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Abstract

Background

The microbiota of the lower female genital tract plays an important role in women’s health.

Microbial profiling using the chaperonin60 (cpn60) universal target (UT) improves resolution

of vaginal species associated with negative health outcomes compared to the more com-

monly used 16S ribosomal DNA target. However, the choice of DNA extraction and PCR

product purification methods may bias sequencing-based microbial studies and should be

optimized for the sample type and molecular target used. In this study, we compared two

commercial DNA extraction kits and two commercial PCR product purification kits for the

microbial profiling of cervicovaginal samples using the cpn60 UT.

Methods

DNA from cervicovaginal secretions and vaginal lavage samples as well as mock commu-

nity standards were extracted using either the specialized QIAamp DNA Microbiome Kit, or

the standard DNeasy Blood & Tissue kit with enzymatic pre-treatment for enhanced lysis of

gram-positive bacteria. Extracts were PCR amplified using well-established cpn60 primer

sets and conditions. Products were then purified using a column-based method (QIAquick

PCR Purification Kit) or a gel-based PCR clean-up method using the QIAEX II Gel Extrac-

tion Kit. Purified amplicons were sequenced with the MiSeq platform using standard proce-

dures. The overall quality of each method was evaluated by measuring DNA yield, alpha

diversity, and microbial composition.
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Results

DNA extracted from cervicovaginal samples using the DNeasy Blood and Tissue kit, pre-

treated with lysozyme and mutanolysin, resulted in increased DNA yield, bacterial diversity,

and species representation compared to the QIAamp DNA Microbiome kit. The column-

based PCR product purification approach also resulted in greater average DNA yield and

wider species representation compared to a gel-based clean-up method. In conclusion, this

study presents a fast, effective sample preparation method for high resolution cpn60 based

microbial profiling of cervicovaginal samples.

Introduction

The microbial community of the lower female genital tract plays a pivotal role in women’s

reproductive and sexual health [1, 2]. Due to this, it has become a target for microbiome stud-

ies particularly since conventional diagnostic methods and culture-based characterization

have failed to elucidate the causes of symptomatic clinical disease or fully delineate states of

“altered” microbiota. Like other microbiome studies of mucosal interfaces, these studies

require careful attention to the primary nucleic acid extraction method, and examination of

potential biases.

Optimal vaginal microbial communities are thought to be dominated by specific lactobacilli

which confer health benefits via the production of antimicrobial metabolites, such as lactic

acid, hydrogen peroxide and bacteriocins [3]. Bacterial vaginosis (BV) is a commonly observed

non-optimal vaginal microbial community, characterized by a lower relative abundance of lac-

tobacilli, and increased abundance of facultative or strict anaerobes [4]. BV has been linked to

increased susceptibility to sexually transmitted infections including human immunodeficiency

virus (HIV) infection, as well as pregnancy complications [5–7]. Despite its clinical impor-

tance, the exact etiology of BV remains enigmatic and current treatments show limited efficacy

and high recurrence rates [8, 9], hence the recent expansion in interest regarding the constitu-

tive microbiome of the female genital tract.

Gardnerella vaginalis is a gram-variable pleomorphic rod bacterium originally proposed as

the causative agent of the clinical entity now known as BV [10]. However, it is also ubiquitous

in healthy women [11, 12]. Extensive phylogenetic diversity within this genus has been

observed by sequencing of the chaperonin60 (cpn60) universal target (UT), which resolved at

least four molecular subgroups with potentially distinct virulence factors [13–16]. However,

these subgroups cannot be distinguished by the most commonly used amplification target for

microbial profiling studies, 16S ribosomal DNA (rDNA) [17]. The cpn60 UT, which is usually

present as a single copy gene in most bacteria, mitochondria and plastids of eukaryotes, has

been successfully applied to study the role of Gardnerella subgroups in the vaginal mucosal

milieu [17–19]. Understanding the epidemiological, immunological, and clinical correlates

associated with Gardnerella subtypes may be vital to elucidate BV etiology and treatment strat-

egies. However, there is a need to optimize DNA extraction and PCR product purification pro-

tocols in order to improve information yield and reproducibility of cpn60 microbial profiling

in cervicovaginal samples.

