HBSS (H9269-500ML; Sigma-

Aldrich) at room temperature for 15 minutes. Cells in the tumor

microenvironment were analyzed by FACS AriaII (BD Biosciences,

Franklin Lakes, NJ, USA).

2.7 | Statistical analysis

P-values were calculated by the following statistical analyses. In

cases of tumor volume and FACS analysis, 1-way analysis of variance

(ANOVA) with Bonferroni’s test or Kruskal-Wallis test with Dunn’s

multiple comparison was carried out for multiple comparisons. Stu-

dent’s t test was carried out for comparison between 2 groups. Error

bars represent the SD or SEM between samples. In the case of sur-

vival rate analysis, log-rank test with Bonferroni’s test was carried

out for multiple comparisons.

3 | RESULTS

3.1 | Efficacy of ARNAX vaccine therapy depends
on tumor cell type

The tumor microenvironment is quite different in various tumor

types. Therefore, we assessed the efficacy of ARNAX vaccine ther-

apy in 4 different tumor-bearing mouse models, WT EG7 (PD-L1lo

EG7; OVA-expressing EL4 lymphoma), PD-L1hi EG7,22 MO5 (OVA-

expressing B16 melanoma),23 and LLC-OVA (OVA-expressing Lewis

lung carcinoma).24 Tumor-bearing mice were treated with PBS or

ARNAX + whole OVA protein. ARNAX vaccine therapy induced

potent tumor regression in PD-L1lo EG7 and partial tumor growth

retardation in MO5, but did not show a significant effect in LLC-

OVA-bearing mice (Figure 1A-C). We previously showed that there

was marked infiltration of CD8+ T cells into tumors following

ARNAX vaccine therapy in PD-L1lo or hi EG7- and MO5-bearing

mice.20 In contrast, only a few infiltrating CD8+ T cells were

detected in LLC-OVA-bearing mice, even in the ARNAX vaccine

therapy group (Figure 1D, left panel). Additionally, the proportion of

OVA-specific CD8+ T cells among all intratumor CD8+ T cells was

only slightly increased by ARNAX in LLC-OVA compared with PD-

L1lo or hi EG7 and MO5 tumors (Figure 1D, right panel).20 These

results suggest that the efficacy of the ARNAX vaccine depends on

tumor type.

To elucidate the factors that influence responsiveness to ARNAX

therapy, we assessed PD-L1 and MHC class I levels in tumor cells,

as these proteins affect CTL-dependent anti-tumor response.25 PD-

L1lo EG7, MO5 and LLC-OVA cells expressed PD-L1 at low or inter-

mediate levels, and PD-L1hi EG7 expressed PD-L1 highly (Figure 2A).

PD-L1lo or hi EG7 and LLC-OVA cells expressed high levels of MHC

class I molecules on their cell surfaces, whereas MO5 scarcely

expressed it (Figure 2A). ARNAX stimulation did not affect the

expression levels of these molecules on any cell type examined (Fig-

ure 2A). As IFN-c is an inducer of PD-L1 and MHC class I25 and is

secreted into the tumor microenvironment when ARNAX therapy

succeeds,20 we assessed tumor cell response to IFN-c. PD-L1

expression was upregulated by IFN-c in MO5 and LLC-OVA cells

but not in PD-L1lo or hi EG7 cells. Additionally, MHC class I expres-

sion was potently upregulated in MO5 cells, but only marginally

increased in PD-L1lo or hi EG7 and LLC-OVA cells, suggesting a high

susceptibility of MO5 cells to INF-c signaling (Figure 2B).

In MO5-bearing mice, ARNAX + OVA immunization successfully

induced OVA-specific CD8+ T-cell proliferation and IFN-c secretion

in tumor tissues,20 which may affect the phenotype of MO5 cells.

