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Abstract

Background: Juncus effusus L. (family: Juncaceae; order: Poales) is a helophytic rush growing in temperate damp or
wet terrestrial habitats and is of almost cosmopolitan distribution. The species has been studied intensively with
respect to its interaction with co-occurring plants as well as microbes being involved in major biogeochemical
cycles. J. effusus has biotechnological value as component of Constructed Wetlands where the plant has been
employed in phytoremediation of contaminated water. Its genome has not been sequenced.

Results: In this study we carried out functional annotation and polymorphism analysis of de novo assembled RNA-
Seq data from 18 genotypes using 249 million paired-end Illumina HiSeq reads and 2.8 million 454 Titanium reads.
The assembly comprised 158,591 contigs with a mean contig length of 780 bp. The assembly was annotated using
the dammit! annotation pipeline, which queries the databases OrthoDB, Pfam-A, Rfam, and runs BUSCO
(Benchmarking Single-Copy Ortholog genes). In total, 111,567 contigs (70.3%) were annotated with functional
descriptions, assigned gene ontology terms, and conserved protein domains, which resulted in 30,932 non-
redundant gene sequences. Results of BUSCO and KEGG pathway analyses were similar for J. effusus as for the well-
studied members of the Poales, Oryza sativa and Sorghum bicolor. A total of 566,433 polymorphisms were identified
in transcribed regions with an average frequency of 1 polymorphism in every 171 bases.

Conclusions: The transcriptome assembly was of high quality and genome coverage was sufficient for global
analyses. This annotated knowledge resource can be utilized for future gene expression analysis, genomic feature
comparisons, genotyping, primer design, and functional genomics in J. effusus.
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Background
Juncus effusus L. (common, soft or mat rush) is an
almost cosmopolitan monocotyledonous C3 plant that can
grow abundantly in temperate wetlands, riparian strips, and
other damp or wet terrestrial habitats [1]. The plant can
vary substantially in morphological traits across its world-
wide distributional range leading to the description of sev-
eral subspecies. In Europe, only J. effusus ssp. effusus is

known to occur but at least two genetically distinct cryptic
lineages within the taxa have been found recently [2].
The plant grows in dense tufts and is able to repro-

duce by producing abundant seeds, which are easily dis-
persed, as well as via rhizomes, rendering the species an
efficient colonizer [3]. The rhizomes as well as the
shoots of this helophyte are characterized by forming
aerenchyma for channeling air into the roots. This struc-
tural feature allows J. effusus to thrive in waterlogged en-
vironments [4–6]. The plant has multifarious effects on
major element cycles in wetlands [7]. For example, radial
oxygen loss can reduce CH4 production and increase
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CH4 oxidation in the rhizosphere [8–10]; on the other
side, the input of organic carbon (root exudates and
plant litter) can enhance methanogenesis [11, 12] and
the aerenchyma can act as conduit for methane emission
from organic-rich soils into the atmosphere [13].
Interactions of J. effusus with rhizospheric microbial com-

munities as well as co-occurring plant species are exploited
in ecotechnological applications such as Constructed Wet-
lands (CWs) [14]. CWs are means for wastewater treatment
mirroring chemical transformation processes in natural
wetlands to remove organic and inorganic contaminants
from water [5]. Based on these characteristics J. effusus has
been employed as a model plant in basic and applied re-
search on wetland ecosystems [15–18]. The stem is of eco-
nomic value as commodity for various woven products
[19]. In addition, J. effusus has some medicinal properties
and produces a variety of bioactive compounds [20, 21].
The pith of the stem, Junci Medulla, has been used in Chin-
ese and other traditional medicines [22].
Understanding and quantifying genetic diversity within J.

