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Abstract

The goal of this study is to develop, test, and compare multinomial logistic

regression (MLR) and support vector machines (SVM) in classifying pre-

school-aged children physical activity data acquired from an accelerometer. In

this study, 69 children aged 3–5 years old were asked to participate in a

supervised protocol of physical activities while wearing a triaxial accelerome-

ter. Accelerometer counts, steps, and position were obtained from the device.

We applied K-means clustering to determine the number of natural groupings

presented by the data. We used MLR and SVM to classify the six activity

types. Using direct observation as the criterion method, the 10-fold cross-vali-

dation (CV) error rate was used to compare MLR and SVM classifiers, with

and without sleep. Altogether, 58 classification models based on combinations

of the accelerometer output variables were developed. In general, the SVM

classifiers have a smaller 10-fold CV error rate than their MLR counterparts.

Including sleep, a SVM classifier provided the best performance with a 10-fold

CV error rate of 24.70%. Without sleep, a SVM classifier-based triaxial accel-

erometer counts, vector magnitude, steps, position, and 1- and 2-min lag and

lead values achieved a 10-fold CV error rate of 20.16% and an overall classifi-

cation error rate of 15.56%. SVM supersedes the classical classifier MLR in

categorizing physical activities in preschool-aged children. Using accelerometer

data, SVM can be used to correctly classify physical activities typical of pre-

school-aged children with an acceptable classification error rate.

Introduction

Novel approaches to classify physical activities in young

children are essential for identifying their characteristi-

cally sporadic physical activity patterns. Because of meth-

odological limitations, there is a paucity of quantitative

data on the habitual physical activity patterns in pre-

school-aged children. Cost-effective, nonintrusive, valid,

and precise methods for the classification of physical

activities in preschool-aged children are essential to deter-

mine physical activity behaviors, prevalence and determi-

nants, dose–response relationships between physical

activity and health outcomes, and intervention effective-

ness. Accelerometers are used for activity recognition

using body-mounted sensors; however, the mathematical

modeling of accelerometer counts in preschool-aged chil-

dren has been limited to regression models that do not

take into account the interdependence of the data and do

not exploit all the information.

Statistically sophisticated models have extracted more

information from the accelerometer signal in studies in

adults and school-aged children. Neural networks (Kiani

et al. 1998; Rothney et al. 2007; Staudenmayer et al.

2009), multivariate adaptive regression splines (Zakeri

et al. 2010), cross-sectional time series (Zakeri et al.

2008), and decision trees (Brage et al. 2004; Tapia et al.

2007; Bonomi et al. 2009) have been used to estimate

energy expenditure from accelerometers. Others have used

pattern recognition techniques for classification of physi-

cal activities (Companjen 2009). Quadratic discriminant

ª 2013 The Authors. Physiological Reports published by John Wiley & Sons Ltd on behalf of

the American Physiological Society and The Physiological Society.

This is an open access article under the terms of the Creative Commons Attribution License,

which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

2013 | Vol. 1 | Iss. 1 | e00006
Page 1

Physiological Reports ISSN 2051-817X



analysis (QDA) and hidden Markov model (HMM) were

trained to recognize four activities (walking, walking

uphill, vacuuming, and working on a computer) in six

adults (Pober et al. 2006). The recognition accuracy was

55% for walking, 58% for walking uphill, 68% for vacu-

uming, and 100% for working on a computer. Support

vector machines (SVM) models of triaxial accelerometry

and photography were used to classify nine common life-

style activities in adults and achieved 93% accuracy (Cho

et al. 2008). SVM was also applied to running, standing,

jumping, and walking in 11 adults, with a recognition

accuracy of 92% (He and Jin 2008). Artificial neural

network (ANN) based on uniaxial accelerometer worn on

the hip or ankle in 49 adults achieved an accuracy of

80.4% and 77.7% for hip and ankle placement, respec-

tively; misclassification was highest with stair climbing

(25–60%) and standing still (6–26%) (De Vries et al.

2011b).

ANN models have been used to identify types of

physical activity (sitting, standing, walking, running,

rope skipping, playing, soccer, and cycling) in school-

aged children using uniaxial and triaxial accelerometry

on the hip and ankle (De Vries et al. 2011a). ANN

models using the hip placement accurately predicted

activities 72.4% and 76.8% of the time using uniaxial

and triaxial accelerometers, respectively. The recognition

accuracy was lower with the ankle placement (57.3%

and 68.2%). Most misclassification occurred with stand-

ing, sitting, and cycling.

In this study, we use triaxial accelerometers and apply

sophisticated mathematical modeling techniques, multino-

mial logistic regression (MLR) and SVM, for the first

time to classify physical activities in preschool-aged

children. MLR and SVM models are developed in 69

preschool-aged children using direct observation as the

criterion method. Applying advanced modeling tech-

niques will result in improved population-specific models

for the classification of physical activities from triaxial

accelerometry that can be easily implemented using stan-

dard software packages.

