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Abstract: Head and neck cancer (HNC) accounts for more than 330,000 cancer deaths annually
worldwide. Despite late diagnosis being a major factor contributing to HNC mortality, no satisfactory
biomarkers exist for early disease detection. Cytoplasmic gelsolin (cGSN) was discovered to predict
disease progression in HNC and other malignancies, and circulating plasma gelsolin (pGSN) levels
are significantly correlated with infectious and inflammatory disease prognoses. Here, the plasma
levels of five candidate biomarkers (circulating pGSN, squamous cell carcinoma antigen, cytokeratin
19 fragment, soluble Fas, and soluble Fas ligand (sFasL)) in 202 patients with HNC and 45 healthy
controls were measured using enzyme-linked immunosorbent assay or Millipore cancer multiplex
assay. The results demonstrated that circulating pGSN levels were significantly lower in patients
with HNC than in healthy controls. Moreover, circulating pGSN outperformed other candidate
biomarkers as an independent diagnostic biomarker of HNC in both sensitivity (82.7%) and specificity
(95.6%). Receiver operating characteristic curves indicated that combined pGSN and sFasL levels
further augmented this sensitivity (90.6%) for early disease detection. Moreover, higher pGSN
levels predicted improved prognosis at both 5-year overall survival and progression-free survival.
In conclusion, circulating pGSN could be an independent predictor of favorable clinical outcomes
and a novel biomarker for the early HNC detection in combination with sFasL.
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1. Introduction

Head and neck cancer (HNC) accounts for more than 650,000 new cases and 330,000 cancer
deaths annually worldwide [1], and it is the sixth most common cancer. In Taiwan, HNC is one of
the most rapidly growing types of cancer among young (25–45-year-old) men. Moreover, the 5-year
overall survival (OS) rate is only 59.8% for oral cancer and only 29.2% for hypopharyngeal cancer [2].
Precision medicine is an emerging trend in advanced disease management, including for cancers,
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where biomarkers that predict patients’ clinical outcomes and therapeutic responses play significant
roles. For example, clinical trials have reported certain tyrosine kinase inhibitors such as gefitinib
and erlotinib to be superior to traditional chemotherapy, but only in patients with lung cancer of
corresponding EGFR mutations, particularly exon 19 deletion and L858R point mutation [3,4].

Biomarkers are particularly crucial in early disease stages because early intervention not only
significantly enhances clinical outcomes and quality of life of the patients but also saves medical
costs over the treatment course. Such precision biomarkers may also contribute to evidence-based
optimization of treatment strategies by providing an understanding of the molecular signaling networks
of the tumor. However, although many serum proteins, such as squamous cell carcinoma antigen
(SCC-Ag), MMP9, and P16, have been proposed as useful circulating protein biomarkers for various
cancers, none have been consistently reported for HNC. Nevertheless, other circulating biomarker types
for HNC have emerged; these include circulating tumor cells, exosomal microRNA, and circulating
tumor DNA [5–7]. Detection of these novel biomarkers require further advancement and approval
in technology platforms. SCC-Ag in the circulation may suggest the presence of various human
carcinomas such as oral, lung, and cervical cancers [8–10]. However, Yuan et al. found the sensitivity
and specificity of SCC-Ag for HNC prediction to be only 73.37% and 68.1%, respectively [11]. Hence,
the identification of novel biomarkers with superior test accuracy is crucial for detecting patients with
HNC and guiding clinical therapeutics.