Regardless of the amplification target, the quality of the data fundamentally depends on the

primary nucleic acid extraction method. Potential biases include microbial contamination of

extraction reagents, differential cell lysis, host DNA contamination, and suitability of the spe-

cific extraction method to the mucosal sample type [20]. Biases introduced during DNA
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isolation may distort the measurable microbial community composition and skew relative

abundances, resulting in inaccurate inferences [21, 22]. Despite the importance of the DNA

extraction step, protocols are often chosen without an explicit rationale and are not formally

validated. In contrast to in-house extractions, commercial kits are commonly chosen due to

convenience, time efficiency, and perceived improved reproducibility. However, commercial

DNA extraction kits are often not optimized to the sample type or the amplification target and

thus may result in inaccurate profiles of microbial species once sequenced.

The goal of this study was to compare two commercial methods for DNA extraction and

PCR product purification for the extraction and subsequent characterization of microbial

DNA from cervicovaginal secretion and lavage samples by sequencing the cpn60 UT. The

QIAamp DNA microbiome (DM) kit has been designed to deplete host DNA contamination

and enhance yield of bacterial DNA, using a differential lysis technique [23]. The DNeasy

Blood and Tissue (BT) kit has been used in other vaginal microbiome studies [24–26], and was

modified in this study to include a sample pretreatment step using lysozyme and mutanolysin

to improve DNA isolation from gram-positive bacteria [21, 24]. Extracted DNA was then used

in PCR targeting the cpn60 UT and purified using spin columns or gel-based extraction. The

quality and efficiency of each method compared was evaluated based on DNA yield, microbial

diversity, and microbial composition.

Materials and methods

Sample collection and processing

Cervicovaginal samples in this study came from two separate clinical cohorts. For the first

cohort, a 1 mL aliquot of cervicovaginal lavage (CVL) (study sample VM001) was collected

from a woman visiting a colposcopy clinic at the Health Sciences Centre in Winnipeg, Mani-

toba, Canada as part of the Vaginal Mucosal Systems (VMS) study. Ethics certification was

granted by the University of Manitoba Biomedical Research Ethics Board. Participants were

over the age of 18 and provided written informed consent. To collect CVL, the physician

inserted a sterile syringe containing 10 mL of phosphate buffered saline (PBS, pH 7.5) into the

vagina, dispensed the PBS, and then aspirated the CVL (recovered final volume varied from

5–8 mL). For the second cohort, samples were chosen from the KAVI-VZV-001 clinical trial

in Nairobi, Kenya (ClinicalTrials.gov: NCT02514018), which enrolled healthy women aged

18–50. Ethics certification for the KAVI-VZV-001 trial was granted by the Kenyatta National

Hospital/University of Nairobi Ethics and Research Committee, the University of Toronto

Research Ethics Board and the Kenyan Pharmacy and Poisons Board, with all participants pro-

viding written informed consent. Cervicovaginal secretions (CVS) were collected using a plas-

tic SoftcupTM (Instead/Evofem Biosciences Inc., San Diego, CA, USA) device which was

inserted into the vagina for 20 minutes, collected and processed as previously described [27].

Briefly, samples were diluted, treated with a protease inhibitor and centrifuged for 5 minutes

at 1600 rpm. Supernatant was removed and the pellets (CVP) were resuspended via addition

of 1 mL PBS (pH 7.5) and mixed in preparation for DNA extraction. Extractions were per-

formed on 75 μL aliquots of either CVP or CVL, with 1–4 replicates per sample per DNA

extraction method (S1 Table).

