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Abstract

The microarray technique allows the simultaneous measurements of the expression levels of thousands of mRNAs. By
mining these data one can identify the dynamics of the gene expression time series. The detection of genes that are
periodically expressed is an important step that allows us to study the regulatory mechanisms associated with the circadian
cycle. The problem of finding periodicity in biological time series poses many challenges. Such challenge occurs due to the
fact that the observed time series usually exhibit non-idealities, such as noise, short length, outliers and unevenly sampled
time points. Consequently, the method for finding periodicity should preferably be robust against such anomalies in the
data. In this paper, we propose a general and robust procedure for identifying genes with a periodic signature at a given
significance level. This identification method is based on autoregressive models and the information theory. By using
simulated data we show that the suggested method is capable of identifying rhythmic profiles even in the presence of noise
and when the number of data points is small. By recourse of our analysis, we uncover the circadian rhythmic patterns
underlying the gene expression profiles from Cyanobacterium Synechocystis.
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Introduction

Physiological states of a living organism change as time goes by,

forming a sequence of patterns that repeat themselves periodically

or nearly periodically, such as the circadian rhythm. Circadian

rhythms are endogenous self-sustaining oscillations that are

regulated by a pacemaker composed of one or more biochemical

oscillators [1]. These rhythms are observed in a wide variety of

organisms, ranging from daily rhythms in photosynthesis in

cyanobacteria to activity and sleep-wake cycles in rodents and

humans. An important aspect of rhythmicity involves the control

of specific target genes by oscillators that modulate and coordinate

the transcription of genes governing key metabolic pathways. In

this sense, it has been widely accepted that up to 10%–15% of all

genes are expressed following a circadian rhythm [2]. In

cyanobacteria, diverse activities such as cell division, amino acid

uptake, nitrogen fixation, respiration, and carbohydrate synthesis

are under circadian control [3], but a clear mechanistic link

between physiological rhythms and the regulation of output genes

is still lacking. Today many circadian-related genes have been

explored using high-throughput DNA microarray technology [4–

11]. Microarray experiments allow estimation of the relative

expression of thousands of genes at each time point, and they are

widely used for monitoring gene activities in a cell during

biological processes. Based on microarray experiments, Schmitt

et al. have reported 259 genes of Cyanobacterium Synechocystis that are

responsive to light stimulus [9]. Furthermore, Kucho et al. have

identified 237 cycling genes (54 genes under stringent condition)

[12]. Many of these genes are related to energy metabolism,

photosynthesis and respiration.

Data produced in microarray experiments carry a high degree

of stochastic variation, obscuring the periodic pattern. Further-

more, microarray experiments are expensive, limiting the number

of data points in a time series expression profile. The

identification of the circadian expression pattern in time series

data is challenging, because the measured data are often non-

ideal, and efficient algorithms are needed to extract as much

information as possible. Based on time series data, various

approaches have been proposed to identify periodically expressed

genes. Wichert et al. [13] applied the traditional periodogram and

Fisher’s test, while Ahdesmaki et al. [14] implemented a robust

periodicity test assuming non-Gaussian noise. Alternatively, Luan

and Li [15] employed guide genes and constructed cubic B-spline-

based periodic functions for modeling, whereas Lu et al. [16]

employed up to the third harmonics to fit the data and proposed a

periodic normal mixture model. De Lichtenberg et al. [17]

compared several approaches. Interestingly, the mathematically

more advanced methods seem not to achieve a better perfor-

mance compared with the Fast Fourier Transform (FFT) method.

Recently, Hughes et al., have introduced a non-parametric

algorithm named JTK_CYCLE that is robust against outliers

[18]. Alternatively, some authors have assumed the circadian

signal to be a simple sinusoid. In this sense, McDonald and

Rosbash performed cross-correlation coefficients between the

experimental profiles and differently phased cosine waves [19].

Similarly, Kucho et al. applied the Cosinor method to the same

data analyzed here [12]. Although these algorithms have their

own advantages, they were all developed based on some

assumptions. For example, a good spectral estimation needs

several data points, and Cosinor assumes that the biological
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process follows a trigonometric function. However, in many real-

world applications, such as microarray experiments, data are

scarce and noisy, and the underlying dynamics not necessarily

obeys a trigonometric function. Consequently, these methods may

fail to detect genes with a periodical expression and produce

artifacts (false positives).