Although ARNAX has an ability to induce DC-mediated activation of

natural killer (NK) cells,19 it remains unexamined as to whether NK

cells serve as effector cells against MHC class I-low MO5 tumor at

the early time point of ARNAX therapy. All tumor types expressed

the Ova gene, but MO5 cells expressed relatively low Ova levels

(Figure 2C). Only MO5 cells expressed Tlr3 and Ifnb, which were

directly induced by ARNAX stimulation. Basal levels of T-cell

chemoattractant genes, including Ccl5 and Cxcl9, 10, and 11 were

higher in MO5 cells than in EG7 or LLC-OVA cells. Moreover, Ccl4

and 5, and Cxcl9-11 were upregulated following ARNAX stimulation

in MO5 cells, indicating that MO5 cells tended to be more pheno-

typically affected by ARNAX therapy. These data suggest that MHC

class I gene levels and intrinsic tumor cell responses affect the

responsiveness to ARNAX therapy.

3.2 | Immunosuppressive myeloid cells highly
infiltrate into LLC-OVA tumor

Composition of tumor-infiltrating immune cells influences the

immune status of the tumor microenvironment. TAM and MDSC

establish a potent immunosuppressive microenvironment.26-28 We

evaluated the percentage of tumor-infiltrating immune cells, espe-

cially myeloid cells in PD-L1lo EG7-, MO5- and LLC-OVA-bearing

mice. Among these tumor models, LLC-OVA showed the highest
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immune cell infiltration in tumors (Figure S2A). The proportion of

the CD11b+Ly6G+ population, which includes granulocyte-like

MDSC, was highest 6 days after ARNAX vaccine therapy in the LLC-

OVA model (Figure S2B). Although the proportion of the

CD11b+Ly6C+ population, which includes monocytic MDSC, among

intratumor immune cells was almost the same among the 3 tumor

models, their proportion in tumors was higher in the LLC-OVA than

in the PD-L1lo EG7, or MO5 models (Figure S2A,C). TAM also highly

infiltrated into LLC-OVA tumors (Figure S2D). These results showed

that LLC-OVA tumors contained abundant immunosuppressive mye-

loid cells, which appeared to inhibit ARNAX-induced CTL infiltration.

3.3 | Immune cells in lymphoid and tumor tissues
highly express PD-L1

Programmed death ligand-1 expression on tumor cells or host cells

can disturb anti-tumor immunity.13-16 Thus, we assessed PD-L1

expression on immune and tumor cells in each tumor model (Fig-

ure 3). In the case of PD-L1lo or hi EG7 tumors (CD45.2+), we used

CD45.1 congenic mice as the host to distinguish tumor and immune

cells with CD45.1 and CD45.2 markers. Various immune cells in lym-

phoid tissues expressed PD-L1, and their levels of expression were

almost identical between each tumor model (Figure 3, Figure S3).

PD-L1 expression on immune cells in lymphoid tissues, but not in

tumors, was slightly upregulated 24 hours after giving

ARNAX + OVA and, in particular, the increase was most prominent

on macrophages in DLN. PD-L1 levels on immune cells in tumor tis-

sues were much higher than those on tumor and mesenchymal cells

in all tumor models. Notably, intratumor myeloid DC and TAM

showed high PD-L1 expression in MO5 and LLC-OVA models, which

were higher than those in the PD-L1lo or hi EG7 model. Hence, PD-

L1 expression on immune cells both in lymphoid tissues and in

tumors critically contributes to immune suppression.

3.4 | Combined ARNAX vaccine and PD-L1
blockade improves therapeutic outcomes

Programmed death ligand-1 expression in lymphoid tissues and

within tumors may attenuate the anti-tumor responses of ARNAX

therapy in both the priming and effector phases. To assess the
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contribution of PD-L1 blockade in the priming phase, OVA-specific

CTL expansion in the spleen was evaluated in tumor-free mice

immunized with ARNAX + OVA with or without PD-L1 blockade.