Microbial DNA extraction methods

Two commercial kits were used to extract microbial DNA from samples (Fig 1). Eight 75 μL

aliquots of ZymoBIOMICS Microbial Community D6300 Standard, (Zymo Research, Orange

County, CA, USA) diluted 1:1 in PBS (pH 7.5) were used as positive extraction controls (coded

as MC A-D). Two mock community standards were used undiluted (coded as MC E). 75 μL
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aliquots of PBS (pH 7.5) or microbial DNA-free water (QIAGEN Inc., Toronto, ON, Canada)

were used as negative extraction controls. Extracted DNA concentrations were measured on

the Qubit 2.0 fluorometer, using broad range or high sensitivity assays (Life Technologies Inc.,

Burlington, ON, Canada), following manufacturer’s protocol. These mock community stan-

dards were developed as mixtures of six bacteria (Pseudomonas aeruginosa, Escherichia coli,
Salmonella enterica, Lactobacillus fermentum, Enterococcus faecalis, Staphylococcus aureus, Lis-
teria monocytogenes, Bacillus subtilis) and two yeasts (Saccharomyces cerevisiae and Cryptococ-
cus neoformans). The theoretical relative abundance of each species varies considerably

depending on the target for microbial profiling (genomic DNA, 16S rDNA, cell number) as

described on the manufacturer’s website. For cpn60 estimated proportions, we used the manu-

facturer’s listed theoretical yields for genomic DNA. The inclusion of these mock community

standards was done to identify potential biases introduced by the assessed extraction methods.

For both extraction methods assessed in this study, DNA was eluted using 50 μL of microbial

DNA-free water (QIAGEN Inc., Toronto, ON, Canada) and incubated at room temperature

for 5 minutes prior to the final centrifugation step.

DNeasy blood and tissue kit (modified). For the enzymatic pre-treatment, 2.5 μL of 25

U/μL mutanolysin and 10 μL of 100 mg/mL lysozyme (both from Sigma-Aldrich, Oakville,

ON, Canada) were added to 90 μL of TES buffer: 10% w/v sucrose, 25 mM Tris-HCl (pH 8.0),

and 10 mM EDTA. This mixture was transferred to each CVL or resuspended CVP (approxi-

mately 75 μL each) and incubated at 37˚C for 30 minutes. A 600 μL aliquot of lysis buffer (100

Fig 1. Schematic representation of the DNA extraction and PCR product purification methods compared in our study.

UT, universal target.

https://doi.org/10.1371/journal.pone.0262355.g001
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mM TRIS-HCl pH 8.0, 100 mM EDTA, 10 mM NaCl, 1% SDS) was added to the sample,

inverted to mix, and incubated for 10–15 minutes at room temperature. Following incubation,

25 μL of proteinase K and 200 μL of buffer AL (QIAGEN Inc., Toronto, ON, Canada) were

added and incubated at 56˚C for 30 minutes. Following this pre-treatment, the manufacturer’s

protocol for the DNeasy Blood and Tissue Kit was used (QIAGEN Inc., Toronto, ON, Canada)

starting at step 3 (addition of 200 μL ethanol step).

QIAamp DNA microbiome kit. Manufacturer’s protocol of the QIAamp DNA Micro-

biome Kit (QIAGEN Inc, Toronto, ON, Canada) was followed with corresponding volume

adjustments for 75 μL aliquots. For step 1, a thermomixer at 600 rpm was used for the incuba-

tion. For step 6, the pathogen lysis tubes L were vortexed for 10 minutes at maximum speed.

Polymerase chain reaction using the cpn60 universal target

DNA was amplified using a 1:3 ratio of cpn60 primer pairs (M729/M730 and M1612/M1613)

modified to include MiSeq adaptors on the 50 end (Table 1), as previously described [28, 29],

with 2 μL of extracted amplicon added to 48 μL of PCR mastermix: 1X AmpliTaq Gold Buffer

(Applied Biosystems, Foster City, CA), 2.5 mM MgCl2, 0.2 mM dNTPs, 0.05 U/μL AmpliTaq

Gold DNA Polymerase (Applied Biosystems, Foster City, CA, USA), 0.1 μM each of M729/

M730, and 0.3 μM each of M1612/M1613 primers. For mock community DNA (manufac-

turer-extracted), 1 μL of the ZymoBIOMICS mock community D6305 DNA standard (Zymo

Research, Orange County, CA, USA) was added to 49 μL PCR mastermix as above. No tem-

plate (mastermix-only) controls were also used. For PCR amplification, initial denaturation at

95˚C for 2 minutes was followed by 40 cycles of 95˚C for 30 seconds, 50˚C for 30 seconds, and

72˚C for 30 seconds, with a final extension at 72˚C for 2 minutes, as previously described [30].