To address this issue, a new computational technique for the

identification of periodic patterns in relatively short time series is

introduced. By combining the autoregressive model, maximum

entropy methods and information theory concepts, a novel

inference approach is proposed to effectively screen out period-

ically expressed genes. The technique was applied to simulated

expression profiles and to experimental data. We found 164 genes

that are periodically expressed in gene expression data sets from

two independent cyanobacteria cultures [12]; 93 of them have not

been reported before. Furthermore, by assuming that key

circadian genes must conserve both the dynamics and the phase

in the biological replicates, we were also able to identify genes of

the core pacemarker circuit as well as essential genes for the

photosynthesis, respiration and energy metabolism processes.

Results

Synthetic time series analysis
In order to calibrate our technique we analyzed four synthetic

time series. Figure 1 depicts the scatter plot of the autoregressive

coefficient fa1,a2g of each noisy signal: low noise in the top panels

and high noise in the bottom panels. Results for 96 h time series

length (24 data points) are summarized in the left panels, while the

results for 48 h time series length (first 12 data points of the former

case) are summarized in the right panels. We observed that the

autoregressive coefficients corresponding to long time series at low

noise (Fig. 1A) are clearly clustered forming four groups

corresponding to the four patterns. Both the time series length

(Fig. 1B) and noise level (Fig. 1C) impact on the intracluster

dispersion. As expected, longer signals are more robust against

noise effects. In addition, except for the saw-teeth signal (dark

gray), almost all 96 h time series can be characterized as oscillatory

at the confidence level of 0.90, while for 48 h time series (Fig. 1B)

around 50% of cases are not classified as oscillatory at this level of

confidence. Figs. 1B, 1C,1D illustrate that the ellipsoid quantile

also increases with the time series length. The combined effect is a

lower number of significant periodic signals.

Furthermore, we also noted that the sampling frequency

impacts on the analysis, that better sampling (more data points

per period) contributes to improving the characterization, in

agreement with previous findings [27]. For example, 48 h period

(light gray) time series are farther from the ellipsoidal quantile

than 24 h period (black) time series. However, the cluster

corresponding to the high sampling frequency (light gray circles)

is less robust against noise than low sampling frequency (black

squares). These results could suggest a guideline for the

experimental design of microarray experiments to look for

oscillatory genes. Figure 2 shows the true positive rate and the

false positive rate, for two different sampling resolutions, as a

function of -Log[p-value]. Our method is highly sensitive and

specific at the significance level of 0.01, even when the expression

profiles are sampled at 4-hour intervals, as in the circadian

microarray analyzed below. The example shown in Fig. 2

corresponds to sinusoidal signals of different periods corrupted

with noise (standard deviation of 20% of amplitude). The

sensitivity and specificity of the method depend on the sample

rate, the period of the oscillation, the wave form, and the noise

level, but not on the phase and amplitude.

Cyanobacteria microarray analysis
In Fig. 3 we show the autoregressive coefficients associated with

the expression dynamics of 3070 genes of a cyanobacteria

microarray. Fig. 3A corresponds to the first biological replicate

(Exp. 1) and Fig. 3B corresponds to the second biological replicate

(Exp. 2). Based on the previous study of synthetic time series, we

select those genes whose autoregressive coefficients fall in the

region a1v0 and a2w0, and that are outside the ellipsoidal

quantile 0.9. At this significance level, Fig. 2 suggests the existence

of 5% of false the scatter plot of the positive in sinusoidal profiles

with 20% of noise. The analysis reveals 527 and 473 genes that

have an oscillatory expression profile associated at this significant

level in Exp. 1 and Exp. 2, respectively. Even though the biological

replicates were synchronized simultaneously via photic training,

only 164 of these genes are considered as oscillatory in both

experiments. Table S1, in supplemental material, lists all these

genes and their associated functions. Many of these genes have

unknown function.

After identifying the genes with an oscillatory expression, our

aim is to identify genes that could be associated with the circadian

clock machinery (CCM) that generates the circadian oscillations.

In this sense we use the following hypotheses: (i) The expression

profile must be circadian in both replicates; (ii) The dynamics of

the CCM genes must be preserved through the two biological

replicates; (iii) As replicates are synchronized, we expect that genes

of CCM have a small phase shift between both replicates. With

these working hypotheses, from the 164 oscillatory genes we select

those whose model-based distance (Eq. 9) between replicates is

shorter than 0.6 and the phase shift is smaller than 0.6 (*2:3 h).

