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Abstract: The global energy demand is expected to increase by 30% within the next two decades.
Plastic thermochemical recycling is a potential alternative to meet this tremendous demand because
of its availability and high heating value. Polypropylene (PP) and polyethylene (PE) are considered
in this study because of their substantial worldwide availability in the category of plastic wastes. Two
cases were modeled to produce hydrogen from the waste plastics using Aspen Plus®. Case 1 is the
base design containing three main processes (plastic gasification, syngas conversion, and acid gas
removal), where the results were validated with the literature. On the other hand, case 2 integrates the
plastic gasification with steam methane reforming (SMR) to enhance the overall hydrogen production.
The two cases were then analyzed in terms of syngas heating values, hydrogen production rates,
energy efficiency, greenhouse gas emissions, and process economics. The results reveal that case 2
produces 5.6% more hydrogen than case 1. The overall process efficiency was enhanced by 4.13%.
Case 2 reduces the CO2 specific emissions by 4.0% and lowers the hydrogen production cost by 29%.
This substantial reduction in the H2 production cost confirms the dominance of the integrated model
over the standalone plastic gasification model.

Keywords: gasification; reforming; plastic waste; H2 production; CO2 emissions

1. Introduction

Globally, 9% of plastics out of 6.3 billion tons have been recycled between 1950 and
2018. Additionally, 12% have been burnt [1]. However, the remaining 79% of plastics
promote severely harmful pollutants. Those pollutants have different forms such as fu-
rans, dioxins, and mercury. The pollutants are highly hazardous, negatively affecting
the environment and marine organisms [2]. Moreover, 4–12 million tons of plastics are
annually thrown into the ocean [3]. Many countries are encouraging and legislating laws
to minimize plastic usage, followed by recycling the plastics [4]. The efficient recycling of
plastics to valuable products is essential to save the environment and utilize the energy
from these huge amounts of waste. Several studies have confirmed the feasibility of plastic
recycling [5,6].

The recycling process encompasses four main steps: collection, separation, manu-
facture, and marketing [7]. The most convenient technique is thermochemical recycling

Polymers 2022, 14, 2056. https://doi.org/10.3390/polym14102056 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14102056
https://doi.org/10.3390/polym14102056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0001-7199-600X
https://orcid.org/0000-0003-2219-4814
https://orcid.org/0000-0002-9141-1408
https://orcid.org/0000-0002-9451-3696
https://doi.org/10.3390/polym14102056
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14102056?type=check_update&version=1


Polymers 2022, 14, 2056 2 of 18

because it converts the plastics into synthesis gas, which could be used in synthesizing
several valuable chemicals [8,9].

Gasification is a process that produces synthesis gas (CO2, CO, H2, CH4, etc.) from
carbon-based materials such as fossil fuels, and biomass [10–14]. The syngas can then
be used to produce several fuels and chemicals [15]. The gasification process is usually
promoted through a high-temperature reaction (>700 ◦C) using oxygen or steam as an
auxiliary component (air gasification or steam gasification) [16,17]. Steam gasification,
air gasification, co-gasification, pyrolysis, and plasma gasification are types of thermal
recycling for plastics or any carbon-based feedstock [18]. Pyrolysis is a dry heating of the
feed in the absence of air [19]. The pyrolysis produces syngas that is completely free of
tar [20]; however, the hydrogen to carbon monoxide ratio is not high. Sometimes, it is
considered as the first step in the gasification process because it maximizes the conversion
of volatile materials (high carbon chain) to relatively low carbon hydrocarbons (<C25) [21].
Another process is co-gasification, which mixes two carbonaceous feedstocks such as plastic
with coal or biomass to enhance the gas yield and suppress char formation [22]. However,
this process increases the tar formation [23]. Air gasification produces less tar; nevertheless,
it produces a lower hydrogen to carbon monoxide ratio [24]. Pure oxygen gasification is a
very efficient process; however, the production of oxygen from air is highly expensive [25].
To effectively produce syngas with a high hydrogen to carbon (HCR) ratio in a quite simple
process, the steam gasification of plastics is the optimal choice [26]. It is quite simple, and it
produces a higher hydrogen to carbon monoxide ratio.