The specific aims of this study are to develop, test, and

compare algorithms using MLR and SVM methods based

on triaxial accelerometry for the classification of physical

activities in preschool-aged children.

Material and Methods

Study design

A cross-sectional study design was used in which pre-

school-aged children participated in a protocol of planned

physical activities under constant observation. The proto-

col entailed a 7-h visit to the Children’s Nutrition

Research Center metabolic research unit. While inside a

room respiration calorimeter, the child was instructed to

follow a protocol of physical activities designed to charac-

terize the range of energy expenditure and physical move-

ment typical of this age group. Using direct observation

as the criterion method, MLR and SVM models for the

classification of physical activities based on triaxial accele-

rometry were developed, tested, and compared in pre-

school-aged children.

The Institutional Review Board for Human Subject

Research for Baylor College of Medicine and Affiliated

Hospitals approved the protocol. All parents gave written

informed consent to participate in this study.

Subjects

A total of 69 preschool-aged children, balanced for age

and gender, were enrolled. All participants were healthy,

3- to 5-year-old children. Twenty percent of the children

were classified as overweight or obese, according to the

Centers for Disease Control and Prevention (Kuczmarski

et al. 2000). Children on prescription drugs or with

chronic diseases including metabolic or endocrine disor-

ders, asthma treated with steroids, sleep apnea, and any

condition that interfered with physical activity were

excluded from the study. Informed consent was obtained

from all parents/primary caretakers prior to enrollment in

the study.

Accelerometry

ActiGraph GT3X+ activity monitor (ActiGraph, Pensacola,

FL), a triaxial accelerometer, was used to measure the

amount and frequency of movement of the children.

GT3X+ monitors were affixed above the iliac crest of the

right hip with an adjustable elastic belt. GT3X+ monitor is

compact and lightweight, measuring 4.6 cm 9 3.3 cm 9

1.5 cm with a weight of 19 g. The GT3X+ output includes

activity counts on the vertical (act_X), horizontal (act_Y),

and diagonal (act_Z) axes, vector magnitude which is

equal to sqrt(act_X2 + act_Y2 +act_Z2), and number of

steps taken. The GT3X+ has an inclinometer to determine

subject position (0 = monitor off or person lying on his/

her side; 1 = standing; 2 = lying down; 3 = sitting) and to

identify periods when the device has been removed.

GT3X+ records time varying accelerations ranging in mag-

nitude from �6 g’s. The accelerometer output is sampled

by a 12-bit analog to digital convertor, set at 30 Hz for

our application. The digital filter band limits the acceler-

ometer to the frequency range from 0.25 to 2.5 Hz, which

has been carefully chosen to detect normal human motion

and to reject changing accelerations outside the pass band.

Each sample was summed over a 60-sec epoch.
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Protocol

All children were asked to perform a series of physical

activities while in the calorimeter in the same order

between 9:00 AM and 4:00 PM under staff supervision. In

between the series of scheduled physical activities, the chil-

dren were given “free-time” to engage in light activities of

their choice. The staff recorded minute-to-minute observa-

tions of the child’s activities. The children were given

lunch at 11:30 AM outside the calorimeter, and snacks at

9:30 AM and 2:30 PM inside the calorimeter. The protocol

included the following discrete physical activities:

Sleep: Children slept on a children’s bed for 45–
120 min after lunch.

Watching TV: Children reclined against a pillow and

watched a movie on TV for 20 min.

Coloring: Children sat in a chair at a desk drawing

with crayons for 10 min.

Video games: Children while sitting played video

games for 10 min.

Puzzles: Children while sitting on the floor assembled

puzzles for 10 min.

Kitchen/toys: Children while standing played at a

child’s kitchen or with other toys (trucks, blocks, etc.)

for 15 min.

Ball toss: Children while standing repeatedly threw

balls at targets across the room and walked quickly to

retrieve them for 15 min.

Active video game: Children while standing on a video

game mat played a variety of motion games for 10 min.

Dance: While following an instructor in a video dis-

played on a television screen, children performed a

variety of dances for 15 min.

Aerobics: While following an instructor in a video dis-

played on a television screen, children performed a

variety of aerobic activities for 15 min.

Running in place: Children ran in place on a game

mat while competing in a video race displayed on a

television screen for 6 min.

Statistical methods

In order to determine the number of the natural group-

ings of physical activities presented by the minute-to-

minute data, K-means clustering (with Euclidean distance

as the distance function) was first conducted. The result

of the K-means clustering was used as evidence to recate-

gorize the data. We applied MLR and SVM classifiers to

the data. The main input features used in the classifiers

were activity counts, vector magnitude, the number of

steps taken, position, and their 1-min and 2-min lag and

lead values. Since the sleep period can be accurately

removed from the data, we also applied SVM classifica-

tion models to the data without the sleep period. We

compared the 10-fold CV error rates of the classifiers.

The best model was then selected according to the error

rate and the parsimony of the model. A confusion matrix

M = (mij) was used to summarize the results from the

best SVM model, where mij denotes the number of data

points whose observed class is j and are assigned to class i

by the classifier. In the confusion matrix, all correct clas-

sifications are located in the diagonal of the table and all

misclassifications are represented by nonzero values out-

side the diagonal.