Defects in apoptosis regulation have been implicated in numerous human diseases, including
cancers [12]. A critical apoptosis signaling pathway involves Fas/Fas ligand (FasL)-mediated
signaling [13]. FasL expression in human HNC possibly potentiates an immunosuppressive function
by promoting T lymphocyte apoptosis [14]. Gelsolin (GSN), an actin cytoskeleton-modulatory protein,
can regulate not only cell morphology and motility but also cell apoptosis. We previously reported
that cytoplasmic GSN (cGSN) expression in patients with HNC is strongly associated with their
chemoresistant phenotype. cGSN overexpression also induces chemoresistance by inhibiting apoptosis
initiated by chemotherapeutic agents [15,16]. Besides cytoplasmic form GSN, the same gene on
chromosome 9 also encodes a secretory form, the plasma GSN (pGSN), through alternative splicing.
pGSN is mainly secreted from skeletal and cardiac muscles [17] and is one of the most abundant
plasma proteins in the circulation of vertebrates [18]. pGSN expression is implicated in various
pathological conditions, such as acute respiratory distress syndrome, sepsis, acute hepatic failure,
myonecrosis [19–21], and various cancers [22,23]. Recently, the role of pGSN in apoptosis induction
in tumor-infiltrating CD8+ T lymphocytes has been demonstrated through FasL binding in prostate
cancer [24]. However, the significance of circulating pGSN levels in HNC prognosis and the relevant
clinicopathological implications warrant elucidation. In this study, the roles of pGSN as a biomarker
for HNC and as the predictor of patients’ clinical outcome—either alone or in combination with other
biomarkers—were evaluated.

2. Results

2.1. Patient Characteristics

The clinicopathologic characteristics of our patients with HNC are presented in Supplementary
Table S1. Patient age ranged from 22 to 81 years (median, 53 years). Of the patients, 33 (16.3%),
52 (25.7%), 40 (19.8%), and 77 (38.1%) had TNM (tumor, node, metastasis) stage I, II, III, and IV disease,
respectively. In terms of tumor differentiation, 104 (51.5%), 73 (36.1%), and 17 (8.4%) tumors were well,
moderately, and poorly differentiated, respectively. The HNC tumor sites are listed in Supplementary
Table S2. The median follow-up duration for all patients was 19.6 months (range, 1.0–202.0 months).
During follow-up, 55 patients (27.2%) developed progressive diseases and 76 patients (37.6%) died.
pGSN levels were measured, and the patients were dichotomized according to their median pGSN
level (73.5 µg/mL) into low and high groups.