The production of syngas facilitates the production of essential chemicals and fuels,
such as hydrogen, methanol, ethanol, DME, LPG, olefins, and gasoline [27–29]. Modeling
the whole journey of plastics to clean fuels under several operational conditions is essential
to support industrial applications, and to maximize the clean fuel production from a
heterogeneous plastic mixture [30]. Antzela and Ioanna [31] conducted a pilot plant study
on the techno economic evaluation of the conversion of plastics into heavy oil through
pyrolysis using Aspen HYSYS. The production cost of the heavy oil was 0.87 EUR /kg,
which is 58% higher than the market price. They suggested a more sophisticated study for
large-scale data. Deng et al. [32] modeled the municipal solid plastic (MSW) to syngas using
a combination of two technologies: pyrolysis (RYield + RGibbs), and gasification (RGibbs).
The results show good agreement with the experimental data, where the temperature
of 750 ◦C is considered the optimal gasification temperature, with a steam/plastic ratio
of 0.4. Furthermore, they economically recommended the use of flue gas and steam as
gasifying agents. Another study by Pravin et.al [33] accomplished the conversion of PE
(polyethylene) to syngas through pyrolysis then gasification using Aspen plus. The results
were not validated by the experiment due to the lack of resources; however, they claimed
that the most convenient temperature, and equivalence ratio for the pyrolysis unit were
0.4–0.6, and 500–750 ◦C, respectively The catalytic approach has advantages over the
thermal one in terms of reducing the sulfur content when special catalysts are used (i.e.,
CaS, and MgS) [34–36]. Several studies have been performed on the conversion of waste
plastics to hydrogen along with other feedstocks [37,38]. The development of catalysts
for plastic gasification in a cost-effective manner is still under research; therefore, the
thermal gasification technique is considered, which is a well established process with fewer
operational issues.

Fivga and Dimitriou [39] studied and analyzed the conversion of waste plastics to
heavy fuel. They used a mixture of PE, PP, and PS as a feedstock at 530 ◦C, and 1 atm. They
modeled their work using Aspen HYSYS based on the ultimate analysis of the plastics.
The product of their pyrolysis reactor was basically n-C30, n-C25, n-C18, n-C14, n-octane,
ethane, and a small proportion of gases. The remaining solids and gases were separated,
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then pyrolyzed liquid fuel was collected. They validated their results with plant data, and
they performed cost analysis. Generally, the work is promising and has the idea of using
plastic waste to generate liquid heavy fuel. Another study on plastic waste conversion to
fuel was conducted by Emad and Vahid [40], which was basically on the production of
hydrogen via the co-gasification of a mixture of asphaltene and plastics using Aspen Plus.
They decomposed the feed on a pyrolysis reactor (RYield), and then they used an RGibbs
reactor followed by CSTR to produce syngas. They studied some factors influencing the
hydrogen production rate, namely, asphaltene to plastic ratio (A/P), equivalence ratio
(ER), and steam to feed ratio (S/F). They found that A/P and steam to feed (S/F) have a
positive impact on carbon conversion efficiency (CCE). The study provided the excellent
idea of producing hydrogen from a co-gasification mixture. However, they did not produce
pure hydrogen; it was a synthesis gas mixed with acid gases that should be removed.
Additionally, they need to implement WGS to maximize hydrogen production and to
suppress the carbon monoxide in the product.

There are limited studies on the production of hydrogen from plastic wastes. Therefore,
investigating the hydrogen production from different feedstocks (i.e., coal or biomass) will
assist hydrogen production from plastics. A study was performed by Noussa et al. [41] on
the techno economic evaluation of producing H2 from biomass. They investigated different
gasifier agents and several types of feedstocks. They found that steam as gasification agent
was better than other agents. Namioka et al. [42] studied the production of H2-rich synthesis
gas using pyrolysis, then low-temperature steam gasification. The study was focused on
polystyrene (PS), and polyethylene (PE) as a feedstock. They performed the pyrolysis
and steam reforming at 673 and 903 K, respectively. Ruthenium was used as a pyrolysis
catalyst, and it enhanced the process performance. The study recommended combining the
thermal and catalytic process. Similarly, Chaia et al. [43] studied the conversion of plastics
to hydrogen using a combination of co-pyrolysis and gasification processes. Ni-CaO-C was
tested as a novel catalyst to promote H2 production. They claimed a hydrogen production
efficiency of 87.7 mole %, controlling the greenhouse gas emissions. Consequently, the
conversion of waste plastics into hydrogen is a practical process, proved theoretically and
experimentally. Thus, the current study will focus on using a thermochemical approach
based on steam gasification to convert plastics into hydrogen fuel [42].

2. System and Analysis Framework
2.1. Modelling and Simulation Approach

In this study, polyethylene (PE) and polypropylene (PP) were selected due to their
availability and their higher heating value [44]. Aspen Plus® software V-12 was used as
a simulation tool, selecting Peng Roberson (PR) as an appropriate property package. It is
generally recommended for oil and gas systems [45,46]. There are several classifications
of plastics in terms of composition. The approximate and ultimate analyses of the plastic
feedstock are provided in Table 1. To specify the plastic heating value, the HCOALGEN
model was selected. Prior to generating syngas, the RYield reactor was simulated to break
down the solid feedstock, and then the outlet mixture was fed to the gasifier (i.e., RGibbs
reactor). The products were mainly syngas containing CO, H2, and CO2. The RGibbs
reactor operated at a high temperature (i.e., 900 ◦C). The outlet syngas was introduced
to water gas shift (WGS) to convert CO to hydrogen via the WGS reaction in two REquil
reactors. The reactions are given in Table A1.
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Table 1. Plastics and natural gas composition.