After this filtering step we identify 63 cycling genes. Fig. 4 depicts

the expression profile of the 63 genes with an oscillatory pattern in

both experiments. They are sorted by the phases of Exp. 1.

The Synechocystis genome encodes one KaiA gene, three KaiB

genes, and three KaiC genes [28]. Four of them, KaiA (slr0756),

KaiB3 (sll0486), KaiC1 (slr0758) and KaiC3 (slr1942), were

successfully measured in the experiments used here [12]. Fig. 5

depicts a scatter plot of the phase shift and the dynamic distance

between the replicates of the 63 selected oscillatory genes. The

black dots in Fig. 5 correspond to the genes slr0756 (KaiA) and

slr0758 (KaiC1) that belong to the circadian clock of the

cyanobacteria and were detected by the criteria. We want to

remark that our criteria identify two circadian core genes, in

contrast to the Cosinor based criteria [12] that only identify the

slr0756 gene. Fig. 5 also shows that a circadian related gene

sll1489, which is a circadian phase modifier CpmA homolog, is

less synchronized between replicates than KaiA and KaiC1 genes.

We identify that the dynamics associated with these genes is

conserved between replicates, and slr0756 is highly synchronized

by photic training. Genes sll0486 and slr1942 have oscillatory

expression behavior at the confidence level of 0.90 in Exp. 2, but

not in Exp 1. Fig. 6 shows the expression profile of the four Kai

genes; black squares correspond to Exp. 1, while open circles

correspond to Exp. 2. We can see that all these genes have an

oscillatory pattern.

In addition to the circadian clock genes, among the 63 genes

with oscillatory pattern we found genes associated with other

processes. Of particular interest are 28 genes linked to energy

metabolism (Group F, 12 genes), photosynthesis and respiration

(Group H, 9 genes), and regulatory functions (Group J, 7 genes).

Table 1 lists the accession number, enzyme name and function

(when available) (see Table S1, in supplemental material, for the

list of 164 genes). Fig. 7 shows the phase diagrams of the gene

expression profiles associated with these processes in both

replicates. It is observed that many circadian genes are strongly

Detecting Oscillatory Genes
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synchronized between replicates. In group F (top panels) the genes

sll0329 (30), sll1196 (31), sll1479 (33), slr0884 (36), slr1734 (38),

slr1793 (39) and slr1843 (40) are synchronized between experi-

ments. Furthermore, genes sll0329, sll1196 and slr1793 are almost

co-expressed in both experiments. In group H (medium panels) all

genes, except for slr2034 (52), are synchronized between

experiments. The genes linked to cytochrome C, sll1889 (48),

slr1136 (49), slr1137 (50) and slr1138 (51), are co-expressed in both

experiments. In group J (bottom panels) genes sll1330 (53), slr0081

(54), slr0947 (56), slr1416 (57) and slr1983 (59) are synchronized

between experiments and all, except the last one, are also co-

expressed.

Discussion

We presented an alternative method for the identification of

oscillatory genes in microarray time series gene expression data.

This approach uses both autoregressive models and the MaxEnt

Figure 1. Dynamic paramters of simulated data. Scatter plot of the dynamic parameters fa1,a2g corresponding to 24-point time series (A), and
12-point time series (B). Dark gray down-triangles correspond to saw-teeth signals, gray up-triangles correspond to square-step signals, light gray
circles correspond to sinusoidal signals of a 48 h period, and black squares to a sinusoidal signal of a 24 h period. The small gray points correspond to
surrogate time series, the ellipsoid corresponds to the quantile contour at level 0.9. Open symbols represent time series contaminated with a low
level of noise (standard deviation of 5% of the signal amplitude), while filled symbols represent time series contaminated with a high level of noise
(standard deviation of 15%). We also observe that symbols corresponding to each of the four oscillatory patterns (24-point time series) form
distinguishable clusters at low noise. We can also observe that sampling frequency affects the characterization.
doi:10.1371/journal.pone.0026291.g001
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approach to secure the actual periodic genes existing in a

microarray data set. We have also used a dynamic-based distance

between two temporal expression profiles to compare the

dynamics between two replicates. We found that the dynamic

features extracted by the modeling procedure of the core clock

genes are a signature through biological replicates. For a fixed

amount of data points, for example 12 data points as typical time

series, our results suggest the following prescriptions: (i) at high

noise level, to record two periods (48 h times series length)

sampled every 4 h; (ii) at low noise level, to record one period

(24 h times series length) sampled every 2 h.