Cancers 2020, 12, 1569 3 of 13

2.2. Diagnostic Value of Circulating pGSN in Patients with HNC

Enzyme-linked immunosorbent assay (ELISA) results revealed significantly lower circulating
pGSN levels in patients with HNC (81.03 ± 38.14 µg/mL) than in the healthy controls
(181.7 ± 58.54 µg/mL, p < 0.001; Figure 1a). Moreover, such predictive value was evident in patients
with early-stage HNC (Figure 1b). Plasma levels of reported candidate circulating tumor biomarkers
SCC-Ag, cytokeratin 19 fragment (CYFRA21-1), soluble Fas (sFas), and soluble FasL (sFasL) were also
analyzed and compared with those of circulating pGSN. Diagnostic values for circulating SCC-Ag
for HNC was not evident (p = 0.89, Figure 1c). CYFRA21-1 levels were significantly higher in
patients with HNC (1704 ± 109.3 pg/mL) than that of the healthy controls (927.9 ± 79.38 pg/mL,
p < 0.01; Figure 1d). In carcinogenesis, apoptosis pathways play crucial roles through Fas and FasL
activation [25]. We discovered that the mean circulating sFasL levels was significantly lower in
patients with HNC (66.89 ± 12.87 pg/mL) than in healthy controls (29.3 ± 3.596 pg/mL, p < 0.001).
However, the mean sFas levels demonstrated the opposite trend (1538 ± 54.36 pg/mL in HNC group
vs. 1111 ± 57.76 pg/mL in the control group, p < 0.001, Figure 1e,f).
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Figure 1. Circulating plasma gelsolin (pGSN) is the optimal diagnostic biomarker for head and neck
cancer (HNC). (a) Circulating pGSN levels were significantly lower in patients with HNC (red bar,
n = 202; 81.03 ± 38.14 µg/mL) than in healthy controls (white bar, n = 45; 181.7 ± 58.54 µg/mL; p < 0.001).
(b) No significant difference existed between circulating pGSN levels in patients at early (stages I + II)
versus advanced (stages III + IV) HNC stages, whereas the healthy controls presented distinctively
higher circulating pGSN levels (p = 0.89). Circulating (c) squamous cell carcinoma (SCC) levels exhibited
no significant differences between normal and malignant disease. Circulating (d) CYFRA21-1 and
(e) soluble Fas (sFas) levels were significantly higher in patients with HNC than in healthy controls.
(f) Circulating soluble FasL (sFasL) levels were significantly lower in patients with HNC than in healthy
controls. Data are shown as mean ± SEM.
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The approximate AUC derived from the receiver operating characteristic (ROC) curve was used
to assess the diagnostic performance of the candidate cancer biomarkers (Figure 2). The AUC of
circulating pGSN was 0.937 (p < 0.001), whereas it was 0.882 for sFasL (p < 0.01), 0.695 for CYFRA21-1
(p < 0.001), 0.623 for SCC-Ag (p < 0.001), and 0.719 for sFas (p < 0.001). The optimal cutoff levels were
set using Fisher’s exact test. It was 106.25 µg/mL for circulating pGSN, 30.15 pg/mL for circulating
sFasL, 1401 pg/mL for sFas, 1.26 ng/mL for SCC-Ag, and 1568 pg/mL for CYFRA21-1. The sensitivity
and specificity of pGSN were 82.7% and 95.6%, respectively. They were 83.2% and 86.7% for circulating
sFasL; 53.0% and 86.7% for sFas, 48.5% and 77.8% for SCC-Ag, 37.6% and 95.6% for CYFRA21-1. It is
thus concluded that circulating pGSN was the optimal predictive HNC biomarker, followed by sFasL
and then by sFas.
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Figure 2. Receiver operating characteristic curves for all candidate circulating cancer biomarkers
revealed pGSN to be the optimal predictor of HNC. The area under curve (AUC) of circulating pGSN
was 0.937 (p < 0.001), whereas it was 0.882 for sFasL (p < 0.01), 0.695 for CYFRA21-1 (p < 0.001), 0.623
for SCC-Ag (p < 0.001), and 0.719 for sFas (p < 0.001).

2.3. pGSN as a Valuable Diagnostic Tool for Early HNC Stage

As circulating pGSN levels were much lower in patients with early-stage HNC than in healthy
controls, we further tested how reliably pGSN could be used as an early diagnostic biomarker for
HNC. Here, the approximate AUC derived from the ROC curve was used to assess the diagnostic
performance of pGSN (Figure 3). In addition, ROC curve analyses for combined biomarkers (the purple
line) were compared. On the basis of the 85 patients with early-stage HNC and 45 healthy controls,
the AUC of pGSN for predicting early HNC stage was 0.921 (p < 0.001), whereas that of sFasL was
0.877 (p < 0.001). With the cutoff level set at 106.1 µg/mL (i.e., the optimal cutoff level derived from
Fisher’s exact test), circulating pGSN demonstrated sensitivity and specificity of 78.8% and 95.6%,
respectively, for early HNC prediction. They were 83.5% and 86.7%, respectively, using sFasL as a
predictor (cutoff level set at 30.2 pg/mL). To further explore whether combination of multiple candidate
biomarkers could increase diagnostic accuracy for early HNC stage, levels of circulating pGSN and
sFasL were integrated as multivariate index. The pGSN–sFasL index was derived from circulating
pGSN and sFasL levels as follows:

pGSN-sFasL index = pGSN level (in µg/mL) × sFasL level (in pg/mL)
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Figure 3. Receiver operating characteristic (ROC) curves of various candidate biomarkers in early
HNC prediction. In 85 patients with HNC and 45 healthy controls, with optimal cutoff levels set at
106.13 µg/mL (determined using Fisher’s exact test), circulating pGSN demonstrated a 78.8% sensitivity
and 95.6% specificity in early HNC prediction, whereas with optimal cutoff at 30.15 pg/mL, circulating
sFasL exhibited an 83.5% sensitivity and 86.7% specificity in early HNC prediction. When pGSN
and sFasL were combined to serve as an integrated predictive biomarker set (pGSN–sFasL index) for
early HNC stage, with optimal cutoff levels set at 3614.07, the sensitivity and specificity were 90.6%
and 93.3%, respectively. Moreover, in the multivariate index assay, pGSN–sFasL index could aid in
discriminating patients at early HNC stages more effectively than in discriminating controls, with
AUC >0.9 (p < 0.001).

The results indicated that the pGSN–sFasL index yielded the highest AUC value (0.950), with
a 90.6% sensitivity and 93.3% specificity. Table 1 illustrates the sensitivity and specificity for the
discrimination between patients with early-stage HNC and the healthy controls. Taken together,
these results demonstrated that circulating pGSN may serve as a diagnostic biomarker for early HNC
stages. Furthermore, it presented the optimal sensitivity and specificity in combination with circulating
sFasL levels.

Table 1. Sensitivity and specificity of pGSN, sFasL, or their combination in discriminating between
early HNC stage and healthy groups.

Variables AUC Significance Sensitivity (%) Specificity (%)

All patients
pGSN 0.937 < 0.001 82.7 95.6

Early-stage patients
pGSN 0.921 < 0.001 78.8 95.6
sFasL 0.877 < 0.001 83.5 86.7

pGSN–sFasL index 0.950 < 0.001 90.6 93.3

2.4. Survival Analysis of Circulating pGSN in Validation Datasets

We further explored the predictive value of circulating pGSN in the survival of patients with HNC.
Circulating pGSN levels were dichotomized using its medians (73.5 µg/mL) into low- and high-level
groups. The Kaplan–Meier survival analysis results indicated that patients with high pGSN levels
(n = 101) had significantly higher 5-year OS than did those with lower pGSN levels (n = 101; p = 0.04;
Figure 4a). However, no significant difference was noted in the 5-year survival of early-stage patients
with HNC (Figure 4b). Higher pGSN levels had a positive impact on the 5-year OS in late-stage
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subgroup compared with lower pGSN levels; this result was nearly reached statistical significance
(p = 0.05; Figure 4c).
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Figure 4. Influence of circulating pGSN levels on 5-year survival of patients with HNC. (a) Circulating
pGSN in the whole HNC population (n = 202) exhibited significant predictive value for 5-year survival,
as evaluated using Kaplan–Meier analysis (p = 0.04). Higher circulating pGSN levels predicted superior
clinical outcomes than did lower pGSN levels. (b) Circulating pGSN levels had no significant effect on
the overall survival (OS) of early-stage patients with HNC. (c) High circulating pGSN expression tends
to confer longer OS in late-stage subgroup than those with lower pGSN levels (p = 0.05). The p values
were calculated using the log-rank test.

Recurrence in advanced HNC is not uncommon. When we further assess patients’ 5-year
progression-free survival, we observed the significant predictive value of pGSN for their 5-year
progression-free survival (PFS) (p = 0.02; Figure 5a). Furthermore, higher circulating pGSN levels
predicted superior clinical outcomes than did lower pGSN levels. Circulating pGSN levels did not
present a significant effect on 5-year PFS for patients at early HNC stage (n = 85; Figure 5b). For patients
at late HNC stage (n = 117), pGSN presented significant predictive value for the 5-year PFS (p = 0.03,
Figure 5c).
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Figure 5. Five-year progression-free survival (PFS) of patients with HNC stratified by the median
of circulating pGSN. (a) Kaplan–Meier survival analysis stratified by circulating levels of pGSN in
the entire HNC population (n = 202) revealed that patients with higher circulating pGSN levels
demonstrated enhanced 5-year PFS than did those with lower pGSN levels (p = 0.02). (b) pGSN levels
failed to present a significant influence on 5-year PFS of early-stage patients. (c) For patients at late
HNC stage (n = 117), pGSN presented significant predictive value for the 5-year PFS in patients with
HNC (p = 0.03). The p values were calculated using the log-rank test.