effusus is fundamental in predicting evolutionary pathways
under changing environmental conditions. Marker systems
such as single nucleotide polymorphisms (SNPs) and inser-
tions/deletions (INDELs) have several advantages over con-
ventional genetic markers. This includes their high
genomic abundance, a co-dominant expression, and being
mostly phenotypically neutral in nature [23]. Although a
strong degree of genetic structuring has been suggested for
J. effusus [2, 24], very little information is available at the
molecular level. The species is diploid (2n = 42) and has a
relatively small genome with a measured DNA 1C-value of
0.3 pg [25]. Based on this value the genome has an esti-
mated size of approximately 270Mbp, i.e. in between the
genome sizes of Arabidopis thaliana (Arabidopsis Genome
Initiative, 2000) and Oryza sativa [26, 27]. Plastome se-
quence data are available [28].
The aim of the present study was to develop a molecu-

lar database of J. effusus for enhanced research on nat-
ural and engineered wetland ecosystem functioning. To
this end we employed RNA-Seq to record gene tran-
scription in adult roots and shoots of 18 genotypes. The
transcriptome was de novo assembled and annotated.
Ortholog comparisons with phylogenetic relatives were
carried out and the genetic diversity among the geno-
types was evaluated based on a SNP analysis. The gen-
omic information thus obtained will be of benefit for
studies on wetland ecosystems and will foster further
evolutionary studies on the Poales.

Results
Assembly of the J. effusus transcriptome
The overall process of transcriptome sequencing, assem-
bly, annotation, ortholog clustering and validation of the
assembly is summarized in Fig. 1. Illumina and 454

sequencing generated 108,600,750 clean reads comprising
a total of 47 Gb, which was considered as good transcrip-
tome coverage of the estimated genome size of around
270Mb. The reads were de novo assembled using Trinity
[29] and Mira [30, 31]. Quality analysis of the Trinity as-
sembly with the software TransRate computed an opti-
mized score of 0.34, which was better than the score for
about 50% of 155 sampled de novo assembled transcrip-
tomes [29]. CD-HIT [32, 33] was used to remove redun-
dant sequences, which resulted in 158,591 contigs with
lengths ranging between 200 bp to 18.5 kb. The average
contig length was 780 bp, and N50 was 255 bp.
BUSCO v3 [34] was run on the J. effusus assembly as

well as on previously assembled and annotated transcrip-
tomes of O. sativa and S. bicolor to determine whether the
genome coverage was sufficiently high to allow for com-
prehensive analyses. BUSCO results for the three species
were very similar. Out of 429 single-copy ortholog genes
common to the Eukaryota lineage there were 81, 82, and
78% complete single-copy BUSCOs, 42, 26, and 24% du-
plicated BUSCOs, 8.8, 4.1, and 6% fragmented BUSCOs,
and 9.5, 12, and 15% missing BUSCOs respectively for J.
effusus, S. bicolor and O. sativa.

Constructing and annotating gene models
The assembled transcripts were annotated using Camille
Scott’s dammit! annotation pipeline (https://github.com/
camillescott/dammit). Gene model building using Trans-
decoder [35] predicted 120,343 likely coding regions
(75.8% of all contigs) among which 79,203 (49.4%) con-
tained a stop codon. There were 62,745 (39.6%) pre-
dicted coding regions that matched to the protein family
database Pfam [36, 37], whereas a LAST search found
that 67,835 predicted coding regions (42.8%) matched to
the OrthoDB database [38, 39]. In addition, 3385 pre-
dicted coding regions (2.13%) matched to the Rfam data-
base for non-coding RNAs [40]. In total, 111,567 contigs
(70.3%) were annotated when combining results of all
searches. The annotation features included putative nu-
cleotide and protein matches, five- and three-prime
UTRs, exons, mRNA, as well as start and stop codons.
To ensure further that the assembly was of high quality,

we compared genomic features both statistically and manu-
ally with previously well-annotated transcriptomes of S.
bicolor and O. sativa. GO analysis by InterProScan allowed
classification of annotated transcripts into different func-
tional groups. A total of 42,739 sequences (38.3% of all an-
notated contigs) were GO annotated out of the categories
Molecular Functions, Cellular Components, and Biological
Processes. The WEGO [41] plot for GO terms revealed that
Molecular Functions was the dominant category (50.7% of
all GO-annotations) followed by Biological Processes
(35.7%) and Cellular Components (13.6%). Highly repre-
sented GO terms within Molecular Functions were
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‘binding’ (GO:0005488) and ‘catalytic activity’ (GO:
0003824); in the Biological Processes ontology group it
were ‘cells’ (GO:0005623), ‘cellular process’ (GO:0009987),
and ‘biological regulation’ (GO:0065007); and ‘cellular parts’
(GO:0044464) and ‘organelles’ (GO:0043226) in the