Plastic Composition Analysis

Proximate Analysis (Weight %)

PE PP

Moisture 0.02 0

Ash 0.15 0.7

Volatile matter 99.83 99.30

Total 100 100

LHV (MJ/kg) 38.04 44.70

Ultimate analysis (weight %)

Carbon 85.81 86.23

Hydrogen 13.86 12.28

Nitrogen 0.12 0.62

Sulfur 0.06 0.17

Ash 0.15 0.7

Total 100 100

Natural gas composition (mol %)

CH4 93.9

C2H6 3.2

C3H8 0.7

C4H10 0.4

CO2 1.0

N2 0.8

Total 100

LHV(MJ/kg) 47.76

The process operational conditions were set based on previous studies with several
assumptions. Table 2 illustrates the major assumptions made in the whole process. The
primer design of the model was based on a study conducted by Dang et al. (2019) [47].

Table 2. Design assumptions made for case 1 and case 2.

Equipment Aspen Model Assumption

Plastic Flow Rate RYield/RGibbs
Plastics = 100 kg/h

Entrained flow gasifier; steam:plastic = 1.25;
Temperature = 900 ◦C; P = 1 atm

Pre-reformer RStoic (reactor) Heavier hydrocarbon hydrocracking

Reformer RGibbs (reactor) Temperature = 894.3 ◦C, pressure = 3 bar,
Steam: NG = 1.6; nickel-based catalyst

Water Gas Shift (WGS) REquil (reactor) Two equilibrium reactors
Steam:CO = 2:1 (molar basis)

Acid Gas Removal (AGR) RadFrac and flash drums Rectisol process; temperature = −30 ◦C, P = 1 bar
CO2 removal = 99%; H2S removal = 10 ppm

Standalone models for polyethylene and polypropylene were developed and validated
with the literature results based on the experiments [26,48]. For the purpose of validation,
the same process conditions used in the simulation model were kept in the experimental
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setup. Table 3 represents the comparison between the experimental and the simulation
results for plastic gasification. The simulation results are in good agreement with the
experimental results and the simulation models can be used with confidence for hydrogen
production.

Table 3. Polyethylene and polypropylene gasification validation.

Validation of Polypropylene Gasification

Component Reference Case Base Case Difference

H2 68.3 66.4 1.9

CO 26.1 27.5 −1.4

CO2 3.9 5.7 −1.8

CH4 1.3 0.3 1.0

Others 0.3 0.1 0.2

Validation of Polyethylene Gasification

Component Reference Case Base Case Difference

H2 68.6 67.4 1.2

CO 25.5 28.8 −3.3

CO2 1.1 3.7 −2.6

CH4 3.6 0.0 3.6

Others 1.2 0.0 1.2

2.2. Development and Validation of Case Studies
2.2.1. Case 1 (Base Case)

Figure 1 represents the general process flow diagram of case 1. The mixture of PE and
PP in the equal weight ratio of 50:50 was crushed and fed to the steam gasification unit to
generate the syngas. The solid plastics were first decomposed in the decomposer (RYield)
and then fed to the gasification unit to produce the syngas at a temperature of 900 ◦C, where
a hydrogen to CO ratio of 1.86 was achieved. Then, the syngas was quenched to sustain
WGS reactions. The outlet stream from WGS reactors mainly included hydrogen, CO2,
and some traces of H2S, where the ratio of H2/CO2 was obtained as 2.86. Methanol was
selected as an absorbent in the AGR unit to remove hydrogen sulfide and carbon dioxide,
where the methanol was recovered in the H2S and CO2 regenerator columns.
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2.2.2. Case 2 (Alternative Case)

Case 2 is similar to case 1 in terms of the gasification process; however, case 2 contains
an additional process unit. The alternative case (case 2) represents the integration of the
steam methane reforming (SMR) model with the plastic gasification model to utilize the
gasifier’s heat energy in the reforming unit, making it different from case 1. The process
base flow diagram is provided in Figure 2. The steam to methane molar ratio was set as
1.50 and the inlet temperature was selected as ~900 ◦C. The process reactions are provided
in Table A1. The SMR results were also validated with the literature in terms of hydrogen
to carbon monoxide ratio, which was found to be around 3.0 [49]. The syngas mixture
obtained from SMR and gasification was mixed and introduced to WGS with the same
conditions applied in the base case design, and were also used in case 2. Finally, the acid
gas removal unit was used to remove the CO2 and H2S from the gas streams to obtain
pure hydrogen.
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2.3. Governing Equations for Technical Analysis