A notable issue with the regulation of cyanobacterial metabo-

lism is the circadian rhythm of many processes [29]. In particular,

the operation of photosynthesis and respiration are under

circadian control [30], and the coordinate regulation of these

two processes is an essential determinant of the overall energy

balance. Our analysis shows that many gene components of the

respiratory electron transport chain were cycling (Table 1). H

group contains two genes that are related to the hydrogenase:

HoxE (sll1220) and HoxU (sll1223). In a previous analysis [12]

only the gene HoxE was found to be circadian. In agreement with

Kucho’s analysis, we also found that slr1136, slr1137, slr1138,

sll1899 and sll1484 have circadian behavior. Furthermore we also

identified sll0741 (pyruvate flavodoxin oxidoreductase) and

slr2034 (putative homolog of plant HCF136), which have not

previously been reported as cycling genes. Group F contains genes

related to energy metabolism that have been previously identified

as circadian [9,12]. Our analysis suggests that two pentose

pathway enzymes (sll0329 and slr1793) are co-expressed in both

experiments with a phosphofructokinase (sll1196). In Group J we

found that four response regulators containing a DNA-binding

domain (sll1330, slr0081, slr0312 and slr0947) [31] were expressed

with circadian rhythm. Summing up, the present analysis

identified 164 genes as cycling, 93 of them have not been reported

before. Many of these genes are expected to be circadian.

However, 42 of these 93 genes, with unknown function, can be

associated to circadian processes.

In conclusion, we propose that our procedure is a promising

statistical tool for finding oscillatory expressed genes of any period

in a microarray data set. The code of our procedure is freely

available, as a Mathematica script, upon request.

Figure 2. True positive rate and false positive rate. The true
positive rate (filled symbols) decays after a significance level of 0.01. At
this level the percentage of false positives is 3% and 0:6% for 2 h and
4 h sampling rates, respectively. We use two sampling resolution: 2 h
(circles) and 4 h (triangles).
doi:10.1371/journal.pone.0026291.g002

Figure 3. Dynamic paramters of microarray data. Scatter plot of the dynamic parameters fa1,a2g corresponding to each gene profile of Exp. 1
(A), and Exp. 2 (B). The parameter space was arbitrarily divided into two regions. Gray dots correspond to genes whose dynamic parameter values are
a1v0 and a2w0 and are significant at the 0.9 level. The analysis reports 587 genes with oscillatory pattern from Exp. 1 and 514 from Exp. 2.
doi:10.1371/journal.pone.0026291.g003
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Figure 4. Expression profile of 63 genes with oscillatory patterns in both experiments. They are sorted by the phases of Exp. 1. The
expression was normalized to the mean expression at all time points and represented by a gray scale.
doi:10.1371/journal.pone.0026291.g004
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Materials and Methods

Modeling Gene Expression Dynamics and MaxEnt
Approach

We also used MaxEnt approach and information theory (IT)

[20,21] concepts for modeling the dynamics of the gene expression

and defined a model-based distance between two dynamics [22].

In this sense, we assumed that the processes generating the

time series Sj~fx(1), . . . ,x(t), . . . ,x(n)g, associated with a gene j,

could be approximated by an autoregressive model of order p, say

AR(p), as follows

xj(t)~a
j
0za

j
1xj(t{1)za

j
2xj(t{2)z . . . zaj

pxj(t{p)zEj , ð1Þ

where xj(t) denotes the expression of gene j at time t. The

elements of the vector aj~ a
j
0,a

j
1, . . . ,aj

p

� �
are the autoregressive

coefficients (AC) and Ej is a random value, which is assumed to

have a Gaussian distribution, with null expected value and

variance s2
j . It is important to note in this context that AR(1)

processes cannot capture periodic patterns except for alternations

with period two. However, AR(2) processes are able to generate

periodic dynamics when AC satisfy a1v0 and a2w0. AR models

of higher order imply more AC to estimate; as one expects to deal

with short and noisy time series, here we will consider only AR(2).
However, the method can be generalized to higher orders. The

corresponding autoregressive coefficients a can be determined

using the MaxEnt approach from the gene expression time series

Sj of n values. The essential idea of MaxEnt is to formally treat

and quantify our ignorance [23] in order to provide the most

parsimonious inference method, using all available data and

avoiding the introduction of additional hypotheses. We will

describe the procedure considering only one gene profile, since

the modeling procedure of each gene is independent of each other.