Cellular Components ontology. The GO terms of the as-
sembled transcriptome were compared with those of S.
bicolor and O. sativa (Fig. 2). The results revealed a similar
functional distribution with both reference transcriptomes,
suggesting similar gene complements between J. effusus

Fig. 1 The overall process of transcriptome assembly, functional annotation, GO enrichment, orthologs clustering and validation
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and its relatives. Minor contributions of ‘antioxidant activ-
ity’ (GO:0016209), ‘extracellular region’ (GO:0005576),
‘extracellular part’ (GO:0044421), and ‘viral reproduction’
(GO:0016032) were observed for J. effusus, while those cat-
egories were missing for S. bicolor and O. sativa.
KEGG analysis assigned enzyme commission (EC)

numbers to 7036 protein sequences belonging to 380
different pathways. The KEGG category ‘metabolic path-
ways’ contained the majority of annotated proteins (851
members, 12.1%), followed by ‘biosynthesis of secondary
metabolites’ (395 members, 5.61%). To evaluate further
the qualitative accuracy of the functional annotation, we
manually checked the completeness of the fundamental
pathways photosynthesis, oxidative phosphorylation, gly-
colysis/gluconeogenesis, citrate cycle, pentose phosphate
pathway, amino acid metabolism, and information pro-
cessing. In addition, we checked the completeness of
pathways involved in waterlogging [42]. All of those
pathways were fully covered in the transcriptome.
Clusters of orthologous gene (COG) analysis of J.

effusus revealed the presence of 21,931 clusters, out of
which 10,296 were shared among S. bicolor, O. sativa,
and Zea mays (Fig. 3). These clusters involve proteins
related to carboxylation and oxygenation, glycosylation,
integral membrane components, nuclear mechanisms
such as chromatin binding, cytoplasm and chloroplast
integrities, and several other putative uncharacterized
proteins. Further analyses of GO terms revealed a sig-
nificant enrichment for the proteins related to electron

carrier activities in the mitochondrial matrix (e.g., GO:
0019243), photosystem II assembly (e.g., GO:0010207),
transcription from plastid promoter (e.g., GO:0042793),
regulation of protein dephosphorylation (e.g., GO:
0035304), and hydrogen peroxide biosynthetic process
(e.g., GO:0050665). The three members of the Poaceae
had more similarities to each other than to J. effusus,
which matches the topology of the phylogenetic tree
based on plastome sequences [28]. Overall, 9872 clusters
were unique for J. effusus, and included proteins in-
volved in chloroplastic mechanisms, plasma membrane
functioning, disease resistance, phytohormone produc-
tions for stress-ripening, and ion binding.
As a final quality control, we conducted Gene Set

Enrichment Analysis (GSEA) with DAVID [43]. Results
of GSEA were consistent with the KEGG findings. A
complete list of enriched sequences and number of
KEGG orthology (KO) hits for J. effusus, S. bicolor, O.
sativa and Z. mays is presented in Table 1. Sequences of
J. effusus with redundant KO terms likely originating
from paralogous genes and orthologues in the various
genotypes were combined to a total of 30,932 gene se-
quences with matching hits to proteins (E < 1e− 6).
Among these sequences there were 3185 enriched se-
quences (10.2%) of which most belonged to the sub-
groups of metabolic pathways (1407 sequences, 44.1%),
biosynthesis of secondary metabolites (1140 sequences,
35.8%), biosynthesis of amino acids (156 sequences,
4.89%), oxidative phosphorylation (114 sequences,

Fig. 2 Histogram of level GO term assignments for J. effusus, S. bicolor, and O. sativa annotated gene models. Results are summarized for three
main GO categories, Cellular Component, Molecular Function, Biological Process
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3.57%), amino sugar and nucleotide sugar metabolism
(113 sequences, 3.54%). Sequences grouping into the
category genetic information processing accounted for
322 sequences (1.04%) and included the enriched cat-
egories ribosomes (276 sequences, 85.7%) and protein
export (46 sequences, 14.2%). By contrast, environmental
information processing (EIP) contained no enriched
KEGG pathways for J. effusus (although the EIP path-
ways were complete as mentioned above). All pathways
enriched for in J. effusus were also enriched for in S.
bicolor except porphyrin and chlorophyll metabolism,
which was only enriched in J. effusus.