Products were visualized using the QIAxcel DNA Screening Kit (QIAGEN Inc., Toronto, ON,

Canada) to confirm adaptor-ligated cpn60 UT amplicon size (~650 bp).

PCR product purification

Following cpn60 UT PCR, two amplicon purification methods were compared in replicate

samples (Fig 1, S1 Table). In cases where samples failed to produce a PCR product with one or

both extraction methods, that sample was omitted from the rest of the study (S1 Fig, S1 Table).

In previous studies, gel electrophoresis of the cpn60 UT amplicons and excision of the cor-

rectly-sized band was carried out in order to minimize potential non-target amplicons [29].

Briefly, a 1% agarose gel made with 1X TAE (Tris-acetate-EDTA) buffer was loaded with a 1X

rainbow dye made with equal volumes of 6X cresol red, orange-G and bromophenol blue/

xylene cyanol loading dyes (Norgen Biotek, Thorold, ON, Canada). Electrophoresis was car-

ried out in 1X TAE buffer for 1 hour at 150V, after which the region between the cresol red

and bromophenol blue (purple colored) bands (where the expected cpn60 product is found)

was excised and extracted using the QIAEX II Gel Extraction Kit (QIAGEN, Inc., Toronto,

Table 1. cpn60 PCR primers used in this investigation.

Name Direction Primer Sequence (50-30)1

M729 Forward TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAIIIIGCIGGIGAYGGIACIACIAC

M730 Reverse GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGYKIYKITCICCRAAICCIGGIGCYTT

M1612 Forward TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAIIIIGCIGGYGACGGYACSACSAC

M1613 Reverse GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGRCGRTCRCCGAAGCCSGGIGCCTT

1Nucleotides in bold are adapters for next generation sequencing using the MiSeq platform.

https://doi.org/10.1371/journal.pone.0262355.t001
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ON, Canada) following manufacturer’s instructions. To reduce labor and sample manipula-

tion steps, this method was compared to a simpler spin column-based clean-up using the QIA-

quick PCR purification kit (QIAGEN, Inc., Toronto, ON, Canada) following manufacturer’s

instructions. Purified PCR product DNA concentration was measured on the Qubit 2.0 fluo-

rometer, using either the broad range or high sensitivity assay (Life Technologies Inc., Burling-

ton, ON, Canada), following manufacturer’s protocols.

Sequencing and read processing

Library preparation methodology as well as downstream read processing was consistent across

all samples and replicates, regardless of extraction or PCR-purification method. Sequencing

adaptors were added to purified amplicon using Nextera XT Index primers (Illumina Inc., San

Diego, CA, USA) and PCR was performed (two reactions per sample), according to manufac-

turer’s directions (8 cycles of 95˚C for 30 seconds, 55˚C for 30 seconds, 72˚C for 30 seconds,

followed by final extension at 72˚C for 5 minutes). Resulting amplicon libraries were purified

using AMPure XP beads according to manufacturer’s directions (Beckman Coulter, Missis-

sauga, ON, Canada). DNA concentration was quantified using the Qubit 2.0 fluorometer (Life

Technologies, Inc., Burlington, ON, Canada), after which the concentration of all amplicon

libraries was normalized to 4 nM and pooled in preparation for loading on the MiSeq v2

500-cycle cartridge according to manufacturer’s protocols (Illumina Inc., San Diego, CA,

USA). The final pool of amplicon libraries was diluted to 8 pM, and 10% PhiX positive control

was added and sequenced with pooled samples. Following sequencing, the.fastq file outputs

were trimmed using Trimmomatic-0.36 (www.usedellab.org), with LEADING and TRAILING

set to 5, required quality of read set to 15, a 4 base sliding window and MINLEN set to 120.