Multinomial logistic regression classifier

In supervised learning, MLR is a classical multiclass

classification method. Suppose we have K groups

(K = activity categories in our study), which are repre-

sented by Y = 1, … , Y = 0. The MLR model has the

form (Hastie et al. 2001; Menard 2009):

log
PðY ¼ kjX ¼ xÞ
PðY ¼ rjX ¼ xÞ ¼ bk0 þ bTk x; k ¼ 1; . . . ;K; k 6¼ r;

(1)

where Y = r is the reference group and X = x is the input

vector. It is not difficult to show that the posterior prob-

abilities conditional on the input are:

PðY ¼ kjX ¼ xÞ ¼ ebk0þbTk x

1þP
i 6¼r e

bi0þbTi x
; k ¼ 1; . . . ;K; k 6¼ r;

(2)

and

PðY ¼ kjX ¼ xÞ ¼ 1

1þP
i 6¼r e

bi0þbTi x
; k ¼ r: (3)

When we apply MLR to a classification problem, we

assign the observation (minute-to-minute data in our

study) to the group which has the largest posterior proba-

bility. In addition, from the formulas (2) and (3), we

know that comparing the K posterior probabilities is the

same as comparing the K � 1 linear combinations of

x : bk0 þ bTk x ðk 6¼ rÞ, with 0. In other words, if we let

gðkÞ ¼ bk0 þ bTk x; 8k 6¼ r; (4)

and

gðkÞ ¼ 0;when k ¼ r; (5)

the group assignment can be done by

argmaxkgðkÞ: (6)
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The MLR classifiers in this study were performed using

SAS 9.2.

Support vector machines classifier

The SVM classifier is an extension of the support vector

classifier. It combines the features of the support vector

classifier and the kernel method. The support vector clas-

sifier builds linear boundaries in the input feature space.

However, the points in the input space cannot always be

split by linear boundaries in the same space. In these

situations, linear boundaries are sought in the high-

dimensional feature space where all the points in the

original input feature space are mapped into by a transfor-

mation. Using the kernel method, we gain access to the

high-dimensional feature space through the inner product

of the features in the original space, thus, bypass the

computational burden of finding the image of the original

input features in the high-dimensional space. The mathe-

matical details of the support vector classifier, the kernel

method, and SVM are provided in the Appendix.

Use of SVM in a multiclass classification
problem

The SVM is fundamentally a two-class classifier. However,

the SVM can be extended to multiclass problems. Classi-

fying multiple classes is commonly performed by combin-

ing multiple binary or two-class SVM classifiers. For a

multiclass classification problem, either one-against-one

voting scheme or one-against-all voting scheme can be

used (Karatzoglou et al. 2006). In the one-against-one

classification method, ðK2 Þ classifiers are built, where K is

the number of classes. An observation will be tested on

all of the classifiers and the observation will be assigned

to the most frequently predicted class. In the one-against-

all classification method, only K classifiers are con-

structed, and each of them separates one class from the

rest of the K � 1 classes. An observation will be tested on

all of the K classifiers and the observation will be assigned

to the class whose corresponding classifier has the largest

decision value. Although the one-against-one voting

scheme is computationally intense, it has been shown to

provide robust results with SVM classifiers. In this study,

we implemented the one-against-one voting scheme.

Parameter tuning in SVM

In order to find the best performance for the SVM classi-

fier, the two parameters, so-called cost and c (Dimitria-

dou et al. 2011), need to be tuned. The grid searching

strategy (Karatzoglou et al. 2006) is used to search for the

best combination of the parameters. The SVM classifier is

tested on geometric sequences of combination of the

values of the cost and c, then the combination with

the least 10-fold cross-validation error rate is selected as

the best values for the cost and c.
In the first step, the SVM classifier is tested on 44 com-

binations of the values of the cost and c. The values for

the cost come from the geometric sequence from 1 to 104

by a factor of 10. The values for c come from the geomet-

ric sequence from 10�5 to 105 by a factor of 10.

From the above step, we obtain the best combination

of the cost and c. We fix this best value of the cost in the

second step and tune c. In this step, the values of c come

from the geometric sequence from c* 9 1.2�5 to

c* 9 1.25 by a factor of 1.2, where c* is the best value of

c obtained from the first step. After the above two steps,

we find the ultimate best combination of the cost and c.

Cross-validation

A classification model is assessed by its prediction error

rate which is obtained by testing the model on indepen-

dent testing samples. If the training sample is directly

used to assess the performance of a classifier, we may

obtain a result that is too optimistic (Hastie et al. 2001).