In order to infer AC consistent with the model and data, we shall

assume that each set of AC a is realized with probability P(a). In

other words, we introduce a normalized probability distribution;

over the collection of conceivable sets of a, this is the essential IT

ingredient. Thus, the expectation values SaiT are defined as

SaiT~

ð
P(a)aida, ð2Þ

and the relative entropy [20,21] associated with the probability

distribution is given by

H0 P½ �~{

ð
P(a)ln

P(a)

P0(a)

� �
da, ð3Þ

where P0 að Þ is an appropriately chosen a priori distribution.

Following the central tenets MEP [20,21], the entropy (3) is to be

maximized, subject to the normalization conditions and the

constraints (2) [24]. In practice, these constraints are enforced by

introducing Lagrange multipliers,

HMEP~ max
P að Þ

H0 P½ �z
ð

l0P(a)zC:aP(a)ð Þda

� �
: ð4Þ

A variation of Eq. (4) with respect to P að Þ gives

P að Þ~exp {(1zl0)ð Þexp C:að ÞP0 að Þ: ð5Þ

When P0 að Þ is proportional to exp {a:a=2sð Þ, the probability

distribution, P að Þ, is a Gaussian centered in SaT~{s2C, i.e.,

P að Þ~ 1

2ps2ð ÞN=2
exp {

1

2s2
azs2C
� 	2

� �
: ð6Þ

Now, the idea is to interpret the data set Sj according to

Eq. (1) in the following manner xj(t)~Sa
j
0TzSa

j
1Txj(t{1)z

Sa
j
2Txj(t{2)z . . . zSaj

pTxj(t{p) SaiT. This allows the elimina-

tion of the Lagrange multipliers C and the expression of the most

probable set a, compatible with the constraints, solely in terms of

the expression levels

SaTT~X T X X T
� 	{1

y, ð7Þ

where X is the regression matrix whose t-th row is

(1,x(t{1), . . . ,x(t{p)) for twp, and y is the vector

(x(pz1), . . . ,x(t), . . . ,x(n))T . Once the AR coefficients are

determined, the next step is to classify the behavior associated

with expression profiles that satisfy a1v0 and a2w0 as oscillatory.

In contrast to other methods (Cosinor, JTK_CYCLE), the present

method does not determine the period, the phase and the

amplitude of oscillations. To overcome this limitation, we

determine the position of cycling genes in a phase diagram, by

computing the cross-correlation between the expression profile

with a sine time series f x
j ~Corr Sj ,sin

� 	
, and a cosine time series

f
y

j ~Corr Sj ,cos
� 	

. In a phase diagram, the phase of profile j, hj ,

is given by arctan f
y

j =f x
j

� �
and corresponds to the angular

Figure 5. Scatter plot of the 63 selected genes. The horizontal axis
corresponds to the phase shift between gene profiles from the
experiments, while the vertical axis corresponds to the dynamic
distance between gene profiles from the different experiments. Black
dots correspond to three circadian clock genes. KaiA (slr0756) and KaiC
(slr0758) genes have a similar phase and similar dynamics in both
replicates.
doi:10.1371/journal.pone.0026291.g005
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coordinate. The distance to the center point of the circle is given

by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(f x

j )2z(f
y

j )2
q

, this distance corresponds to the radial coordi-

nate and assesses how well the expression profile j fits a sinusoidal

function. Thus, two genes with similar angular coordinates are

synchronized; while genes near to unitary circle are associated to

sinusoidal form.