Detection of nucleotide polymorphisms
We identified 566,433 polymorphisms (478,627 SNPs
and 87,806 INDELs) in 99,692 contigs. On average over
the whole transcriptome, one polymorphism was identi-
fied in 174 bp. This relative abundance is similar to SNPs
frequency in O. sativa (1 per 147 bp) [44] and Z. mays
(1 per 200 bp) [45]. Among the contigs having at least
one polymorphism, 35,429 were assigned to KO terms
and comprised 3521 unique KO identifiers. The poly-
morphism distribution among gene functions was non-
random. Ten out of the top 20 KO IDs with the highest
polymorphism frequencies (ranging from 9 to 49 per KO
ID) were associated with plant defense mechanisms and

wound healing (disease resistance protein RPM1, perox-
idase, chalcone synthase, ATP-binding cassette of multi-
drug resistant transporter, phenylalanine ammonia-lyase,
laccase, glutathione S-transferase, trans-resveratrol di-O-
methyltransferase, cinnamyl-alcohol dehydrogenase,
ionotropic glutamate receptor). Most of the remaining
KO IDs with ≥5 polymorphisms (50 IDs in total) were
involved in cytoskeleton formation, repair mechanisms
associated with replication, transcription and translation,
as well as metabolism of the small amino acids Gly, Met,
Cys, Ser and Thr.
In order to experimentally confirm the suitable of the

SNP dataset for genotyping of J. effusus, we selected 44
SNPs for loci amplification via PCR and subsequent
Sanger sequencing. The loci chosen were predicted to be
associated with nitrogen assimilation (Table 2), which is
an important function in wastewater treatment via con-
structed wetlands. Out of those selected a total of 35
(80%) loci could be successfully PCR-amplified and thus
the respective SNPs confirmed by sequencing.

Discussion
In the past the extensive research on and the manifold
biotechnological applications of the common wetland
plant J. effusus were carried out without omics-based
knowledge. Information on nucleic acid sequences was

Fig. 3 Comparisons of the core orthologous gene clusters among J. effusus, O. sativa, Z. mays, and S. bicolor
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Table 1 Genes enriched for KEGG and number of KO hits for Juncus effusus, Sorghum bicolor, Oryza sativa, and Zea mays

J. effusus S. bicolor O. sativa Z. mays

Ranking KEGG pathway KEGG hits KO hits KEGG hits KO hits KEGG hits KO hits KEGG hits KO hits