ARNAX + OVA-induced OVA-specific CD8+ T-cell expansion and

IFN-c production were enhanced by the addition of anti-PD-L1 Ab

(Figure 4). These data indicate that PD-L1 contributes to suppression

of CTL induction/proliferation at the priming phase; thus, we

conclude that ARNAX-induced CTL expansion is augmented by

PD-L1 blockade.

To further develop our ARNAX vaccine strategy, combination

therapy with anti-PD-L1 Ab was carried out. Tumor growth rates

and survival times were evaluated in PD-L1lo EG7-, PD-L1hi EG7-,

and MO5-bearing mouse models. In the PD-L1lo EG7 model,

ARNAX + OVA induced potent tumor regression even without
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anti-PD-L1 Ab, and complete tumor regression was observed in

40% of mice. Addition of the anti-PD-L1 Ab failed to produce

additional improvements (Figure 5A). There was no significant dif-

ference in survival rate between ARNAX + OVA and

ARNAX + OVA + anti-PD-L1 Ab, although survival time appears to

be prolonged with combination therapy. In the PD-L1hi EG7

model, anti-PD-L1 Ab augmented tumor regression from the

ARNAX vaccine, and 60% of mice survived >60 days. In the end,

complete tumor regression was observed in 40% of mice treated

with ARNAX + OVA + anti-PD-L1 Ab vs 20% of mice treated with

anti-PD-L1 Ab alone (Figure 5B). We have previously shown that

the frequencies of OVA-specific CD8+ T cells in spleen

following ARNAX + OVA therapy were comparable between PD-

L1lo EG7-bearing mice and PD-L1hi EG7-bearing mice in the pres-

ence or absence of anti-PD-L1 Ab.20 Thus, tumor cell-expressing

PD-L1 does not affect the priming phase in DLN but acts in the

effector phase. In the MO5 model, tumor growth suppression and

survival times were improved by ARNAX + OVA + anti-PD-L1 Ab

compared with ARNAX vaccine or anti-PD-L1 Ab as

monotherapies (Figure 5C). These results indicate the

effectiveness of combination therapy with ARNAX vaccine and

PD-L1 blockade.

3.5 | ARNAX vaccine therapy induces memory
CD8+ T-cell formation

We next assessed the formation of functional memory CD8+ T

cells by ARNAX. Each CD8+ T-cell subset was defined from the

following molecular expression patterns: TEFF, CD44+CD

62LloCD127�CD8+; naive T cells, CD44�CD62LhiCD8+; TCM,

CD44+CD62LhiCD8+; and TEM, CD44+CD62LloCD127+CD8+.29-32

Then, PD-L1lo EG7-bearing mice were treated with ARNA

X + OVA, and 11 days after complete tumor regression, PD-L1lo

EG7 cells were reimplanted into the mice (Figure 6A). Although

non-immunized mice could not reject tumor growth, the immu-

nized mice completely rejected the second set of tumor cells (Fig-

ure 6B). After the reimplantation of EG7, proportions of OVA-

specific CD8+ T cells and TEM were significantly higher in spleens

of the reimplantation group than in the first-time implantation

group. However, the proportions of TEFF, and naive and TCM were

similar between the 2 groups (Figure 6C).

We further analyzed the formation of memory CD8+ T cells

following combined ARNAX + OVA and anti-PD-L1 Ab therapy in

PD-L1lo and PD-L1hi EG7-bearing mouse models. Six weeks after

complete tumor regression from each treatment, PD-L1lo or PD-

L1hi EG7 cells were reimplanted into the mice (Figure S4A).