After modeling we will focus our attention on the model based

distance between two dynamics. From the information theory

viewpoint, the amount of uncertainty of the probability distribu-

tion is measured by the entropy. Associated with the entropy

function there is a divergence measure, also known as Kullback-

Leibler distance [20], between P að Þ and P̂P að Þ, which will be

denoted here by D P : P̂P
� 	

D P : P̂P
� 	

~

ð
da P að Þln P að Þ

P̂P að Þ

" #
zP̂P að Þln P̂P að Þ

P að Þ

" # !
: ð8Þ

In particular, for two distributions (6), Pi and Pj , associated with

the dynamics of two gene expression profiles Si and Sj ,

respectively, the model-based distance is

D Pi : Pj

� 	
~

sjzsi

2sjsi

SaiT{SajT
� 	T : SaiT{SajT

� 	
: ð9Þ

This divergence measure is positive, definite, symmetric, and

fulfills the triangular inequality.

Significance Analysis
In identifying periodic genes, the analysis of significance

becomes mandatory after AC estimation. The usual approach

consists in specifying a well-defined null hypothesis. The second

step is to compute the AC of this process from original data.

Finally, we test the null hypothesis against the observations. In this

article, our null hypothesis is that the time series corresponding to

a given profile is not periodic, i.e., that the associated AC do not

satisfy a1v0 and a2w0. This null hypothesis is obtained by

randomly shuffling the original data point. With this operation, the

new time series loses the temporal order but preserves its statistical

distribution properties. Then, we estimate the distribution of AC

for an ensemble of surrogate data sets, which are only different

realizations of the hypothesized stochastic process. Then, rather

than estimating error bars on the AC of the original data, we

calculate the ellipsoid quantile at the given confidence level from

the a1, a2 values corresponding to the surrogate data sets as

natural generalizations of the multivariate quantile considered by

Chaudhuri [25]. In this paper we considered as significant

rhythms the time series whose associated AC values are out of

the ellipsoid quantile, at the confidence level of 0.90, from the

surrogate data sets. We worked with an ensemble of 10000

surrogate time series for each case.

Experimental Data
Kucho et al. [12] monitored genome-wide mRNA levels, for

3,070 Cyanobacterium Synechocystis chromosomal genes simultaneous-

ly, over two circadian cycle periods (48 h), at 4 h intervals. RNA

samples were isolated from two independent cyanobacterial

Figure 6. Expression profile of the four genes. Expression of kaiA (slr0756), kaiB3 (sll0486), kaiC1 (slr0758) and kaiC3 (slr1942), corresponding to
the circadian clock machinery of cyanobacteria. Black squares correspond to Exp. 1, while circles correspond to Exp. 2.
doi:10.1371/journal.pone.0026291.g006
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cultures. Each RNA sample was used for three independent

microarray experiments. Thus, a maximum of six data points per

gene was obtained for each time point (i.e., three measurements

for each biological replicate). Each biological replicate was treated

independently with the same procedure until the final step of the

cycling genes’ characterization of their rhythmicity and phase.

Spots meeting any of the following criteria were flagged and not

used for the analysis: (i) the GenePix Pro did not find the spot area

automatically, (ii) the net signal intensity was ƒ0, (iii) the

percentage of saturated pixels in the spot area was §25, and (iv)

severe noise was present. Genes carrying more than one unflagged

data point at any time point were removed from our analysis. The

data are available from KEGG database [26]. In a previous

analysis of these data using the Cosinor method, 237 genes that

exhibited circadian rhythms were identified [12]. We normalized

each gene expression time series to mean zero and a maximum of

1.0, as is sometimes recommended when measurements are not on

a comparable scale.

As simulated data we constructed four synthetic time series,

corresponding to different oscillatory patterns that are 96 h long

and were sampled every 4 h (see Fig. S1). The time course A (dark

gray) corresponds to a saw-teeth signal, B (gray) corresponds to a

square-step signal, both having a 24 h period. The other two

signals, C and D, are sinusoidal and the corresponding periods are

48 h (light gray) and 24 h (black), respectively. These time series

were contaminated with 10 realizations of additive Gaussian noise

at two different levels (5% of the signal amplitude, denoted by low

noise, and 15% of the signal amplitude, denoted by high noise).

Additionally, we also tested the sensitivity and specificity of the

method to detect cycling behavior at two different sampling

resolutions (2 h and 4 h). For each sampling resolution, we have

generated a test set of 1000 expression profiles across 2 full days.

The period lengths were uniformly distributed between 20 h and

28 h, and the phase was uniformly distributed across the entire

cycle. Half of the transcripts were entirely random (normally

distributed), while the amplitudes of the remaining cycling

Table 1. Some genes with circadian expression.