2.5. Prognostic Impact of Circulating pGSN and Its Relationship with Other Clinicopathological Parameters

We further evaluated the prognostic impact of pGSN and other clinicopathologic parameters by
using univariate and multivariate Cox regression analyses, as shown in Supplementary Table S3. In the
univariate analysis, TNM stage, TNM_T, TNM_N, and pGSN level were significantly associated with
PFS and OS. In the multivariate Cox regression analysis, pGSN level (hazard ratios (HR), 1.78; 95%
confidence interval (CI), 1.07–2.95; p = 0.025) and TNM_N (HR, 2.81; 95% CI, 1.49–5.28; p = 0.001) were
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significant predictors of PFS. Similarly, pGSN level (HR, 1.87; 95% CI, 1.08–3.25; p = 0.026) and TNM_N
(HR, 2.50; 95% CI, 1.25–4.99; p = 0.01) were significantly associated with an increased mortality risk
of death.

3. Discussion

Mortality in HNC increases considerably when the disease is diagnosed in its late stages. Therefore,
early detection of the malignancy is critical to prolonging the OS of patients. However, no reliable
biomarkers currently exist for early HNC detection, and the absence of clinical symptoms or signs at
early disease stages poses great challenges in HNC screening programs. It is thus conceivable that
the discovery of more sensitive and specific HNC biomarkers at early disease stages would be of
great value. These biomarkers may not only assist in timely clinical interventions to achieve favorable
clinical outcomes but also provide quality of life of the patients that otherwise would suffer from
significant complications of cancer treatment.

On the basis of their impact, cancer biomarkers can be divided into diagnostic, predictive,
prognostic, and therapeutic biomarkers [26]. Several cellular or molecular biomarkers have been
reported for HNC detection with varying degrees of specificity and sensitivity, including p16, matrix
metalloproteinase 9, and human papillomavirus [5–7]. However, none of these biomarkers have been
practically used in the clinical settings because of a lack of adequate clinical relevance to therapeutic
implications for early diagnosis. Although SCC-Ag is a potential serum prognostic biomarker for HNC,
its detection sensitivity and specificity are insufficient for serving as a diagnostic biomarker [27,28].

GSN is an evolutionary highly conserved protein in vertebrates and exists in four isoforms. cGSN
has multifunctional roles in various physiological and pathological processes such as regulation of
actin cytoskeleton dynamics, cell motility, and metastasis [29,30]. Furthermore, cGSN plays critical
roles in apoptosis signaling and cell differentiation [31]. In large-scale clinical studies, Shieh et al.
reported that tissue cGSN expression is an independent prognostic biomarker in stage-I non-small-cell
lung [32] and oral [33] cancers. The prognostic value of cGSN has further been confirmed in several
other cancers, including colon, ovarian, and breast cancers [22,23,34]. We recently discovered that
cGSN expression is highly associated with chemoresistance phenotype in both HNC and ovarian
cancers by suppressing apoptosis induced by chemotherapeutic agents [15,16].