Although the first-time implantation group could not reject tumor

growth, reimplantation groups rejected tumor cells regardless of

treatment regimen in both the PD-L1lo and PD-L1hi EG7 models

(Figure S4B,C). After the reimplantation of PD-L1lo or PD-L1hi

EG7 cells, OVA-specific CD8+ T cells and TEM were elevated in

the spleens (Figure S4D,E). Thus, it is likely that combination

F IGURE 4 Programmed death ligand-1 (PD-L1) blockade
augments ARNAX-induced antigen-specific CTL expansion in the
priming phase. A, B, Tumor-free mice were s.c. given ovalbumin
(OVA) or 60 lg ARNAX-140 + OVA on day 0. Isotype control or
anti-PD-L1 Ab was given ip on days 0, 2, 4 and 6. On day 7, spleens
were harvested. A, OVA-specific CD8+ T-cell proliferation in the
spleen was evaluated with the tetramer assay. Student’s t test was
carried out to analyze statistical significance between ARNAX + OV
A_Isotype group and ARNAX + OVA_anti-PD-L1 Ab group; *P < .05.
B, Splenocytes were cultured in the presence of 100 nmol/L SL8
peptide for 3 d. Interferon (IFN)-c concentrations in the culture
media were measured using the Cytometric Bead Array. Error bars
indicate means � SD; n = 2-3 per group. Student’s t test was
carried out to analyze statistical significance between the ARN
AX + OVA_Isotype and ARNAX + OVA_anti-PD-L1 Ab groups

F IGURE 3 Programmed death ligand-1 (PD-L1) expression on intratumor myeloid cells is different in each tumor type. A-D, PD-L1lo EG7
and PD-L1hi EG7-bearing CD45.1 congenic mice (C57BL/6) and MO5- and LLC-ovalbumin (OVA)-bearing WT mice (CD45.2) were treated with
PBS or 10 lg ARNAX-140 + OVA on day 7 (PD-L1lo or hi EG7-bearing mice) or day 10 (MO5- and LLC-OVA-bearing mice). After 24 h,
spleens, draining lymph nodes (DLN) and tumor tissues were harvested, and cell suspensions were mixed in each group. PD-L1 expression
levels on immune cells in spleen, DLN and tumor were evaluated. In the case of PD-L1lo or hi EG7 tumors, tumor cells (CD45.2) and host
immune cells (CD45.1) were distinguished using CD45.1 and CD45.2 markers. PD-L1 expression on intratumor non-immune cells (the
CD45.1�CD45.2+ population in EG7 tumors = tumor cells; the CD45.1�CD45.2� population in EG7 tumors = mesenchymal cells; and the
CD45.2� population in MO5 and LLC-OVA tumors = tumor cells and mesenchymal cells) were also analyzed. Results in PD-L1lo EG7- (A), PD-
L1hi EG7- (B), MO5- (C) and LLC-OVA-bearing mice (D) are shown. Numbers in the histogram indicate mean fluorescence intensity
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therapy induces effector CD8+ T cells, which differentiate into

memory CD8+ T cells once tumors are controlled and tumor anti-

gens are cleared.

4 | DISCUSSION

The goal of the present study was to unveil factors that affect vac-

cine therapy for cancer unresponsive to PD-1/PD-L1 blockade ther-

apy. We have previously shown that ARNAX therapy relieves

resistance to PD-L1 blockade and evokes anti-tumor immunity with-

out systemic inflammatory cytokinemia in tumor-bearing mouse

models.20 Herein, we showed that ARNAX therapy induced com-

plete remission in some PD-L1lo EG7-bearing mice. When combined

with anti-PD-L1 Ab, ARNAX therapy also induced complete remis-

sion in some PD-L1hi EG7-bearing mice. Thus, vaccine therapy

enables TAA-positive tumors to regress depending on PD-L1 expres-

sion status. ARNAX vaccine therapy accomplishes partial remission

and prolonged survival in the MO5 model, although it does not

attain remission in mice with LLC-OVA.