In other words, the training error rate will be smaller

than the prediction error rate. In order to obtain a legiti-

mate estimation of the prediction error rate of a certain

model, a multifold CV is often used. In a n-fold CV, the

entire data set is separated into n sub-data sets with a

roughly equal size. In a training-testing session, one of

the n sub-data sets is reserved for testing, while the model

is built on the rest of the n�1 sub-data sets. This kind of

training-testing sessions is performed n times. Finally, the

testing error rates of the training–testing sessions are

combined to provide an estimate of the prediction error

rate of the model. Generally speaking, a 5-fold or

10-fold CV will overestimate the true prediction error

and thus is conservative and recommended by Hastie

et al. (2001). In our application, a specific SAS macro

was written to perform the 10-fold CV in MLR. The

10-fold CV of the SVM is performed using R package

‘e1071’ (Dimitriadou et al. 2011).

Results

Model development

Based on K-means clustering, the number of categories of

the activities was determined using combinations of

act_X, act_Y, act_Z, steps and position as the input

features. The within-cluster sum of squares is provided in

Figure 1. The figure shows an “elbow” around five

clusters. Conventionally, it is recommended to retain the
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number of clusters up to the elbow, plus the first cluster

following the elbow (Izenman 2008). Mathematically

speaking, the number of the natural groupings of activi-

ties presented by the data is around six, which is less than

the original eleven discrete activities designated in the

protocol. Although the evidence provided by K-means

clustering was purely mathematical, it clearly pointed out

that a smaller number of activity groups is more appro-

priate for the current data structure. The data were there-

fore recategorized into six activity groups (Table 1).

Quasi-complete separation problems were detected in

the data when applying the MLR model and we found

the input feature position to be the reason. Therefore, the

MLR classifiers were only implemented when the variable

position is treated as a continuous variable and with

position = 1 and position = 2 switched. In order to make

the comparison with the MLR classifier, the input feature

position was first treated as a categorical variable, then as

a continuous variable in the SVM classifiers.

Altogether, we built 58 classification models (a detailed

description of these models is available in the Appendix).

Among these models, 52 models are based on from apply-

ing the MLR and SVM classifiers to the entire data set,

and 6 models are based on applying the SVM classifier to

the data without the sleep period.

When we applied the classifiers to the entire data set,

the SVM classifiers performed better (have a smaller 10-

fold CV error rate) than their logistic regression classifi-

ers’ counterparts. The overall 10-fold CV error rates of

the MLR and SVM models applied to the data with and

without the sleep period are presented in Table 2. Based

on the entire data set, the SVM model PCO-18 with the

input features act_X, act_Y, act_Z, vector magnitude,

steps, and their 1-min and 2-min lag and lead values, and

position (continuous) gave the least 10-fold CV error rate

of 24.70%. The classification accuracy of this model is

summarized in Table 3. Running in place (activity 6),

which is always performed in a standing position and has

large values of 3D-acceleration and steps, was nearly per-

fectly classified by the classifiers. On the other hand, rest

was difficult to distinguish from sleep, since these activi-

ties can share the same accelerometer features. There were

2225 observations during sleep and 1004 observations

during rest in which act_X = 0, act_Y = 0, act_Z = 0,

steps = 0, and position = 0. Therefore, we decided to first

remove the sleep periods, and then apply the SVM classi-

fier since the accelerometer output during sleep (mainly

zeros) is not informative. All the observations in the sleep

period were categorized as activity 1 (sleep); therefore, all

the removed observations were considered correctly classi-

fied. After applying this strategy, the error rates of the

models and the overall classification error rates would be

expected to decrease.

Final model

The six best-performing SVM models were developed

when we applied the classifier to the awake state only.

The 10-fold CV error rates and the overall classification

error rates of the SVM models ranged from 20.16%

to 22.03% and from 15.56% to 17.00%, respectively.

Compared to the best model applied to the entire data,

the 10-fold CV error rates of these models were improved

about 4% to 5%. When we applied the SVM classification

model PCA-18 with the input features act_X, act_Y,

act_Z, vector magnitude, steps, 1-min and 2-min lead

and lag values, and position (categorical), we obtained

Table 1. Physical activity categories.

Activity

category Description Position

Number of

observations

Original

categories

1 Sleep Lying 2618 Sleep

2 Rest Reclining 3035 Watching TV

3 Quiet play Sitting 1747 Coloring, video

game, puzzle

4 Low active

play

Standing 1244 Kitchen/toys

5 Moderately

active play

Standing 2569 Ball toss, active

video game,

dance,

aerobics

6 Very active

play

Standing 237 Running in

place

Figure 1. K-Mean clustering plot for accelerometer counts (act_X,

act_Y, act_Z), steps, and position
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the best overall classification error rate of 15.56% among

all the models. The confusion matrix of this SVM Classi-

fier is presented in Table 4.

Discussion

We have demonstrated that SVM can be used to correctly

classify physical activities typical of preschool-aged chil-

dren. To our knowledge, this is the first time that SVM

has been applied to the classification of physical activities

in preschool children. Using the SVM classifier, we

achieved an overall classification error rate of 15.56% for

the best model using a 10-fold CV. From the confusion

matrix, we see that similar activities with close rankings

are more difficult to classify than dissimilar activities.