Index Accession Enzyme Name Function

30 F sll0329* 6-phosphogluconate dehydrogenase Pentose phosphate pathway

31 F sll1196* Phosphofructokinase Glycolysis

32 F sll1234# Adenosylhomocysteinase Amino acids and amines

33 F sll1479* 6-phosphogluconolactonase Pentose phosphate pathway

34 F slr0301 Phosphoenolpyruvate synthase Pyruvate metabolism

35 F slr0394# Phosphoglycerate kinase Glycolysis

36 F slr0884*,# GAPDH 1 Glycolysis

37 F slr1705 Aspartoacylase Amino acids and amines

38 F slr1734 G6PDN assembly protein Pentose phosphate pathway

39 F slr1793* Transaldolase Pentose phosphate pathway

40 F slr1843* Glucose 6-phosphate dehydrogenase (G6PDN) Pentose phosphate pathway

41 F slr2094 Fructose-1,6-/sedoheptulose-1,7-bisphosphatase Other

44 H sll0741 Pyruvate flavodoxin oxidoreductase soluble electron carriers

45 H sll1220* Diaphorase su. of the bidirectional hydrogenase Hydrogenase

46 H sll1223 Diaphorase su. of the bidirectional hydrogenase Hydrogenase

47 H sll1484** Type 2 NADH dehydrogenase NADH dehydrogenase

48 H sll1899* Cytochrome c oxidase folding protein Respiratory terminal oxidases

49 H slr1136* Cytochrome c oxidase su. II Respiratory terminal oxidases

50 H slr1137* Cytochrome c oxidase su. I Respiratory terminal oxidases

51 H slr1138* Cytochrome c oxidase su. III Respiratory terminal oxidases

52 H slr2034 Putative homolog of plant HCF136 Photosystem II

53 J sll1330* Two-component response regulator OmpR sf. Regulatory functions

54 J slr0081 Two-component response regulator OmpR sf. Regulatory functions

55 J slr0312** Two-component response regulator NarL sf. Regulatory functions

56 J slr0947** Response regulator for energy transfer Regulatory functions

from phycobilisomes to photosystems

57 J slr1416 similar to MorR protein Regulatory functions

58 J slr1738 Transcription regulator Fur family Regulatory functions

59 J slr1983** Two-component hybrid sensor and regulator Regulatory functions

Genes exhibiting circadian rhythm in both experiments that are linked to energy metabolism (F), to photosynthesis and respiration (H) and to regulatory functions (J).
The functional categories of the genes are according to KEGG.
*Corresponds to genes detected by the cosinor method, and
**corresponds to genes detected by the cosinor method with relaxed filtering conditions reported by Kucho et al. 2004.
#Corresponds to genes whose expression is influenced by light reported by Stephanopoulos et al. 2004. su. denotes subunit, and sf. denotes subfamily.
doi:10.1371/journal.pone.0026291.t001
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Figure 7. Phase diagrams of genes listed in Table 1. Group F corresponds to genes related to energy metabolism. Group H corresponds to
genes related to photosynthesis and respiration. Group J corresponds to genes related to regulatory functions. f x and f y correspond to the
horizontal axis and to the vertical axis, respectively (see details in the text).
doi:10.1371/journal.pone.0026291.g007
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expression profiles were uniformly distributed between 1 and 6.

Each data point was added to a standard normal random variable

to simulate experimental noise (mean zero, standard deviation of

20% of the profile amplitude). In all cases, the noise and short

length are two important features that these synthetic signals share

with the signals obtained from microarrays.

Supporting Information

Figure S1 Four synthetic oscillatory time series used to
simulate expression profiles. A (dark gray down-triangle) is a

saw-teeth signal, B (grey up-triangle) is a square-step signal, C

(light grey circle) and D (black square) are sinusoidal time series. A,

B and D have a 24 h period, while C has a 48 h period. Each

signal was contaminated with 10 realization of additive noise to

generate 10 noisy time series, which were used to test the

performance of the method to identify oscillatory behavior in short

and noisy time series.

(EPS)

Table S1 All oscillatory genes found. 164 genes exhibiting

cycling behavior in both experiments and the functional categories

of the according to KEGG categories (http://genome.kazusa.or.

jp/cyanobase/Synechocystis/genes/category.txt).

(PDF)
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