Table A2 represents some of the equations used in this study for technical and eco-
nomical comparison between the two cases. The lower heating value (LHV) was calculated
based on the mole fraction of hydrogen and carbon monoxide [47]. HPF is an indicator that
represents the hydrogen per total feed in terms of mass basis. The hydrogen thermal energy
was calculated from the lower hydrogen heating value considering the flow rate of hydro-
gen. The specific carbon dioxide emissions and process efficiency indicators were also used
for the comparison between two cases [50]. The total investment cost (TIC) represents the
capital cost with respect to the hydrogen production rate. The capital investment for each
unit was calculated from previous similar studies considering the Chemical Engineering
Plant Cost Index (CEPCI). To assess the operating expenditures, total manufacturing cost
was computed as the sum of maintenance, administrative, labor, support, and overhead
costs. The utility and labor costs were calculated based on Donald E. Garrett [51]. The lev-
elized hydrogen production cost was estimated for 30 years considering the total hydrogen
produced in a lifetime and the expense incurred.

3. Results and Discussion

Case 1 and case 2 are compared in terms of hydrogen production rates, syngas heating
values, hydrogen purity, carbon emissions, production cost and the process feasibility. The
equation given in Table A2 was used for the comparative analysis.
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3.1. Technical Analysis
3.1.1. Syngas Production and Analysis

The feedstock mainly consists of polyethylene and polypropylene. The feedstock is
fed with a mass ratio of 1:1. The total plastic flow rate is considered as 100 kg/h, where the
steam to plastic ratio is maintained as 1.25:1. The natural gas flow rate in case 2 is taken
as 42 kg/h, with a steam to natural gas ratio of 1.6:1. It can be seen from the results that
the molar ratio of H2/CO for case 1 and case 2 is 1.86 and 2.23, respectively. The hydrogen
to carbon monoxide ratio was enhanced in the second case by 62% compared with case 1.
The carbon dioxide emission after WGS reactors was lower in case 2 than case 1 by 11%.
Overall, the results reveal that case 2 is more efficient than the base case in terms of syngas
heating value and carbon dioxide emissions. Table 4 provides the operational conditions,
and the stream flow rates at the outlet of all the essential units.

Table 4. Flow rates and stream compositions at the exit of each unit.

Plastics Steam
(Gasifier) Gasifier Reformer Cooling and

Syngas Mixing WGS Unit AGR Unit
(H2 Storage) CO2 Storage

Case 1
and 2

Case 1
and 2

Case 1
and 2 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

T (◦C) 300 300 900 894.3 220 220 10 10 25 25 25 25

P (bar) 1.013 1.013 1.013 3 1 1 1 1 1 1 1 1

Mass
Flow

(kg/h) 100 125 225 109 224.58 333.58 469.38 578.38 49.58 75.22 226.40 337.53
Mole
(%)

H2 - 0.636 0.683 0.636 0.653 0.579 0.654 0.976 0.978 0.0026 0.0026

CO - 0.341 0.206 0.341 0.292 0.001 0.004 0.002 0.006 0.341 0.206

CO2 - 0.002 0.020 0.002 0.008 0.202 0.206 0.003 0.003 0.993 0.994

H2O 1 0.004 0.089 0.004 0.034 0.206 0.128 0 0 0

CH4 - 0.017 0.001 0.017 0.011 0.010 0.008 0.016 0.011 0.0018 0.0012

N2 - 0.0008 0.0018 0.0008 0.0011 0.0004 0.0008 0.0007 0.0012 0.0008 0.0018

H2S - 0.0002 - 0.0002 0.0001 0.0001 0.0001 - 0.0002 -

CH3OH - 0.0000 - 0.0000 - 0.0018 0.0018 0.0000 -

Molar
H2/CO - - - 3.32 1.86 2.23 - - - - - -

Molar
H2/CO2

- - - 33.34 389.50 77.43 2.86 3.18 - - - -

To determine the efficiency of the process, syngas composition is a key parameter for
such evaluation. The HCR at the inlet of WGS was evaluated for case 1 and case 2, as given
in Figure 3. It was found that the H2/CO was higher in case 2 than case 1, indicating a
higher heating value for the integrated case.
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Figure 3. Comparison of process efficiency and hydrogen to carbon monoxide ratio for case 1 and
case 2.