SVM is an efficient and powerful supervised machine

learning method. In SVM, we wish to predict the value of

an outcome measure based on a number of input mea-

sures (Vapnik 1999). A supervised learning algorithm

analyzes the training data and produces an inferred func-

tion, which is called a classifier. When the output variable

is continuous, it yields a regression problem, whereas a

categorical output variable yields a classification problem

declaring group membership. The basic idea of a SVM

Table 2. The classification error rates of the models.*

With Sleep Period Without Sleep Period

MLR SVM SVM

Model

10-fold

CV Error Rate (%) Model

10-fold

CV Error Rate (%) Model

10-fold

CV Error Rate (%)

Overall Classification

Error Rate (%)

PCO-16 28.88 PCA-18 24.90 PCA-18 20.16 15.56

PCO-20 29.97 PCO-16 25.43 PCO-16 20.33 15.69

PCO-17 30.26 PCO-18 24.70 PCO-18 20.33 15.69

PCO-15 32.14 PCA-16 25.58 PCA-16 20.46 15.79

PCO-18 26.80 PCA-20 27.52 PCA-20 22.01 16.98

PCO-19 32.81 PCO-20 26.97 PCO-20 22.03 17.00

*A detailed explanation of the structure of the models used in this study can be found in the Appendix. The input feature position was treated

either as a categorical variable (PCA) or a continuous variable (PCO). The input features of the models are given in the following:

Model Structure15: act_X + act_Y + act_Z + steps + lag/lead 1-min + position

Model Structure16: act_X + act_Y + act_Z + steps + lag/lead 1- and 2-min + position

Model Structure17: act_X + act_Y + act_Z + vm + steps + lag/lead 1-min + position

Model Structure18: act_X + act_Y + act_Z + vm + steps + lag/lead 1- and 2-min + position

Model Structure19: vm + steps + lag/lead 1-min + position

Model Structure20: vm + steps + lag/lead 1- and 2-min + position

Table 3. Classification accuracy.

Activity 1 2 3 4 5 6

h*(%) 91.44 65.66 74.07 68.49 93.73 98.73

p†(%) 31.55 17.30 33.03 24.92 1.91 0

*h ¼ Number of the observations that have been correctly allocated in activity i

Number of the observations of activity i
� 100%; i ¼ 1; . . .; 6:

†p ¼ Number of the observations that have been incorrectly allocated to activity i

Number of the observations of activity i
� 100%; i ¼ 1; . . .; 6:

Table 4. The confusion matrix.

Activity category

1 2 3 4 5 6

Predicted class 1 0* 0 0 0 0 0

2 0 2611 300 20 3 0

3 0 398 1145 397 52 0

4 0 44 288 768 161 0

5 0 2 14 59 2349 31

6 0 0 0 0 4 206

*The (1,1)-entry of this matrix is zero, because activity category = 1

is sleep and we only applied the classifier to the data without sleep.

There are actually 2618 observations in the sleep period, and those

observations are considered to be correctly classified.

The bold values are the number of correctly-classified observations.
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classifier is to find an optimal maximal margin separating

hyperplane or a decision boundary between two classes.

Observations that fall on one side of the decision bound-

ary are assigned to one class, and observations that fall on

the other side are assigned to the other class. Such a deci-

sion function can be expressed by a mathematical func-

tion of an input vector x = (x1, … ,xp), the value of

which is the predicted label of x (either +1or �1 for a

two-class problem). The classifier can therefore be written

as g(x) = sign(f(x)), where f(x) = b + wTφ(x) and

/ðxÞ : Rp ! Rd is a transformation from the original

input feature space to a high-dimensional space where the

points are linear separable. In this way, we have parame-

terized the function by the weight vector w and the scalar

b. More generally, the SVM classifier can be stated as

finding a solution to an optimization problem (Burges

1998; Hastie et al. 2001; Smola and Sch€olkopf 2004;

Steinwart and Christmann 2008). The goal is to locate a

decision boundary, using information from the predic-

tors, so that the partitions are as homogenous as possible.

Unlike classification and regression trees (CART), SVM

does not classify observations in the input space in a

stage-wise fashion, and only observations near the classifi-

cation boundary that are difficult to classify determine

the criterion by which classes are to be assigned. ANN

modeling has been applied to physical activity classifica-

tion in school-aged children (De Vries et al. 2011a) and

similar classification accuracy to our results was achieved.

However, compared to ANN, SVM can provide a clear

boundary between the two classes in the input feature

space and this boundary can be used in future investiga-

tions. SVM is fundamentally a two-class classifier, but it

can be extended to multiple class problems. Classifying

multiple classes is commonly performed by combining

multiple binary or two-class SVM classifiers and the final

classifier is the one that dominates the most.

Compared with SVM, MLR is a commonly used

classifier. It has been successfully implemented in various

situations (Hossain et al. 2002; Wang 2005; Torres et al.