1. Metabolism

1.0 Global and overview maps

1100 Metabolic pathways 1407 855> 1431 865 1369 817 1793 850

1110 Biosynthesis of secondary metabolites 833 396 844 395 776 397 1033 400

1130 Biosynthesis of antibiotics 307 193 312 194 352 192 462 194

1200 Carbon metabolism – – – – 226 90 263 90

1230 Biosynthesis of amino acids 156 98 157 98 189 97 – –

1.1 Carbohydrate metabolism

00010 Glycolysis / Gluconeogenesis 92 33 94 33 112 32 134 33

00020 Citrate cycle (TCA cycle) – – – – 49 20 – –

00030 Pentose phosphate pathway – – – – 46 17 – –

00053 Ascorbate and aldarate metabolism – – – – 37 16 – –

00500 Starch and sucrose metabolism – – – – 107 30 – –

00520 Amino sugar and nucleotide sugar metabolism 113 40 114 40 105 40 – –

00620 Pyruvate metabolism – – – – 73 27 – –

1.2 Energy metabolism

00190 Oxidative phosphorylation 114 86 118 91 – – 129 86

00195 Photosynthesis – – – – 75 35 – –

00710 Carbon fixation in photosynthetic organisms – – – – 70 25 – –

1.3 Lipid metabolism – –

00073 Cutin, suberine and wax biosynthesis – – – – – – 28 8

00100 Steroid biosynthesis – – – – – – 38 18

00591 Linoleic acid metabolism – – – – – – 15 4

1.5 Amino acid metabolism

00260 Glycine, serine and threonine metabolism 52 34 52 34 – – – –

00330 Arginine and proline metabolism – – – – – – 62 24

00350 Tyrosine metabolism – – – – – – 40 18

1.6 Metabolism of other amino acids

00480 Glutathione metabolism 98 18 98 18 – – – –

1.7 Glycan biosynthesis and metabolism

00510 N-Glycan biosynthesis – – – – – – 44 31

1.8 Metabolism of cofactors and vitamins

00730 Thiamine metabolism 13 11 14 11 – – – –

00770 Pantothenate and CoA biosynthesis – – – – – – 30 16

00860 Porphyrin and chlorophyll metabolism 41 33 36 33 50 33

1.9 Metabolism of terpenoids and polyketides

00900 Terpenoid backbone biosynthesis – – – – – – 58 30

00904 Diterpenoid biosynthesis – – – – 27 18 – –

1.10 Biosynthesis of other secondary metabolites

00940 Phenylpropanoid biosynthesis – – – – 114 17 – –

2. Genetic Information Processing

2.1 Transcription

03040 Spliceosome – – – – – – 194 102
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restricted to the plastome [28] and several chromosomal
microsatellite loci, the latter of which formed the basis
for recent studies on the intraspecific variability of geno-
types [46–48]. In order to develop a more comprehen-
sive inventory of genetic information of J. effusus we
opted for transcriptome profiling of 18 genotypes via
RNA-Seq. The geographical origins of the genotypes
cover a substantial portion of the European distribution
range of this species. RNA-Seq has been used for other
members of the Poales, and particular of members of
the family Poaceae, for various purposes such as de novo
sequencing and assembly (rice, [49]), querying the tran-
scriptome profiles of distinct tissues and at various de-
velopment stages (wheat; [50]), characterization of genes
involved in specific biochemical pathways (cordgrass,
[51]; pineapple, [52]), identification of novel transcrip-
tome sequences (maize, [53]) and isoforms (false-brome,
[54]), SNP analysis (wheat, [55]), and simple sequence
repeats detection (bamboo, [56]).
In this study we carried out both single and paired-

end sequencing runs to improve the de novo assembly
[57]. The assembly was deemed successful based on a
good TransRate score of 0.34 as well BUSCO results that
were quite similar to those of the closer relatives S.
bicolor, O. sativa, and Z. mays. Annotation was per-
formed using the dammit! pipeline (prepared by Camille
Scott https://github.com/dib-lab/dammit), which is one
of two pipelines available for transcriptome annotation
known to us. The other pipeline, annocript [58], was in
its earlier stage of development at the time of annotating
the J. effusus transcriptome and it did not include infor-
mation on lower hierarchy of GO terms. The dammit!
pipeline includes quality assurance step via BUSCO, exe-
cutes gene model building [59], and compares each tran-
script against entries in several databases [e.g. protein

domains [60], non-coding RNAs [40], ortholog matches
and orthology assignments [61]].
In total, 70% of the contigs (111,567) were anno-

tated for functional descriptions, GO terms, and con-
served protein domains. Sequence similarity searches
and gene model building revealed the presence of
120,343 likely coding regions, which were computa-
tionally condensed to non-redundant 30,932 gene se-
quences with matching hits to proteins (E < 1e− 6).
The GO annotation of J. effusus transcriptome se-
quences revealed a similar functional distribution with
the reference transcriptomes of S. bicolor and O.
sativa, which evinces overlapping gene complements
between J. effusus and its relatives. As expected from
transcriptome analyses of other members of the Poa-
caea the most highly represented GO terms belonged
to the Molecular Functions category. KEGG pathway
analyses mirrored these similarities, and COG analysis
matched the topology of the phylogenetic tree based
on plastome sequences. Overall, gene function ana-
lyses showed that predicted protein sequences exhib-
ited high coverage of KEGG pathways (i.e. 380 KEGG
pathways were identified with 7036 enzyme codes).
The sequences that had no significant matches may
be lacking a known conserved functional domain or
they were too short to have a significant sequence
match. These sequences might be of potential
interests for future research on novel gene products,
alternative splice variants, and differentially expressed
genes.
A further aim of this study was to identify nucleo-

tide polymorphism markers that can be readily used
for genotyping of J. effusus. SNPs frequency in the
transcriptome (1 in 147 bp) was similar to those of
other members of the Poales. SNPs may not be

Table 1 Genes enriched for KEGG and number of KO hits for Juncus effusus, Sorghum bicolor, Oryza sativa, and Zea mays (Continued)