3.1.2. Overall Process Performance

The overall process efficiency was investigated for the two cases by considering several
essential parameters, as given in Table 5. The first parameter is the hydrogen purity at the
outlet of the acid gas removal unit, which is greater in the second case by 0.15% compared
with the first case. The process’s overall efficiency in feedstock conversion was calculated
and is represented by HPF, which was found to be greater in case 2 by 5.6%. Additionally,
the two cases were evaluated in terms of heating value (i.e., lower, and higher heating
values). The results show that the second case had a lower heating value (LHV) and higher
heating value (HHV) than case 1 by 5.7%, and 5.0%, respectively.

Table 5. Energy analysis.

Characteristic/Model Type Case 1 Case 2

Hydrogen per feedstock HPF (mass %) 50 52.8

Hydrogen purity (mole %) 97.62 97.77

Syngas gross heating value GHV (MJ/kg) 26.18 27.67

Syngas net heating value LHV (MJ/kg) 23.55 24.73

Feed stock energy (kWth) 1198.61 1757.07

Thermal energy of produced H2 (kWth) 1385.25 2060.59

Minimum hot utilities required (kW) 757.06 1069.75

Minimum cold utilities required (kW) 200.80 187.06

Total energy required after heat integration (kW) 957.86 1256.81

Process efficiency(ηnet) (%) 64.24 68.37

The integrated process produced more hydrogen than the classical one because the
SMR unit had higher hydrogen production. The overall energy process efficiency was
calculated and studied, and it was higher in case 2 than case 1 by 4.13%. Thus, case 2 is
more efficient than case 1 in terms of syngas heating value. However, economic analysis
will be performed to confirm the final preference for the alternative design.
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3.1.3. CO2 Specific Emissions

Another essential factor in the investigation and comparison of the two designed
cases is the specific emission of carbon dioxide. Case 2 showed lower carbon emissions
than case 1 by 1.2%. A study conducted by Usman et al. [37], about the conversion of coal
to hydrogen, found that the specific CO2 emissions were in the range of 0.70 on a mass
basis. Figure 4 shows the specific carbon dioxide emissions for each case along with HPE
(hydrogen per total feed; mass ratio). The HPF for case 2 is higher than case 1, with lower
carbon emissions. The results show that the alternative case produces a higher amount of
hydrogen with minimal carbon dioxide emissions.
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Figure 4. Comparison of hydrogen production and specific CO2 emissions for case 1 and case 2.

3.1.4. Sensitivity Analysis on the Gasifier

To optimize the design parameters, sensitivity analysis was performed mainly on the
gasification unit. The main factors affecting the process performance are the gasification
temperature, pressure, steam to feed ratio, and PE and PP blending ratio.

3.1.4.1. Steam to Feed Ratio Effect on Syngas Composition

The steam to feed ratio has a strong effect on the gasification process because it
significantly controls the outlet syngas composition. Figure 5 represents the sensitivity
analysis of the steam gasification unit when investigating the impact of the steam to plastic
ratio (S/P or S/F) on syngas composition. Increasing the steam to plastic ratio decreases
the CO production rate; however, it dramatically enhances the hydrogen production. CH4
is suppressed when S/P increases. The optimal steam to feed ratio at 900 ◦C, as deduced
from the figure, is 1.25, because any further increase had a negligible impact on syngas
LHV. The analysis was performed on the blend of PE and PP based on equal weight. The
results show that increasing the steam to plastic ratio has a positive impact on enhancing
the syngas heating value; however, going beyond a steam to plastic (S/P) ratio of 1.25
decreases the heating values of syngas by producing more CO2.
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3.1.4.2. Temperature Effect on Syngas Composition

A lower gasification temperature promotes higher carbon dioxide production due
to the Boudouard reaction, which is the reaction of CO2 with carbon to produce CO. It
is an endothermic reaction; therefore, as the temperature increases, less carbon dioxide
is produced [52]. Increasing the temperature has a positive effect on the heating value
of syngas. Increasing the temperature up to 900 ◦C has a positive effect on the heating
values and produces more hydrogen. Figure 6 shows the impact of gasifier temperature
on the gasification process at an S/F of 1.0, and a PE/PP of 1:1. Therefore, the gasification
temperature of 900 ◦C was considered for both cases to achieve maximum hydrogen
production and a high heating value of syngas.

Polymers 2022, 14, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 5. Effect of steam to plastic ratio on syngas composition. 

 
Figure 6. Effect of gasification temperature on syngas composition. 

3.2. Economic Analysis 
The economic analysis is essential to comprehend the process’s feasibility and pro-

motability and to precisely compare the two designs. The order-of-magnitude cost analy-
sis has been used to determine the capital cost [53]. Several assumptions were considered 
to perform the economic analysis. Table A3 represents the assumptions to accomplish the 
economic analysis [50]. The waste plastic price was ignored in both cases, and the plant 
life was considered for 30 years using an exponent factor (x) of 0.6 for consistent analysis. 
Three shifts per day were considered with a stream factor of 0.95 to estimate the opera-
tional expenses. The working capital, land and salvage were each taken to be 10% from 
the fixed capital investment. The offsite unit and utilities were taken to be 25% of the 

0

10

20

30

40

50

60

70

80

0.5 1 1.5 2 2.5 3 3.5 4

M
ol

 (%
)

SF (mass basis) 

CH₄ CO₂ CO H₂

0

10

20

30

40

50

60

650 750 850 950 1050 1150

M
ol

 (%
)

T ( oC )

H₂ CO CO₂ CH₄

Figure 6. Effect of gasification temperature on syngas composition.