2009). However, in our study, application of the MLR

classifiers to physical activities of preschoolers was not

without difficulties. The quasi-complete separation prob-

lem (Albert and Anderson 1984; Santner and Duffy 1986;

Allison 2008) prevented us from applying MLR classifiers

to the data when position was treated as a categorical

input feature. The problem hindered our application of

MLR simply because if a quasi-complete separation prob-

lem is present, the maximum likelihood estimate does not

exist (Albert and Anderson 1984). Thus, no optimum

boundary can be established between categories. Even

when treating position as a continuous variable, we had to

recode it to avoid such a problem. Although the MLR

model is easy to interpret and available in commonly used

statistical software, the quasi-complete separation problem

we met hindered its application in the data we used.

The SVM classifiers, on the other hand, have been shown

to be powerful in our application. However, to obtain the

best values for the parameters in each of the SVM classifi-

ers, the model had to be tuned. The parameter tuning pro-

cess was computationally intense. It can take days to tune

the parameters of a SVM classifier on a regular laptop or

desktop. Compared with SVM classifiers, the MLR classifier

was computationally simpler. Although the parameter tun-

ing process was time consuming, once the optimal values

for the parameters are obtained, no further tuning is

needed when applying the model to classify new observa-

tions. Based on the 10-fold cross-validation error rates of

the SVM classifiers we obtained, there were only minor dif-

ferences between treating the input feature position as a

continuous variable or a categorical variable in the classifi-

cation models. However, this does not imply that there is a

linear relationship between the values of position and the

activity type. Instead, this is a feature brought about by the

SVM classifier which is insensitive to the type of the input

features, whether they are categorical or continuous.

The minute-to-minute accelerometer counts, even with

additional information of steps and position, could not

accurately distinguish rest from sleep. In practice, often-

times sleep is identified visually from the pattern of consec-

utive zero accelerometer counts during the night-time.

Also, participant activity records are used to identify night-

time sleep and day-time naps. In our application, we evalu-

ated the MLR and SVM models with and without sleep,

verified by continuous observation by our staff. The error

rates of the SVM classifiers would be expected to improve

once the data were partitioned into sleep and awake states.

Although our best SVM model utilizes all of the input

features (act_X, act_Y, act_Z, vector magnitude, steps,

their 1- and 2-min lead/lag values, and position), the

more parsimonious model, which incorporates only the

vector magnitude, steps, their 1- and 2-min lead/lag

values, and position performed relatively well (Model

S-PCA-20 and S-PCO-20). This is not beyond our expec-

tation. The vector magnitude and the 3D accelerations

are highly correlated: the Pearson correlations between

the vector magnitude and the accelerations on the X, Y,

and Z axis are 0.96, 0.94, and 0.95, respectively. In addi-

tion, the final categories of activities we used in this study

differ on the degree of acceleration rather than on the

direction of the movement. In addition, the 1-min and

2-min lag and lead values contribute to our models.

Naturally, a series of movements is more informative than

a point value to classify activities. It is difficult to tell

accurately what kind of activity a person is performing

from only the snapshot of the 3D acceleration readings.

Since activities are frequently correlated from one moment
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to the next, the lag and lead values capture this aspect of

activity duration. For example, both moderately active

activities (like dancing) and very active activities (like

running) can have overlapping acceleration readings, but

running has a longer duration of high accelerations, while

dancing has a shorter duration of high accelerations.

SVM models have been used in physical activity classi-

fication in adults (Cho et al. 2008; He and Jin 2008).

High classification accuracy (92% on average) was

achieved by He and Jin (2008) using autoregressive-based

features extracted by fitting an autoregressive model to

the acceleration activity signals, but the activities (run-

ning, resting, jumping, and walking) differed substantially

which facilitates classification. Considering the similarity

between several activity types in our study, the classifica-

tion accuracy of the SVM models is quite good.

To apply the established SVM classification model to

classify new ActiGraph GT3X+ observations, there is no

need to explicitly program all the separating hyperplanes.

We encourage researchers to tune the SVM classifier in R

using the tune.svm function in the package ‘e1071’ (Dimi-

triadou et al. 2011), then to classify new observations in

R using the predict function. For future applications, the

user can save the SVM model (object) produced by the

package ‘e1071’ using the save function. Then, for new

observations, the user can apply the load function to

reload the previously established model and classify new

observations, rather than reloading the training data and

tuning the parameters again. In this way, researchers can

share their models without providing the original training

data. The R objects of our best models with and without

the sleep period in this study can be obtained per request.

In conclusion, SVM supersedes the classical classifier

MLR in categorizing physical activities in preschool-aged

children. Using accelerometer data, SVM can be used to

correctly classify physical activities typical of preschool-

aged children with an acceptable classification error rate.
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Appendix: The Mathematical Details
of the Support Vector Classifier, the
Kernel Method, and SVM

The SVM classifier is an extension of the support vector

classifier. It combines the features of the support vector

classifier and the kernel method.