Paired trimmed reads were aligned with cpn60 UT database using Bowtie2 (http://bowtie-bio.

sourceforge.net/bowtie2), then aligned to a database derived from the VOGUE study using the

mPUMA pipeline, as previously described [31, 32]. Four extraction negatives were sequenced

alongside the samples (S1 File). For downstream processing of cervicovaginal samples, the

average number of reads in the negative extraction controls (regardless of extraction method)

for each operational taxonomic unit were removed from sample-derived reads to reduce false-

positive results. For the artificial mock community analysis, cpn60 sequences of the eight

expected species were derived from the chaperonin database (http://www.cpndb.ca) (S2 File).

Following this, sequencing reads from the mock community standards was processed through

the mPUMA pipeline with only the expected species sequences (S2 File) as possible matches.

Statistical analysis

A two-tailed, Wilcoxon matched-pairs signed rank test was used to compare paired samples

(extractions of the same sample replicate) at the alpha = 0.05 level of significance. Two diver-

sity indices (Shannon’s and “Observed” diversity) were calculated for the samples using the

phyloseq package (version 1.24.2) on RStudio (version 3.5.1). For diversity and read analyses,

measures from duplicate MiSeq amplicon runs were averaged for subsequent paired compari-

sons using the Wilcoxon matched-pairs signed rank test. Statistical analyses and figures were

generated using GraphPad Prism 8.

Results

DNA yield following extraction and PCR product purification

Extractions were performed in replicates of two separate aliquots of the same sample (Fig 1).

As expected, all negative extraction controls yielded DNA concentrations that were too low to
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detect (<0.05 ng/μL). The DM kit extractions resulted in much lower DNA yield compared to

the DNA extracted using the BT kit in most samples (P<0.0001, Fig 2A and 2B), with several

samples below the range of detection. The total DNA extracted using the same kit was gener-

ally similar for all replicates from the same sample, although some variability was noted, partic-

ularly for the DM kit extractions (Fig 2A and 2B). All aliquots extracted with the BT kit

amplified successfully and produced a strong band at approximately 650bp when visualized

(S1 Fig). Most aliquots extracted with the DM kit failed to amplify and PCR product bands

appeared only for a portion of the cervicovaginal samples, and mock community extraction

and DNA standards (S1 Fig). All negative extraction controls failed to amplify regardless of the

extraction kit used, as did the no-template controls, demonstrating little to no DNA contami-

nation during the extraction and initial amplification procedures. Due to the failure of some of

the DM aliquots to amplify, we only proceeded with PCR product purification for aliquots that

successfully amplified in duplicate using both extraction methods, including eight of the ali-

quots and two mock community DNA standards (pre-extracted by the manufacturer). On

average, spin column purification resulted in greater DNA yield compared to gel-based prod-

uct purification (Fig 3A and 3B), however, this difference was only statistically significance for

the cervicovaginal samples (P = 0.04) and not the mock community DNA standards. In sum-

mary, the BT kit combined with spin column purification resulted in a greater yield of ampli-

con for sequencing, while also being less labor-intensive than the other tested methods.

Profiling mock community standards

We examined the sequencing output from each extraction and PCR product purification

method to estimate biases of these methods in the detection of certain species in the mock

communities. Specifically, manufacturer extracted mock community standards were amplified

and sequenced alongside commercial mock community standards extracted with BT and DM

Fig 2. Comparison of total double stranded DNA (dsDNA) yield per sample following DNA extractions as measured using the Qubit 2.0 fluorometer.

(A) Overall DNA yield per sample and replicates, (B) Paired DNA yield comparisons per extraction method used. DM, QIAamp DNA Microbiome kit, BT,

modified DNeasy Blood and Tissue kit. ����P< 0.0001.

https://doi.org/10.1371/journal.pone.0262355.g002
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protocols, to identify biases in our extraction protocols. Neither extraction method (BT and

DM) nor the sequenced manufacturer extracted standards resulted in accurate profiles of the

expected mock community composition and proportion of each species. Output for the mock

community DNA standards (pre-extracted by the manufacturer) captured more bacterial spe-

cies than our extracted mock standards, with very similar profiles regardless of amplicon puri-

fication method (Fig 4A). DM extracted mock community standards more closely resembled

the manufacturer-extracted mock community DNA standards than BT extracts (Fig 4B).

