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Background: In medical genetics, one application of neural networks is the diagnosis of
genetic diseases based on images of patient faces. While these applications have been
validated in the literature with primarily pediatric subjects, it is not known whether these
applications can accurately diagnose patients across a lifespan. We aimed to extend
previous works to determine whether age plays a factor in facial diagnosis as well as to
explore other factors that may contribute to the overall diagnostic accuracy.

Methods: To investigate this, we chose two relatively common conditions, Williams
syndrome and 22q11.2 deletion syndrome. We built a neural network classifier trained
on images of affected and unaffected individuals of different ages and compared classifier
accuracy to clinical geneticists. We analyzed the results of saliency maps and the use of
generative adversarial networks to boost accuracy.

Results: Our classifier outperformed clinical geneticists at recognizing face images of
these two conditions within each of the age groups (the performance varied between the
age groups): 1) under 2 years old, 2) 2–9 years old, 3) 10–19 years old, 4) 20–34 years old,
and 5) ≥35 years old. The overall accuracy improvement by our classifier over the clinical
geneticists was 15.5 and 22.7% for Williams syndrome and 22q11.2 deletion syndrome,
respectively. Additionally, comparison of saliency maps revealed that key facial features
learned by the neural network differed with respect to age. Finally, joint training real images
with multiple different types of fake images created by a generative adversarial network
showed up to 3.25% accuracy gain in classification accuracy.

Conclusion: The ability of clinical geneticists to diagnose these conditions is influenced by
the age of the patient. Deep learning technologies such as our classifier can more
accurately identify patients across the lifespan based on facial features. Saliency maps
of computer vision reveal that the syndromic facial feature attributes change with the age of
the patient. Modest improvements in the classifier accuracy were observed when joint
training was carried out with both real and fake images. Our findings highlight the need for a
greater focus on age as a confounder in facial diagnosis.
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BACKGROUND

Neural networks are emerging as powerful tools in many areas of
biomedical research and are starting to impact clinical care. In the
field of genomics, these methods are applied in multiple ways,
including generating differential diagnoses for patients with a
possible genetic syndrome based on images, (Gurovich et al.,
2019; Hsieh et al., 2021; Porras et al., 2021), analysis of DNA
sequencing data (Luo et al., 2019) including phenotype-based
annotation (Clark et al., 2019) and variant classification (Frazer
et al., 2021), and prediction of the protein structure (Baek et al.,
2021; Jumper et al., 2021).

In the field of clinical genetics, clinicians typically encounter
many different conditions that are individually rare and which
can be difficult to differentiate (Solomon et al., 2013; Ferreira,
2019). This complexity, coupled with a lack of trained experts
(Maiese et al., 2019; Jenkins et al., 2021), can lead to delayed
diagnosis and suboptimal management for affected people
(Gonzaludo et al., 2019). Such challenges can
disproportionately impact older patients, as many clinical
geneticists are initially trained in pediatric medicine and tend
to focus on pediatric diagnosis (Jenkins et al., 2021). Despite these
issues, previous large-scale clinical genetic applications of neural
networks studied populations affected by many different genetic
conditions and yielded impressive results (Gurovich et al., 2019;
Porras et al., 2021). In the current study, we endeavored to build
upon these existing works by collating our own age-annotated
datasets. These datasets were designed to allow further study of
the impact of patient age on facial diagnosis as well as to perform
additional neural network analyses, which can also be extended to
larger datasets or applied to different conditions.

We chose two distinct genetic conditions for further study:
Williams syndrome (WS) (MIM 194050), which affects
approximately one in 7,500 live births, and 22q11.2 deletion
syndrome (22q), sometimes imperfectly referred to as “DiGeorge
syndrome” (MIM 188400), which affects approximately one in
4,000–7,000 live births (Stromme et al., 2002; Botto et al., 2003;
Oskarsdottir et al., 2004). We selected these conditions as they
may be recognizable from facial features (in addition to other
manifestations) (Stromme et al., 2002; Botto et al., 2003;
Campbell et al., 2018; Morris et al., 2020) and based on
relative data availability, which is still very limited compared
to more common health conditions. Additionally, these two
conditions represent varying ease of diagnosis based on facial
appearances: people with WS may have more consistently
recognizable facial features, whereas people with 22q may have
a more subtle facial presentation, which likely contributes to
underdiagnosis for this as well as many other conditions without
obvious or overtly pathognomonic signs.