Polymers 2022, 14, 2056 11 of 18

3.2. Economic Analysis

The economic analysis is essential to comprehend the process’s feasibility and pro-
motability and to precisely compare the two designs. The order-of-magnitude cost analysis
has been used to determine the capital cost [53]. Several assumptions were considered to
perform the economic analysis. Table A3 represents the assumptions to accomplish the
economic analysis [50]. The waste plastic price was ignored in both cases, and the plant
life was considered for 30 years using an exponent factor (x) of 0.6 for consistent analysis.
Three shifts per day were considered with a stream factor of 0.95 to estimate the operational
expenses. The working capital, land and salvage were each taken to be 10% from the fixed
capital investment. The offsite unit and utilities were taken to be 25% of the equipment and
installation cost. The contingency and permitting costs were chosen to be 15% and 5% of
the equipment and installation cost, correspondingly. The discount rate and taxation rate
were assumed to be 8% and 15%, respectively, in both cases.

3.2.1. Estimation of CAPEX and OPEX

The capital expenditure (CAPEX) and the operational expenditure (OPEX) are the
two important parts of a project’s economic evaluation. The total investment is impacted
by various variables such as the capacity of the plant, raw materials, operational time,
and the process efficiency. The fixed CAPEX predominantly comprises the equipment
and plant facilities costs. This study used the power law to estimate the CAPEX with
a capacity factor (x) of 0.6, as mentioned in Table A3. The power law uses the concept
of Chemical Engineering Plant Cost Index (CEPCI). Table 6 represents the CAPEX cost
summary, calculating some of the important parameters such as total investment cost (TIC).
The total investment cost for the two cases has a huge difference due to the variation in
the process configuration and the type and capacity of the plant. The total investment cost
(FCI) in terms of MMEUR for case 1 and case 2 was calculated as 3.79 and 4.46, respectively.
The FCI for the alternative case was higher than that of the base case because case 2 has an
SMR process with an additional feedstock (i.e., natural gas). The TIC represents the total
investment cost per hydrogen production rate in tons. The TIC for the alternative case was
higher than the base case by 23%, indicating the cost-effectiveness of the alternative case in
terms of capital expenditure while considering the production rate of hydrogen.

On the other hand, the operational cost of the project is represented by OPEX, which is
classified into two different categories. The two categories are the fixed OPEX and variable
OPEX. The fixed OPEX involves the maintenance, labor, and administrative costs, where
the variable OPEX encompasses the fuel, catalysts, waste disposal, and boiler feed water
costs. Table 6 shows the OPEX summary for the two designed cases. The total OPEX in
MMEUR/year for case 1 and case 2 is calculated as 1.39 and 1.47, respectively. The total
operational expenditures are higher in case 2 than case 1; however, when the production
rate of the fuel is considered, case 2 shows a 30% reduction in the operational cost per ton
of hydrogen production. The revenue calculated for both cases revealed that case 2 offers
51% higher revenue than case 1.
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Table 6. CAPEX and OPEX for case 1 and case 2.

Capital Expenditure

Equipment Case 1 EUR (103) Case 2 EUR (103)