J. effusus S. bicolor O. sativa Z. mays

Ranking KEGG pathway KEGG hits KO hits KEGG hits KO hits KEGG hits KO hits KEGG hits KO hits

2.2 Translation

03010 Ribosome 276 130 278 132 – – – –

03015 mRNA surveillance pathway – – – – 97 49

2.3 Folding, sorting and degradation

03060 Protein export 46 26 47 26 – – – –

04122 Sulfur relay system – – – – – – 14 10

3. Environmental Information Processing

3.2 Signal transduction

04075 Plant hormone signal transduction – – – – 172 38 253 41

4. Cellular Processes

4.1 Transport and catabolism

04144 Endocytosis – – – – 117 58 – –
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distributed evenly across the genome positionally and
functionally. For example, in soy bean SNPs were found to
occur more frequently at the chromosome ends putatively
as a consequence of diversifying recombination and muta-
tion events [62]. Without reference genome for J. effusus,
however, the chromosomal distribution of the found
SNPs cannot be assessed properly. At the functional
level, we found the highest SNP frequency per locus
in transcripts involved in plant defense mechanisms
and wound healing. In O. sativa, a large amount of
SNP variation was found in genes involved in in
stress response and other processes associated with

adaptation to a changing environment [63]. Similarly,
for A. thaliana it has been suggested that the main-
tenance of variation in defense mechanisms may be
associated with the species’ persistence in environ-
mentally heterogeneous habitats [64]. Hence, also J.
effusus as a wetland indicator plant and tolerating a
wide range of ecological conditions may benefit from
a diverse genomic background associated with stress
tolerance. The polymorphisms identified here at tran-
scriptome level will help explain adaptive mechanisms
shaping and maintaining the complex intra-specific
differentiation pattern described for this species [24].

Table 2 Candidate genes putatively linked to N assimilation and associated SNP loci

SNPs marked in orange are located at synonymous codon-positions. An asterisk marks successful PCR amplification
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Conclusions
This study is the first genomics analysis of J. effusus. The
assembly and annotation were considered as of high
quality. The results are expected to open new opportun-
ities for future omics studies and population genetics of
this common wetland plant.

Materials and methods
Plant materials and RNA isolation
Plant tissues (roots and shoots) were harvested from
individuals at the vegetative developmental stage that
were raised from seeds collected in the field. In total
18 genotypes were used. The geographical distribution
of the sampled locations is presented in Fig. 4. The
obtained plant tissues were snap-frozen in liquid ni-
trogen and kept at − 80 °C until processing. Total
RNA was extracted from roots and shoots separately
using the RNeasy Plant Mini Kit according to the
manufacturer’s protocol (Qiagen, Hilden, Germany).
In order to represent a wide range of expressed geno-
typic variability within individuals and the species, ex-
tracts were then pooled with the final mix containing
approximate equal contributions of each genotype and
tissue type.

Transcriptome sequencing and assembly
Standard library preparation and sequencing of total
RNA using one lane of an Illumina HiSeq (2 × 100 bp
PE) and two runs of Roche 454 Titanium was done
at the Duke Center for Genomic and Computational
Biology (Durham, USA) yielding 249 million Illumina
PE reads and 2.8 million 454 reads. After removing

sequencing adaptors, quality-controlled reads were
processed using two different de novo transcriptome
assemblers. Illumina reads were assembled using
Trinity version 20,130,225 [29], and 454 reads were
assembled using Mira version 3.9.15, [30, 31]. Both
assemblers were run with default parameters. The
software TransRate [65], which enables reference-free
quality evaluations of de novo transcriptome assem-
blies, was used for analysis of Trinity assembly. Mira
and Trinity assemblies were combined and CD-HIT
version 4.5.7 [32, 33] was used to remove redundant
sequences.

Functional annotation
We used Camille Scott’s dammit! annotation pipeline to
annotate the transcriptome assembly (https://github.
com/camillescott/dammit). Within the pipeline, annota-
tion begins by building gene models with TransDecoder
v2.0.1 [35]. Subsequently, it utilizes multiple databases
for annotating the transcriptome: protein domains in
Pfam-A v29.0 [36, 37], Rfam v12.0 to find non-coding
RNAs [40], the execution of a LAST search for known
proteins in the OrthoDB database [61], ortholog matches
in the BUSCO database [34], and orthology searches in
OrthoDB [61]. The assembly quality and annotation
completeness were assessed using BUSCO v3, which
supports interpretation of assembly coverage based on
the presence of single-copy orthologous genes [34]. To
compare the assembly results of J. effusus, BUSCO was
also run with transcriptomes of O. sativa subsp. japonica
and S. bicolor (http://plants.ensembl.org/info/website/
ftp/index.html).