Support vector classifier

Consider a two-class training set of N observations

(x1, y1), (x2, y2),… , (xN, yN), where xi 2 Rp; i ¼ 1; . . . ;N

are the input features, and yi = {�1, 1}, i = 1,… , N are

the class assignments. If the two classes of points are linear

separable, then at least a hyperplane, which is defined by

fx : xTbþ b0 ¼ 0g;where kbk ¼ 1 (A1)

can be found. Then, the classification can be done by

GðxÞ ¼ sign½xTbþ b0�: (A2)

Since the two classes are linear separable, the best

hyperplane that separates the two classes has the largest

margin between the points of class y = 1 and y = �1

(Fig. A1). Actually, the task of finding the best hyperplane

Figure A1. The separating hyperplane and the margin. The

different colors show points from different classes. The solid line

shows a hyperplane that separates the two classes. The dotted lines

indicate the edges of the two classes. The double-sided arrows

show the margin (2C).
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can be expressed as the following optimization problem

(Hastie et al. 2001):

maxmizeb;b0;kbk¼1C; (A3)

subject to yiðxTi bþ b0Þ�C; i ¼ 1; . . . ;N.

The two times of C in equation (A3) is the margin, as

shown in Figure A1.

If the two classes cannot be perfectly separated, then

the constraint in equation (A3) can be modified by allow-

ing some points to stay at the wrong side of the margin.

Then, consider the overlapping cases and drop the norm

constraint on b, the optimization problem can be rewrit-

ten as follows:

minkbk (A4)

subject to yiðxTi ðbþ b0Þ� ð1� fiÞ; 8i; fi � 0,

and ∑ifi ≤ constant.

Solving this optimization problem, we obtain the esti-

mates for b0 and b: b̂ and b̂0 (Burges 1998; Hastie et al.

2001; Smola and Sch€olkopf 2004). Since the estimate of b
is only supported by the points on the edge of the margin

and on the wrong side of the margin, those points are

called support vectors (Hastie et al. 2001; Steinwart and

Christmann 2008). Finally, given b̂ and b̂0, the classifica-

tion can be achieved by

GðxÞ ¼ sign½xTb̂þ b̂0�: (A5)

Kernel method

The support vector classifier builds linear boundaries in

the input feature space. However, the points in the input

space cannot always be split by linear boundaries in the

same space. In these situations, linear boundaries are

sought in the high-dimensional feature space where all

the points in the original input feature space are mapped

into by a transformation.

Consider, for example, four points in R2: (0,0), (0,1),

(1,0), and (1,1). Among them, (0,0) and (1,1) are from

class 1; (0,1) and (1,0) are from class 2. One may find the

curves that can separate the two classes. But in R2, linear

boundaries are lines. We are not able to find a linear

boundary for the two classes in R2. Now, consider the

transformation /ðxÞ : R2 ! R3, such that

/ðx1; x2Þ ¼ ðx1; x2; jx1 � x2jÞ: (A6)

Under the transformation, (0,0), (0,1), (1,0), and (1,1)

are mapped to (0,0,0), (0,1,1), (1,0,1), and (1,1,0). Now,

the two classes can be separated in R3 – any plane that is

parallel to the xy plane with a z-intercept between 0 and

1 can perfectly separate the two classes (Fig. A2).

In some cases, the formula we want to evaluate

involves the transformation / : Rp ! Rd only through

the form of its inner product. In such a situation, if we

define a function K : Rp � Rp ! R, such that

Kðx; yÞ ¼ /ðxÞ;/ðyÞ; (A7)

for all x; y 2 Rp, then we do not have to first transform

all the points. Instead, we can work in the original sample

space through the newly defined kernel function K.

For SVM, instead of using the original data points x as the

input features, the SVM classifier uses basis expansion of the

original ones: / (xi) = (/1(xi),… , / d(xi)), i = 1,… , N,

as the input features. With sufficient basis functions, the

data would finally be linear separable in the enlarged input

space.

In SVM, the optimization problem of finding the best

separation hyperplane involves the transformation /(x)
only through its inner product (xi)

T /(xi). Indeed, if we let
Kðx; x0Þ ¼ /ðxiÞT/ðx0iÞ, we do not have to worry about the

computation burden from x to /(x) – finding the coordi-

nates in the high-dimensional space. We can deal with the

kernel function Kðx; x0) directly in the original input space.

Figure A2. A transformation example. The points in white are from class 1, and the points in black are from class 2. The parallelogram in gray

shows a plane that separates the two classes.
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Several kernel functions are available. The popular

choices are (Hastie et al. 2001; Steinwart and Christmann

2008; Dimitriadou et al. 2011):

dth Degree Polynomial: Kðx; x0Þ ¼ ð1þ xTx0Þd; (A8)

Radial Basis: Kðx; x0Þ ¼ e�ckx�x0k2 ; (A9)

and Neural Network: Kðx; x0Þ ¼ tanhðk1xTx0 þ k2Þ: (A10)

In this study, we used the radial basis kernel.

The Model Description

We established 58 models in total. The model structures

are shown in Table A1. The 10-fold CV error rates are

provided in Table A2. In Table A2, the six models shown

in bold characters are those ones which were built on the

data without sleep period. In Table A2, S stands for SVM

and L indicates MLR. The input feature position was trea-

ted either as a continuous variable (PCO) or a categorical

variable (PCA). The number after the second dash (or the

first one, if there is no indicator for position) tells us

which model structure was used.