On the other hand, pGSN plays a critical role in preventing the polymerization of actin released
from damaged tissues and thereby trigger platelet aggregation and microvascular thrombosis [35,36].
Notably, clinical studies have indicated lower circulating pGSN levels in patients with trauma, acute
respiratory distress syndrome, sepsis, and acute liver failure [19–21]. The prognostic value of circulating
pGSN was later confirmed under various clinical conditions. Horváth-Szalai et al. [37] reported that
pGSN and actin/GSN ratio may represent an efficient complementary prognostic marker for sepsis.
Asare-Werehene and colleagues [38] recently demonstrated that exosomal pGSN could promote the
survival of ovarian cancer cells through both autocrine and paracrine stimulation and thereby confer
chemoresistance. Moreover, preoperative circulating pGSN was found to be a favorable biomarker for
early ovarian cancer detection, residual disease prediction, and overall prognosis [39]. Chen et al. [40]
also reported that serum pGSN levels were significantly lower in patients with colon cancer than in
healthy controls and that pGSN could serve as a more effective diagnostic biomarker for colon cancer
compared with the currently used carcinoembryonic antigen. However, the role of pGSN in HNC has
not been elucidated.

In the present study, we found that circulating pGSN can serve as a novel diagnostic biomarker
for the detection of HNC. Compared with other reported potential HNC biomarkers, pGSN had far
superior sensitivity (82.7%) and specificity (95.6%) for HNC diagnosis. In addition, the level of sFasL,
a vital apoptosis signaling molecule, was significantly lower in patients with HNC. It presented the
optimal detection sensitivity (83.2%) and the second highest specificity (86.9%) for HNC. This discovery
is consistent with previous studies that reported lower sFasL levels in patients with HNC [41].
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Furthermore, we assessed the diagnostic values of pGSN and sFasL for early HNC detection.
Circulating pGSN presented higher specificity (95.6%) than did sFasL levels (86.7%) for early HNC
stage, whereas sFasL presented higher sensitivity (83.5%) than did pGSN (78.8%). We combined
pGSN and sFasL levels to form a new index (pGSN–sFasL index), which provided augmented
sensitivity (90.6%) compared with each individual biomarker for detecting early-stage HNC. Yu et
al. reported the use of a four-protein panel (MMP1, KNG1, ANXA2, and HSPA5) to evaluate cancer
progression risk and early disease detection of oral squamous cell carcinoma (OSCC) using liquid
chromatography–multiple-reaction-monitoring–mass spectrometry. The panel achieved a detection
sensitivity of 88.6% and specificity of 80.4% for early-stage OSCC [42]. Our results indicated that
circulating pGSN could serve as an independent biomarker for early HNC detection with superior
specificity compared with the four-protein panel of Yu et al.; furthermore, much greater sensitivity
(90.6%) and specificity (93.3%) were obtained after using the pGSN–sFasL index. Furthermore,
circulating pGSN levels also provide promising value in clinical outcome prediction, and thus,
it may serve to guide clinical disease management. We demonstrated that higher pGSN levels
predict significantly favorable survival than do lower pGSN levels in both the 5-year OS and PFS
follow-up analyses.

The mechanisms underlying the considerable value of pGSN in the early detection and prediction
of clinical outcomes related to malignant diseases may be derived from its critical functions in
various carcinogenesis-associated pathways. Numerous studies have reported crosstalk between tissue
inflammation and cancer initiation and progression. Fas ligand/receptor signaling plays critical roles
in the regulation of the immune system and cancer progression [43]. Consistent with our findings,
Hoffmann et al. reported lower sFasL levels in patients with HNC and suggested that serum sFasL is
consumed by binding to Fas expressed on activated circulating CD8+ T lymphocytes in patients with
cancer, thereby reducing their sFasL levels compared to healthy controls [44]. Clinical studies have
reported a strong association between circulating pGSN levels and inflammation-associated clinical
states, but their potential regulatory roles in relation to immune cells were only revealed recently.
pGSN was reported to inactivate CD4+ T cells through CD37 signaling and to induce the apoptosis of
activated CD8+ T cells through membrane-bound FasL [24]. Similarly, the observed lower circulating
pGSN level in patients with HNC compared with in healthy controls could reflect their consumption
by CD8+ T cells that triggered apoptosis. This explained a potential mechanism that a higher pGSN
level predicted a more favorable prognosis.