Fig. 4 Overview map indicating sampling sites for J. effusus ecotypes analysed in this study
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Functional classification
Gene ontology (GO) analyses were carried out on predicted
protein sequences using InterProScan v.5.26–65.0, available
as virtual machine image on Jetstream cloud (https://use.
jetstream-cloud.org/application/images/586). The GO an-
notations were then plotted using the BGI-WEGO program
(http://wego.genomics.org.cn/) together with O. sativa and
S. bicolor to elucidate relative distribution of Molecular
Function, Cellular Components, and Biological Processes
[41]. Afterwards, predicted protein sequences were mapped
to the reference canonical Kyoto Encyclopedia Genes and
Genomes (KEGG) pathways as additional approach for
functional annotation and categorization. The predicted
protein sequences were submitted to the KEGG automatic
annotation server (KAAS) (http://www.genome.jp/tools/
kaas/) with the single-directional best-hit (SBH) method se-
lected for pathway mapping. Subsequently, gene set enrich-
ment analysis (GSEA) was performed on non-redundant
gene sequences using the GO based enrichment tool DA-
VID (Database for Annotation, Visualization and Integrated
Discovery) [43]. DAVID provides ranking of KEGG path-
ways on the basis of Benjamini corrected p-values. The
number of genes shared between J. effusus and the mem-
bers of the Poaceae S. bicolor, O. sativa, and Z. mays were
assessed by OrthoVenn, a web platform that identifies
COGs clusters by comparing the predicted proteins se-
quences with the database [66]. Default parameters were
used for protein similarity comparisons.

Polymorphism identification
Paired end Illumina reads were mapped using sege-
mehl version 0.1.9 (Hoffmann et al., 2009) against the
de novo transcriptome assembly allowing two mis-
matches as well as multiple mappings to redundant
sequences in the variable mapping seed. Subsequently
single nucleotide polymorphisms (SNPs) and inser-
tions/deletions (INDELS) were detected using sam-
tools mpileup (version 1.1) [67] using default
parameters. SNPs were annotated using Ensemble
Variant Effect Predictor (version 75) [68]. Contigs
with significant SNPs (3-fold greater abundance than
the transcriptome-wide average) were identified and
then KO assigned using concatenate and merge func-
tion in R-statistical language. Lastly, KO terms were
annotated by using the online KEGG database
(https://www.genome.jp/kegg/ko.html). Selected SNP
loci putatively associated with N assimilation were
verified by the following approach: For the same 18
genotypes used for total RNA extraction, genomic
DNA was extracted using the DNeasy Plant Mini Kit
according to the manufacturer’s protocol (Qiagen,
Hilden, Germany). Primers for each locus were de-
signed using a Primer3 online implementation (http://
bioinfo.ut.ee/primer3-0.4.0/) targeting a size range

between 300 and 600 bp. Amplification of loci was
conducted in a total volume of 20 μL including 5
pMol of each locus-specific forward and reverse pri-
mer, 200 μM dNTP, 2 μL 10x DreamTaq-buffer
(Thermo Fischer Scientific), 0.8 U DreamTaq-
Polymerase and approx. 5 ng DNA. The PCR program
involved 3 min at 95 °C, then 40 cycles of 95 °C for
30 s, 58–62 °C for 40 s, 72 °C for 1 min and a final 10
min of 72 °C. PCRs products were purified by centri-
fuging for 3 min at 2800 rpm through cross linked
dextran gel (Sephadex G-50 Superfine, GE Healthcare
Life Sciences, Germany). PCR-products were directly
cycle-sequenced from both ends using the ABI
BigDye Terminater v3.1 cycle sequencing Kit using
the same primers. Products were sequenced on an
Applied Biosystems 3130xl Genetic Analyzer (Applied
Biosystems, Foster City, USA).
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