PD-L1 is expressed on many human cancer cells and its expres-

sion is induced by cytokines, including IFN-c and various oncogenic

signaling pathways that show increased activity as a result of genetic

mutations.33 Moreover, a common aberrant structural variation in

the 30-untranslated region of the PD-L1 mRNA induces PD-L1 over-

expression.22 Level of PD-L1 expression on MO5 and LLC-OVA cells

within tumors was higher than that of PD-L1lo EG7 cells (right pan-

els of Figure 3), and IFN-c potently upregulated PD-L1 expression in

MO5 and LLC-OVA cells (Figure 2). PD-L1 levels on tumor-infiltrat-

ing immune cells were consistently high in the MO5 and LLC-OVA

models. Thus, high PD-L1 levels on both tumor and immune cells

decrease TAA-dependent tumor shrinkage, although other factors

still remain undetectable in the effectiveness of ARNAX therapy in

MO5 and LLC-OVA models.

MO5 expressed functional TLR3, and the expression of CTL

chemoattractants was directly upregulated by ARNAX (Figure 2). A

higher number of CD8+ T cells infiltrated into MO5 tumor tissues in

ARNAX + OVA vaccine therapy.20 Direct chemokine production

from tumor cells during ARNAX therapy facilitated CTL tumor infil-

tration in MO5-bearing mice, which enhanced the efficacy of PD-1

blockade (Figure 5).

Pan-genomic analyses across clinical human cancers has shown

that the somatic mutational burden is highest in lung carcinoma and

melanoma, whereas the frequency is low in lymphoma.8-10 Mutations

associated with antigenicity, such as TAA and MHC class I, particu-

larly impact immune evasion. Kaluza et al. showed that an adoptive

transfer of OT-I cells into B16-OVA-bearing mice induced loss of

the Ova transgene in tumor cells and tumor regrowth after transient

shrinkage.34 Loss of b2-microglobulin, which is a component of

MHC class I molecules, was also observed in metastatic melanoma

cells derived from patients who had received immunotherapy.35 Fre-

quency of genetic mutations controlled by ARNAX-induced CTL acti-

vation may have been one of the factors affecting therapeutic

success.

A high rate of immunosuppressive myeloid cell infiltration into

the tumor microenvironment also disturbs antitumor immune

responses. Varn et al. showed that intratumor CD8+ T-cell-high/

macrophage-low patients survived longer relative to CD8+ T-cell-
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F IGURE 5 ARNAX + tumor-associated antigen (TAA) enhances
the therapeutic efficacy of programmed death ligand-1 (PD-L1)
blockade and prolongs survival times. A, B, PD-L1lo EG7- or PD-L1hi

EG7-bearing mice were s.c. given PBS or 10 lg ARNAX-
120 + ovalbumin (OVA) 7 d after tumor implantation. Isotype
control Ab or anti-PD-L1 Ab was ip given on days 7, 10, 13 and 16.
PD-L1, programmed death ligand-1. C, MO5-bearing mice were s.c.
given PBS or 50 lg ARNAX-140 + OVA 10 d after tumor
implantation. Isotype control Ab or anti-PD-L1 Ab was ip given on
days 10, 12, 14, 16, 18 and 20. (Left of A-C) Tumor sizes were
evaluated in each group. Error bars indicate means � SEM; n = 5-6
per group. Kruskal-Wallis test with Dunn’s multiple comparison test
(A) and 1-way analysis of variance (ANOVA) with Bonferroni’s test
(B,C) were carried out to analyze statistical significance; *P < .05,
**P < .01 ***P < .001. (Right of A-C) Mice were killed when tumor
volumes reached 2500 mm3, and survival data were analyzed. Log-
rank test with Bonferroni’s test were carried out to analyze
statistical significance; *P < .05, **P < .01
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high/macrophage-high patients in several different cancer types.10 A

large number of TAM and MDSC in the tumor microenvironment

could be a predisposition for resistance to ARNAX therapy in the

LLC-OVA model.