Despite satisfactory advancements in sensitivity and specificity from using pGSN as a circulating
biomarker, as presented in our study, saliva should be used instead of blood for cancer screening for
better compliance and straightforward collection and transportation. The existence of salivary GSN
has been reported by Bermejo-Pareja et al. [45]. However, its clinical relevance related to HNC has not
been investigated. Further investigation is warranted.

Although chronic inflammation is a risk factor for malignancy, including HNC [46,47], this is
the first report in which circulating pGSN conferred excellent diagnostic value for early-stage HNC,
particularly in combination with circulating sFasL. Furthermore, this is the first study to report the
prognostic significance of circulating pGSN for HNC after the discovery of cGSN expression in tumor
tissues as a prognostic indicator in HNC. The association between pGSN and cGSN and the underlying
mechanism are anticipated to have significant effects on HNC clinical disease management and remain
to be explored further.

4. Materials and Methods

4.1. Ethics Statement

The current clinical study protocol and consent forms were approved by the Institutional Review
Board of National Cheng Kung University Hospital, Taiwan (IRB approval number: A-ER-106-505)
and the Human Research Ethics Committee of National Cheng Kung University. The experiment was
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conducted in accordance with relevant guidelines and the need for informed consent for the collection,
analysis, and publication of patient data was waived.

4.2. Clinicopathological Characteristics and Collection of Plasma Samples

We included 202 patients who were diagnosed as having HNC between April 1998 and January
2015 at National Cheng Kung University Hospital, Taiwan. These patients underwent comprehensive
staging or cytoreductive surgery with adjuvant chemotherapy. Staging was performed using the TNM
staging system according to the American Joint Committee on Cancer, eighth edition classification.
Cancer progression was defined according to the objective Response Evaluation Criteria in Solid
Tumors (RECIST version 1.1). Two pathologists independently reviewed the medical records and
pathological slides, which provided information on patent demographics, clinical characteristics,
pathological diagnoses, and treatment outcomes. Control blood samples were obtained from 45 healthy
individuals who were confirmed to be without cancer, suspected cancer, or inflammatory conditions
and agreed to participate in the study. Before neoadjuvant chemotherapy or radiotherapy, all the
plasma samples were collected in blood collection tubes containing EDTA as an anticoagulant and then
centrifuged for 15 min at 1000× g. The samples were separated and placed in 1.5-mL Eppendorf aliquots
and stored at −80 ◦C, and the plasma levels of all the included cancer biomarkers were measured.

Survivor data were censored on the date on which the survivors were last known to be alive.
The OS was calculated from the date of diagnosis to the date of death from any cause. The PFS was
calculated from the first treatment of HNC to the date of disease progression or death from any cause,
unless the patient was progression free at the time of last contact; in that case, the progression-free
interval was measured to the date of last contact. The participants were followed up after treatment,
and the date of the latest record retrieval was May 31, 2019. OS and PFS were stratified by circulating
pGSN levels during follow-up.

4.3. Circulating pGSN and SCC-Ag Detection from Patient Plasma Using Sandwich ELISA

pGSN and SCC-Ag levels in both patients with HNC and healthy controls were determined using
a Plasma Gelsolin ELISA Kit (SK00384-06; Aviscera Bioscience, CA, USA) and a Human Squamous
Cell Carcinoma Antigen ELISA Kit (MBS-162089; MyBioSource, SD, USA), respectively, according
to manufacturer instructions. Briefly, all plasma samples were diluted in a sample buffer (5000× for
pGSN, Aviscera Bioscience; 5× for SCC-Ag, MyBioSource) and placed in an ELISA plate pre-coated
with a capture antibody specific for human target proteins pGSN or SCC-Ag. The samples were
washed four times using wash buffer. The presence of target proteins in the samples were then probed
using biotinylated monoclonal antibodies against target proteins specifically. After the plate was
further washed again, HRP-conjugated streptavidin was added; this was followed by a last wash to
remove any unbound enzyme. The plate was developed by adding substrate solution (TMB) for color
development and quantified with reference to the standard curve of optical density at 450 nm in a
microplate reader. A standard curve was created using computer software, which could generate a
four-parameter logistic curve fit. Each specimen was converted to pGSN or SCC-Ag levels using this
standard curve.