Table A1. The model structures.

Model structure Description

Model Structure 1 activity.category ~ act_X + act_Y + act_Z

Model Structure 2 activity.category ~ act_X + act_Y + act_Z + vm

Model Structure 3 activity.category ~ act_X + act_Y + act_Z + steps

Model Structure 4 activity.category ~ act_X + act_Y + act_Z + position

Model Structure 5 activity.category ~ act_X + act_Y + act_Z + vm + steps

Model Structure 6 activity.category ~ act_X + act_Y + act_Z + vm + position

Model Structure 7 activity.category ~ act_X + act_Y + act_Z + steps + position

Model Structure 8 activity.category ~ act_X + act_Y + act_Z + vm + steps + position

Model Structure 9 activity.category ~ vm + steps

Model Structure 10 activity.category ~ vm

Model Structure 11 activity.category ~ steps

Model Structure 12 activity.category ~ vm + steps + position

Model Structure 13 activity.category ~ vm + position

Model Structure 14 activity.category ~ steps + position

Model Structure 15 activity.category ~ act_X + act_Y + act_Z + steps + position + lag/lead 1-[act_X + act_Y + act_Z + steps]

Model Structure 16 activity.category ~ act_X + act_Y + act_Z + steps + position + lag/lead 1/2-[act_X + act_Y + act_Z + steps]

Model Structure 17 activity.category ~ act_X + act_Y + act_Z + vm + steps + position + lag/lead 1-[act_X + act_Y + act_Z +

vm + steps]

Model Structure 18 activity.category ~ act_X + act_Y + act_Z + vm + steps + position + lag/lead 1/2-[act_X + act_Y + act_Z +

vm + steps]

Model Structure 19 activity.category ~ vm + steps + position + lag/lead 1-[vm + steps]

Model Structure 20 activity.category ~ vm + steps + position + lag/lead 1/2-[vm + steps]

The model structures were developed in a step-wise manner: first, we included the triaxial accelerometer outputs (act_X, act_Y, act_Z) from

the device in the model structure (model structure 1). Then, we gradually included other features (vm, steps, and position) in the subsequent

model structures (model structure 2–8). Since vm is a summary of the triaxial accelerometer outputs, we built a model structure based on only

vm (model structure 10). Steps are another important feature and thus we built a model structure (model structure 11) based on it. Next, we

added more features (steps and position) to vm and/or steps and developed model structures 9, 12–14. Finally, we added the lag and lead

values of the input features to the best-performing models (model structures 15–20).

ª 2013 The Authors. Physiological Reports published by John Wiley & Sons Ltd on behalf of
the American Physiological Society and The Physiological Society.

2013 | Vol. 1 | Iss. 1 | e00006
Page 11

W. Zhao et al. Physical Activity Classifiers in Preschoolers



Table A2. The performance of the model.

Rank Model

10-fold

CV error rate (%) Rank Model

10-fold

CV error rate (%)

1 S-PCA-18 20.16 30 S-PCA-12 34.57

2 S-PCO-18 20.33 31 S-PCO-6 35.91

2 S-PCO-16 20.33 32 S-PCA-6 36.06

4 S-PCA-16 20.46 33 L-PCO-8 36.31

5 S-PCA-20 22.01 34 S-PCO-4 36.56

6 S-PCO-20 22.03 35 S-PCA-13 36.56

7 S-PCO-18 24.70 36 S-PCA-4 36.600

8 S-PCA-18 24.90 37 S-PCO-13 36.78

9 S-PCO-16 25.43 38 L-PCO-7 36.98

10 S-PCA-16 25.58 39 S-PCA-14 37.14

11 L-PCO-18 26.80 40 S-PCO-14 37.21

12 S-PCO-20 26.97 41 L-PCO-12 37.43

13 S-PCA-20 27.52 42 S-5 39.11

14 S-PCO-17 28.09 43 S-3 39.49

15 S-PCA-17 28.73 44 L-PCO-6 39.50

16 L-PCO-16 28.88 45 L-5 39.89

17 S-PCO-15 28.95 46 L-PCO-4 39.90

18 S-PCA-15 29.30 47 S-9 39.99

19 S-PCA-19 29.42 48 L-PCO-13 41.12

20 S-PCO-19 29.42 49 S-2 41.32

21 L-PCO-20 29.97 50 L-3 41.78

22 L-PCO-17 30.26 51 S-1 41.73

23 L-PCO-15 32.14 52 L-9 42.01

24 L-PCO-19 32.81 53 L-PCO-14 42.01

25 S-PCA-8 33.73 54 L-2 43.00

26 S-PCO-8 33.84 55 L-1 45.00

27 S-PCO-7 34.15 56 L-10 45.71

28 S-PCA-7 34.18 57 S-11 46.2

29 S-PCO-12 34.55 58 L-11 46.47

The bold values are the number of correctly-classified observations.
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