Across the board, S. enterica was over-represented in nearly all the mock standards assessed,

regardless of whether they were manufacturer pre-extracted DNA standards or extracted by

us, and irrespective of the purification method. Yeast species (S. cerevisiae and C. neoformans),
which were expected at an overall relative abundance of 4%, were not detected in any of the

mock community standards.

Our goal was to examine sequencing output from two extraction methods and two purifica-

tion methods to determine biases with respect to the detection of certain species in the mock

community standards. We showed that over-representation of gram-negative bacteria and S.

enterica in particular, as well as poor ability to capture gram positive organisms was not spe-

cific to any extraction method or purification method and also appeared in the manufacturer

pre-extracted mock community standards (Fig 4A and 4B). P. aeruginosa, a nosocomial patho-

gen which has also been detected as part of the normal gut microbiota, has been underrepre-

sented in most of our mock community standards regardless of the extraction method,

although this species was over-represented in a BT-extracted mock community which had 10-

100X lower sequencing depth (number of total reads) compared to the other mock controls.

Mock samples extracted using the BT kit had lower sequencing depth and coverage compared

to DM extracted mocks. Unlike BT extracted mock community standards, DM extracted

mock community standards were able to detect S. aureus. E. coli was generally observed at the

expected proportion, as was the gram-positive commensal L. fermentum, confirming our

extraction methods can successfully capture relevant gram-positive species.

Fig 3. Comparison of total double stranded DNA (dsDNA) yield per sample following PCR product purifications as measured using the

Qubit 2.0 fluorometer using either gel-based clean-up (QIAEX II) or spin columns (QIAquick). (A) Overall DNA yield per sample, (B)

Paired comparison per purification method used. DM, QIAamp DNA Microbiome kit, BT, modified DNeasy Blood and Tissue kit protocol.

NS, non-significant.

https://doi.org/10.1371/journal.pone.0262355.g003
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Profiling microbes and host coverage in cervicovaginal samples

On average, cervicovaginal BT kit extractions resulted in greater sequencing depth and species

coverage compared to DM extractions, although this did not reach statistical significance

(P = 0.084, Fig 5A). Analysis of observed diversity (richness, or number of species detected)

and Shannon diversity (which also considers evenness, or relative distribution of species in a

sample) for each extraction method, averaging output from duplicate runs, showed that BT

extracted aliquots were richer (P = 0.045) and more diverse (P = 0.002) than DM kit extracted

samples (Fig 5B and 5C). A very low number of eukaryotic host reads were identified in both

BT and DM extracted samples, with no observed differences in host coverage (total reads

attributed to host per sample) between kits (P = 0.375) (Fig 5D). Compositional output was

similar across both extraction and purification methods for a given aliquot, although certain

discrepancies were noted (Fig 6A–6C). Overall, the DM and BT extraction methods were in

agreement in terms of the most abundant bacterial species within a sample, regardless of the

PCR purification method (Fig 6A–6C). BT extractions were more likely to detect L. iners, L.

reuteri, and Oscillibacter, a gram-negative bacterium. In contrast, the relative abundance of L.

coleohominis was higher in DM compared to BT extracted samples. Similarly, BT extracted ali-

quots of the VM sample purified using spin-columns captured wider species richness and

evenness compared to DM extracted and gel purified samples (Fig 6C). While the VM sample

was dominated by G. vaginalis subgroup A, regardless of extraction or purification method

used, only the BT extractions resulted in detection of Prevotella timonensis, Porphyromonas
uenonis and Dialister microaerophilus, which are known as important BV-associated bacteria

(Fig 6C).

Discussion

DNA extraction is arguably the most important step in the characterization of the human

microbiome and becomes increasingly important when species exist at lower concentrations

and in complex mixtures. Optimization studies aim to improve microbial DNA yield and

Fig 4. Stacked bar plot comparing output of mock community standards between the different DNA extraction and PCR

product purification methods. (A) Manufacturer-extracted DNA from mock community standards, (B) Mock community

standards extracted using the DM/BT kits. DM, QIAamp DNA Microbiome kit, BT, modified DNeasy Blood and Tissue kit protocol.
� indicates sample had low sequencing depth (less than 20 total microbial reads). Column: refers to spin-column purification

approach (QIAquick PCR purification kit). Gel: refers to gel-based PCR purification (QIAEX II kit). Aliquot numbers refer to

specific extraction or PCR purification method replicates, and the follow up letters indicate a sequencing duplicate of that specific

replicate.