4.4. Circulating Biomarker Detection

Expression of circulating cancer biomarkers was assessed, as described previously [48]. The levels
of three proteins (CYFRA21-1, sFas, and sFasL) were determined using the cancer biomarker panel
according to the protocol provided by the manufacturer (Milliplex Map Human Circulating Cancer
Biomarker Magnetic Bead Panel HCCBP1MAG-58K; Millipore, St. Charles, MO, USA). Plasma samples
were diluted to double the volume using the serum matrix provided in the kit as a sample diluent.
In brief, the microplate was primed using assay buffer and a diluted sample or control plasma was
added; subsequently, it was mixed well with the magnetic bead and incubated with agitation overnight
at 4 ◦C. The plate was gently washed before the detection antibodies were added and then incubated



Cancers 2020, 12, 1569 10 of 13

for 1 h at room temperature. Next, streptavidin-phycoerythrin was added to each well before the
plate was incubated for 30 min and washed three times. Sheath fluid was added to all wells and
then the plate was analyzed in the multiplexing instrument Luminex®200™ (Invirtogen, Merelbeke,
Belgium) using the software package xPONENT (Luminex Corporation, Austin, TX, USA). The median
fluorescent intensity was obtained using a five-parameter logistic function for calculating the analyte
levels in the samples.

4.5. Data Analysis

All statistical analyses were performed using SPSS (version 24.0; SPSS Inc., Chicago, IL, USA)
and Prism (version 7; GraphPad, San Diego, CA, USA). Mean pGSN and other biomarkers levels
were plotted against their respective disease states using box plots. The statistical analysis was
performed using unpaired t-tests and one-way analysis of variance. ROC curves were used to assess
the discriminating capacity of pGSN and other cancer biomarkers. AUC was considered the capacity
for disease classification from healthy controls. OS and PFS curves were plotted with Kaplan–Meier
plots, and p values were calculated using the log-rank test. A two-sided p ≤ 0.05 was considered to
represent statistical significance. Univariate and multivariate Cox proportional hazards models were
used to estimate HR and corresponding 95% CI. The independent effect of circulating pGSN levels
during follow-up on survival and disease progression was also analyzed. p values of < 0.05 (two-sided)
were considered significant.

We estimated the sample size required to compare the high and low pGSN groups for death in the
Cox regression model. We set type I error α to be 0.05 and power to be 0.8 and then used the event rates
(0.3 and 0.4) of two groups and postulated hazard ratio to estimate the sample size. Thus, a sample
size of 100 participants for the high pGSN group and 100 for the low pGSN group had reasonable
statistical power (0.8) in our study. We conducted Cox proportional hazard models to control for
potential confounding factors (sex, age, differentiation, tumor size, TNM_T, TNM_N, and staging) to
assess the HRs (with corresponding 95% CIs) between high and low pGSN groups. A multivariate
Cox regression analysis including all variables achieved significant results (p < 0.05) in the univariate
analysis. The proportional hazard assumption was tested using Schoenfeld residuals, and it was valid
for all outcomes [49].

5. Conclusions

We discovered that circulating pGSN levels in HNC patients were lower than those in normal
healthy controls. Circulating pGSN could serve as a diagnostic biomarker for HNC, especially for
early disease stages, with augmented sensitivity and specificity in combination with circulating sFasL.
Furthermore, lower circulating pGSN levels predicted significantly poorer clinical outcomes (i.e.,
shorter 5-year OS and PFS). Taken together, circulating pGSN is a potential independent predictor
of favorable clinical outcomes and a novel biomarker for the early HNC detection in combination
with sFasL.
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HR for OS and PFS.
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