Gasification price 110 110

Acid gas removal unit 1339 1624

Solid handling facility 522 522

Syngas processing unit 646 690

Reformer cost 0 128

Equipment and installation cost 2617 3074

Offsite unit and utilities 654 768

Contingency cost 393 461

Permitting 131 154

Total investment cost 3795 4457

TIC per ton of H2 MMEUR /ton 76.53 59.25

Operational expenditure

Cost sector/designed case Case 1 EUR (103)/Year Case 2 EUR (103)/Year

Maintenance cost (2% of equipment
and installed cost) 52.3 61.5

Labor cost 459.4 472.9

Administrative, support and overhead cost 137.8 141.9

Total fixed manufacturing cost 649.6 676.2

Natural gas 0.0 16.5

WGS catalyst 16.6 18.0

Reforming catalyst 0.0 0.5

Solvent 39.0 57.8

Waste disposal 7.1 7.1

Utility costs 677.9 693.2

Total OPEX/year 1390.0 1469.3

Total OPEX/ton H2 3.4 2.3

Revenue (MMEUR /year) 4.804 7.289

NPV 22.450 39.978

PVR 6.401 9.288

3.2.2. Cash Flow and Hydrogen Cost Analysis

The purpose of this section is to provide the cash flow diagram and to compare the
levelized hydrogen production rate with the literature. The TIC per ton of hydrogen
was calculated as 76.53 MMEUR /ton and 59.25 MMEUR /ton for case 1 and case 2,
respectively. Additionally, the levelized lifetime hydrogen production cost was calculated
as 3.78 EUR /kg and 2.56 EUR /kg for case 1 and case 2, respectively. This indicates that
case 2 produces hydrogen with 1.22 EUR less compared with case 1 for every kilogram of
hydrogen produced. Figure 7 shows the cash flow diagram over the lifetime of the project
for both cases [54]. The cash flow return on investment was higher for case 2 than the base
case by 52%. Additionally, the net present value (NPV) was higher in the alternative case
when compared with the base case by 78%. The present value ratio (PVR) for case 2 was
found to be higher than case 1 by 45%. Overall, case 2 offered better process economics
compared with case 1.
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3.2.3. Comparison of Hydrogen Cost with the Literature

Figure 8 compares the hydrogen cost obtained from our study with the literature
considering different feedstocks [55,56]. The production of hydrogen via the solar and
photovoltaic electrolysis of water has the highest hydrogen cost. It is considered as a green
process; however, it consumes more energy. Biomass, coal, and heavy oil can produce
hydrogen with a lower cost than the solar process. It was analyzed from the literature
that the hydrogen production cost ranges from 5 to 8 EUR /kg [57] depending on the type
of feedstock and the technology used for hydrogen production. From the comparative
analysis, case 2 was found to be an attractive approach for hydrogen production with lower
costs and shows potential to resolve the global plastic waste issue. The catalytic plastic
gasification could also further reduce the hydrogen production cost because it is usually
performed at a lower temperature [58]. Dan et al. [59] performed a study converting plastic
wastes and biomass to hydrogen using Ni/γ-Al2O3 as a catalyst with a temperature of 800 ◦C.
This might be a future direction in enhancing the conversion of waste plastic to hydrogen.
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4. Conclusions

The study represents the hydrogen production from plastics (polyethylene and
polypropylene) through two developed cases in Aspen Plus®. Case 1 is the thermochemical
steam gasification process for converting waste plastics to hydrogen. On the other hand,
case 2 represents a modified version of case 1 by integrating the steam gasification model
with the steam reforming model to enhance the overall hydrogen production. The technical
and economic analyses were performed for both cases to evaluate the feasibility of the
process and are summarized as follows:

1. The H2/CO of the syngas for case 1 and case 2 is calculated as 1.86 and 2.23, respec-
tively, whereas case 2 showed 19.78% higher values.

2. The hydrogen production rate per unit of feedstock for case 1 and case 2 is calculated
as 50% and 52.2%, respectively.

3. The overall process efficiency for case 1 and case 2 is calculated as 64.24% and 68.37%,
respectively, whereas case 2 shows 4.13% higher efficiency.

4. The TIC per ton of H2 calculated for case 1 and case 2 is 76 and 59 EUR/ton, whereas
case 2 has the potential to increase the revenue by 51.7%.

5. Case 2 showed the potential to lower CO2 emissions by 1.0%.
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Appendix A

Table A1. Chemical reactions comprehended in the process.

Gasification Reactor

C(s) + H2O↔CO + H2 ∆H = +131 MJ
kmol

C(s) + CO2 ↔2CO ∆H = +172 MJ
kmol

C(s) + 2H2 ↔ CH4 ∆H = −74.8 MJ
kmol

CO + H2O↔CO2 + H2 ∆H = −41.2 MJ
kmol

CH4 + H2O↔CO + 3H2 ∆H = +206 MJ
kmol

Steam Methane Reforming Reactor

3C2H6 + H2O→5 CH4 + CO ∆H = +3.6460 MJ
kmol

3C3H8 + 2H2O→7 CH4 + 2 CO ∆H = +16.607 MJ
kmol

3C4H10 + 3 H2O→9 CH4 + 3 CO ∆H = +41.116 MJ
kmol

CH4 + 2 O2 → CO2 + 2 H2O ∆H = −802.54 MJ
kmol

CH4 + H2O→ CO + 3 H2 ∆H = +206.12 MJ
kmol

Water Gas Shift Reactor

CO + H2O↔H2 + CO2 ∆H = −41 MJ
kmol
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Table A2. Equations used for technical and economic appraisal.

Equations Eq. No.