https://doi.org/10.1371/journal.pone.0262355.g004
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quality, species representation and diversity, and reduce host DNA contamination. In this

investigation, we compared two commonly used DNA extraction methods and two PCR prod-

uct purification methods for the characterization of vaginal microbial communities using

cpn60 microbial profiling. We compared a microbiome-specific extraction kit (DM), designed

to improve lysis of bacterial cells and reduce host DNA contamination by using a differential

lysis approach, to a standard DNA extraction kit used in many vaginal microbiome studies,

modified to include pre-treatment with lysozyme and mutanolysin (BT). Several investigations

have been conducted that compare DNA extraction methods from various anatomical

Fig 5. Paired comparisons of sequencing read output and microbial diversity of cervicovaginal secretion and

lavage samples processed using two different DNA extraction kits. (A) Microbial read output comparison between

DNA extraction methods, (B) Observed diversity representing total different microbial species compared between the

two extraction methods, (C) Shannon diversity index compared between the two extraction methods, (D) Paired host

(non-microbial eukaryotes) coverage comparison between DNA extraction methods. Note that the measures had been

averaged per MiSeq run duplicates. Error bars represent the standard error of the mean, DM, QIAamp DNA

Microbiome kit, BT, modified DNeasy Blood and Tissue kit protocol. �P<0.05, ��P< 0.01, NS, non-significant.

https://doi.org/10.1371/journal.pone.0262355.g005
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compartments and mock communities using 16S rDNA or whole genome sequencing

approaches. However, extraction methods should be optimized and validated for sample type

and profiling method (here used the cpn60 UT), due to differences in chemical composition

and ratio of microbial biomass to host-derived biomass, that can impact extraction efficiency

and downstream analysis [20, 21, 33–36].

The DNA extraction methods compared in this study resulted in significant and perhaps

unexpected differences in DNA yield, as well as notable differences in the characterization of

bacterial species diversity and composition. Unlike the DM kit, which has been tailored to

extract microbial DNA, the modified BT kit protocol with enzymatic lysis of the bacterial cell

wall, yielded DNA above the limit of detection (>0.05 ng/μL) for all aliquots and replicates. In

addition, amplification of the extracted DNA using a standard cpn60 protocol resulted in

many of the DM kit samples failing to amplify, greatly reducing our downstream sample size,

whereas all the BT kit samples successfully amplified. The DM kit is claimed by the manufac-

turer to be specific for viable microbial DNA, while the BT kit is advertised as a non-specific

DNA extraction protocol that extracts DNA from both host and microbes, possibly explaining

Fig 6. Stacked bar plots representing the relative abundance of bacterial species and the corresponding Shannon

diversity for vaginal samples processed using different DNA extraction and PCR product purification methods.

(A) Microbial profiles from VZV022V02 cervicovaginal pellet sample, (B) Microbial profiles from VZV022V03

cervicovaginal pellet sample, (C) Microbial profiles from the VM cervicovaginal lavage sample, DM, QIAamp DNA

Microbiome kit, BT, modified DNeasy blood and tissue kit protocol. Only the 15 most prevalent species based on

average relative abundance across samples are individually shown, with the remaining binned into the “other species”

category.

https://doi.org/10.1371/journal.pone.0262355.g006

PLOS ONE Comparison of DNA extraction and PCR product purification methods for cpn60 microbial profiling

PLOS ONE | https://doi.org/10.1371/journal.pone.0262355 January 13, 2022 11 / 16

https://doi.org/10.1371/journal.pone.0262355.g006
https://doi.org/10.1371/journal.pone.0262355


differences in DNA yield and amplification between the two methods. Our results are concor-

dant with a recent investigation of vaginal swab samples using 16S rDNA microbial profiling

[25], which showed that the BT kit protocol (albeit without the enzymatic pre-treatment step)

provided the highest overall DNA yield and quality compared to other modified commercial

DNA extraction protocols, especially modified Mo Bio Laboratories PowerSoil kits.