It is generally accepted that in patients with non-inflammatory

tumors (termed “cold tumors”), endogenous CTL-priming stimuli are

lacking and only a small population of tumor-specific CTL exist

within the tumor. Immunization of ARNAX and whole OVA protein
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F IGURE 6 ARNAX + tumor-associated
antigen (TAA) induces memory CD8+ T
cells that cause rejection of reimplanted
tumor cells. A, Scheme of each treatment
for PD-L1lo EG7-bearing mice is shown.
PD-L1lo EG7 were reimplanted into mice in
which complete tumor regression was
induced by 10 lg ARNAX-140 + ovalb
umin (OVA) treatment. B, Tumor sizes of
individual mice were evaluated in the EG7
reimplantation group (green line) and EG7
first-time implantation group (blue line). C,
Mice were killed on day 40. Proportions of
OVA-specific cells, TEFF
(CD44+CD62LloCD127�), naive T cells
(CD44�CD62Lhi), TCM (CD44+CD62Lhi) and
TEM (CD44+CD62LloCD127+) among
splenic CD8+ T cells were analyzed by flow
cytometry; n = 3-5 per group. Student’s t
test was carried out to analyze statistical
significance; ***P < .001
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can induce both OVA-specific CD4+ and CD8+ T cells, the outcome

of which is quite different from the vaccine using SL8 killer peptide.

Previous RNA-seq analysis in EG7 tumor clearly showed upregula-

tion of genes related to the activation of antigen-presenting cells

(APC), CD4+ T cells and CD8+ T cells following ARNAX + OVA ther-

apy.20 Thus, multiple CD4+ and CD8+ T-cell epitopes are required

for successful ARNAX vaccine therapy to induce effective CTL

expansion in the priming phase and allow CTL infiltration into

tumors without inflammation. However, immune cells also express

PD-L1 in both lymphoid and tumor tissues (Figure 3). PD-L1 block-

ade not only reinvigorated exhausted CTL into the effector phase,

but also promoted ARNAX-induced CTL expansion in the priming

phase (Figure 4). Thus, combination therapy with ARNAX and PD-1

blockade is a rational strategy to overcome the unresponsiveness to

PD-1/PD-L1 blockade therapy.

In ARNAX-sensitive PD-L1lo and PD-L1hi EG7 models, tumor-spe-

cific memory CD8+ T cells were established in mice once tumors were

eradicated, and these mice also rejected reimplanted tumors (Figure 6,

Figure S4). Development of tumor-specific effector CD8+ T cells to

memory CD8+ T cells is important for preventing tumor relapse. Insuffi-

cient tumor eradication with PD-1 blockade may induce re-exhaustion

of tumor-specific T cells that have no ability to be reinvigorated during

persistent antigen stimulation,36,37 resulting in tumor recurrence. Thus,

strong induction of CTL may be essential for the clearance of tumor

antigens following functional memory T-cell formation. Indeed, a

recent paper demonstrated that vaccine immunotherapy with a mix-

ture of long peptides derived from tumor neoantigens and poly(I:C)

induced durable antitumor immunity and complete remission in mela-

noma patients.38 However, our experimental system does not exactly

reflect a clinical tumor recurrence. Human tumors individually differ in

their genomic background, rendering immune response to tumor vari-

able. Thus, the preventive activity of ARNAX therapy on tumor recur-

rence should be individually investigated in patients.

In summary, we established models of different tumor types to

identify characteristics that affect the efficacy of ARNAX vaccine

therapy. Our data showed that tumor cell phenotypes, such as high

MHC class I and TAA expression, low PD-L1 expression and a low

mutation rate could be advantageous for the success of ARNAX

therapy. ARNAX vaccine therapy is effective for tumors with poor

TAM and MDSC infiltration, and those with low PD-L1 expression

on tumor and/or immune cells. PD-L1 blockade functions in both

the priming and effector phases and enhanced the efficacy of

ARNAX therapy. Strikingly, ARNAX established memory CD8+ T

cells, which facilitates the prediction of applicable tumor types for

ARNAX vaccine therapy.
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