LHVSyngas = 12.636 yCO + 10.798 yH2
(A1)

HPF = Produced H2 ( kg
h )

Total Feed ( kg
h )
× 100% (A2)

H2 Thermal Energy = H2LHV ( kJ
kg ) × Produed H2 ( kg

h ); LHV = 100.539 MJ
kg (A3)

Total Consumed Energy (kW) = Hot Utility (kW) + Cold Utility (kW) (A4)

CO2 specific Emissions = Uncaptured CO2 ( kmol
h )

H2 Production ( kmol
h )

(A5)

Process Efficiency (ηnet) = H2 Thermal Energy (kW)
Feed Thermal Energy (kW)+Energy Consumed (kW) × 100% (A6)

Costnew = Costold × ( CapacityNew
CapacityOld

)
x
× CEPCINew

CEPCIOld
(A7)

Total Fixed Manufact Cost = Maintenance + Labor + Admin, support and overhead costs (A8)

NOL = (6.29 + 0.23 Nnp)0.5

NOL is the number of operators per shift and Nnp is nonparticulate processing steps
(A9)

TIC per ton of H2 = Total investment cost
Hydrogen generation (A10)

Hydrogen Cost [ EUR
kg ] = Hydrogen Life Cost (EUR )

Hydrogen Life Production Flow Rate (kg)
(A11)

Table A3. The assumptions for economic analysis.

Economic Assumptions

Waste plastics Available free of charge

Natural gas (EUR /GJ) 5

Cooling water price EUR /ton 0.01

Waste disposal (EUR /t) 10

Plant construction time (year) 3

Plant life (years) 30

Maintenance 3.5% of OPEX

Discount rate 0.08

Administration 30% Labor Cost

Labor cost EUR /person 45,000

Offsite unit and utilities 25% from equipment cost

Stream factor 0.95

Daily number of shifts 3

Land and salvage (MMEUR) 10% of FCI

Working capital (MMEUR) 10% of FCI

Taxation rate (%) 15

Ratio of recycling methanol solvent 0.01

Price of methanol (EUR /ton) 400

Price of boiling water 2017 MEUR /ton 2.03

x 0.60

CEPCI (2021) 620



Polymers 2022, 14, 2056 16 of 18

References
1. Okunola, A.A.; Kehinde, I.O.; Oluwaseun, A.; Olufiropo, E.A. Public and Environmental Health Effects of Plastic Wastes Disposal:

A Review. J. Toxicol. Risk Assess. 2019, 5, 1–13. [CrossRef]
2. Thompson, R.C.; Moore, C.J.; Saal, F.S.V.; Swan, S.H. Plastics, the Environment and Human Health: Current Consensus and

Future Trends. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2153–2166. [CrossRef] [PubMed]
3. Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic Waste Inputs from

Land into the Ocean. Science 2015, 347, 768–771. [CrossRef] [PubMed]
4. d’Ambrières, W. Plastics Recycling Worldwide: Current Overview and Desirable Changes. Field Actions Sci. Rep. J. Field Act. 2019,

19, 12–21.
5. Francis, R. (Ed.) Recycling of Polymers: Methods, Characterization and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2016.
6. Ahmad, N.; Ahmad, N.; Maafa, I.M.; Ahmed, U.; Akhter, P.; Shehzad, N.; Amjad, U.-E.; Hussain, M.; Javaid, M. Conversion of

Poly-Isoprene Based Rubber to Value-Added Chemicals and Liquid Fuel via Ethanolysis: Effect of Operating Parameters on
Product Quality and Quantity. Energy 2020, 191, 116543. [CrossRef]

7. Singh, N.; Hui, D.; Singh, R.; Ahuja, I.P.S.; Feo, L.; Fraternali, F. Recycling of Plastic Solid Waste: A State of Art Review and Future
Applications. Compos. Part B Eng. 2017, 115, 409–422. [CrossRef]

8. Simões, C.L.; Pinto, L.M.C.; Bernardo, C.A. Environmental and Economic Analysis of End of Life Management Options for an
HDPE Product Using a Life Cycle Thinking Approach. Waste Manag. Res. 2014, 32, 414–422. [CrossRef]

9. Ahmed, U.; Hussain, M.A.; Bilal, M.; Zeb, H.; Ahmad, N.; Ahmad, N.; Usman, M. Production of Hydrogen from Low Rank Coal
Using Process Integration Framework between Syngas Production Processes: Techno-Economic Analysis. Chem. Eng. Process.
-Process Intensif. 2021, 169, 108639. [CrossRef]

10. Díaz de León, J.N.; Loera-Serna, S.; Zepeda, T.A.; Domínguez, D.; Pawelec, B.; Venezia, A.M.; Fuentes-Moyado, S. Noble Metals
Supported on Binary γ-Al2O3-α-Ga2O3 Oxide as Potential Low-Temperature Water-Gas Shift Catalysts. Fuel 2020, 266, 117031.
[CrossRef]
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