The inclusion of synthetic mock community standards is useful in microbiome studies as it

allows identification of the source of potential biases [37, 38]. In this study, microbial relative

abundance did not confirm expected values from commercially-supplied mixtures of bacte-

rial/fungal cells at known concentrations), regardless of extraction or PCR product purifica-

tion methods used. The DM kit appears to provide a closer representation of the species

observed for manufacturer-extracted mock communities as compared to the BT kit, although

further work will be required to formally evaluate this potential advantage. Despite apparent

amplification and/or extraction/PCR product purification biases, both gram-positive and

gram-negative species were observed as expected. Well-characterized shotgun sequenced

metagenomes of common vaginal isolates from clinical material may provide better positive

controls for this type of study in the future.

In the context of the vaginal microbiome, where diverse communities including those

linked to BV and aerobic vaginitis have been linked to negative health outcomes [5–7, 39],

understanding how DNA extraction methods affect vaginal microbial patterns is imperative.

When comparing extraction methods for cervicovaginal samples, the BT extractions resulted

in higher species diversity and indicated the presence of gram-negative bacteria associated

with BV, including P. timonensis, P. uenonis and D. microaerophilus [40]. The BT kit also indi-

cated higher relative abundance of L. iners in one of the samples. L. iners has been associated

with vaginal microbial shifts and transitional states such as those occurring following BV treat-

ment, and thus may play a crucial role in understanding vaginal microbial dynamics [41, 42].

Triangulation of these results with metagenomic profiles or quantitative PCR would help to

determine which method more accurately represents the actual distribution of L. iners and

other taxa of interest. Indices of microbial community diversity (within-sample species rich-

ness and evenness) suggest that BT extractions provide more in-depth information due to

higher within-sample diversity when compared to DM extractions.

Studies using 16S rDNA as the phylogenetic target naturally exclude host DNA “contami-

nation” since it is exclusively found in prokaryotes. However, the cpn60 UT is found in both

prokaryotes and eukaryotes, allowing for analysis of potential host cpn60 coverage in the

sequencing output. The ratio of microbial biomass to host-derived cells in a sample volume is

critical since information about microbial communities may potentially be missed due to

repetitive host signal. The DM kit was designed to preferentially isolate microbial DNA in the

context of high host background (for example in blood, cerebrospinal fluid or bronchoalveolar

lavage fluid). In this study, overall host coverage was low in vaginal specimens, and did not dif-

fer significantly between the two extraction methods used. However, we cannot attest to the

true host DNA contamination in our study as we did not assess the true proportion of the

DNA yield that is exclusively microbial, for example by quantitative PCR. Further studies will

be required to examine the true discrepancy in host DNA yields when using different extrac-

tion methods.

PCR product purification procedures can also affect sequencing output. Most standard

PCR product clean-up kits based on spin columns remove primers, reagents, and other impu-

rities which may interfere with downstream applications. Since non-specific amplification

using cpn60 UT-targeted primers has been observed, gel purification methods can be used to

specifically isolate only amplicons of the desired size range [29, 30]. In this study, only strong

bands of the correct size were observed by electrophoresis, indicating that size-based
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purification was unnecessary and resulted in significantly lower average DNA yields compared

to spin columns. Microbial diversity and species composition were also higher when using col-

umn purification, however our very small sample size hampers our ability to detect statistically

significant differences.

To conclude, our findings suggest that using the non-microbiome specific kit (BT) with an

added enzymatic pre-treatment results on average, in higher DNA yield, bacterial diversity,

and representativeness compared to the more labor-intensive microbiome-specific DNA

extraction kit (DM), with both methods showing similar low host coverage. When using cpn60

microbial profiling to study the cervicovaginal microbiome with no increase in host reads we

also show that purification of PCR products using a column-based approach results in rela-

tively higher yield of species richness than a gel-based PCR clean up method. Aside from

advanced metagenomics and metaproteomic analyses, cpn60 UT-based profiling of the cervi-

covaginal microbiome remains one of the only methods to distinguish subtypes of

Gardnerella.
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