To examine the influence of age on facial recognition, we
evaluated how well clinical geneticists and our classifier recognize
these conditions based on facial images of varying ages. We
further explored additional neural networks applications,
including saliency maps and generative adversarial networks
(GANs), to study both facial recognition as a whole and as a
function of age.

MATERIALS AND METHODS

Data Collection
We searched Google and PubMed using the disease names of
interest to select publicly available images depicting individuals
with WS, 22q, or other genetic conditions that may resemble WS
or 22q (see Supplementary Table S1 for more details about these
conditions). After that, when the context is clear, we refer to these
“other genetic conditions” as the control group. From the
available source information for each image, we categorized
the images into five age brackets: 1) infant (under 2 years old),
2) child (2–9 years old), 3) adolescent (10–19 years old), 4) young
adult (20–34 years old), and 5) older adult (≥35 years old). We
attempted to collect images of individuals from diverse ancestral
backgrounds, though standardized and complete information
regarding race and ethnicity was often unavailable (see
Supplementary Table S2). In total, we collected 1,894 images
and partitioned them into 1,713 and 181 train and test images,
respectively (see Supplementary Table S3). The image sets
included both color and black and white images with varying
image resolution. The test images were selected from color images
subjectively judged to have adequate resolution for human
viewing and included representations of both sexes and of
apparently ancestrally diverse individuals, though we
recognized many challenges in these and related areas (Byeon
et al., 2021). The control group test images included individuals
with other genetic and congenital conditions, including those
with overlapping facial features with WS or 22q (i.e., conditions
that are sometimes considered in the differential diagnosis of WS
or 22q). We applied the StyleGAN face detector and image
preprocessing to rotate and center our images and manually
aligned images that failed this preprocessing step (Figure 1).

Classifier
We selected the EfficientNet-B4 classifier, which obtained high
performance on the ImageNet data with a relatively low number
of parameters (Tan and Le, 2019). We loaded the weights
pretrained on ImageNet and continued training EfficientNet-
B4 end-to-end. Combining and then jointly training a small
dataset of interest with a larger auxiliary dataset often
increases the prediction accuracy (Ahmad et al., 2018; Meftah
et al., 2020). Our auxiliary dataset is the FairFace dataset, which
contains 108,000 “in-the-wild” faces (i.e., faces oriented in various
angles and/or partially covered with hands, hats, or sunglasses) of
equal ratio from (using definitions in FairFace) white, black,
Latino, East/Southeast Asian, Indian, and Middle Eastern
populations (Kärkkäinen and Joo, 2019).

The StyleGAN face detector and image preprocessing, such as
rotating and centering faces, were applied to the in-the-wild
FairFace faces, resulting in 62,088 usable images. We
partitioned these 62,088 images into the age groups as
described previously via the FairFace age classifier. One-sixth
of the images (N = 10,348) in each age category were randomly
chosen as test images, which we evaluated with our own test
images. The remaining 51,740 images were used with our images
to train EfficientNet-B4.
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Because of our small dataset and the assumption that at least some
features persisted across age groups, we trained EfficientNet-B4 on our
images (regardless of age) and FairFace images, to recognize the four
labels:WS, 22q, other genetic conditions (control), and unaffected.We
included unaffected individuals as an important consideration in
clinical practice, which is the ability to differentiate a potentially
affected from an unaffected person, especially as some genetic
conditions can have subtle findings often missed by general
clinicians as well as subspecialists. The classifier was trained with
cross entropy loss function in which one-hot encodings represent true
image labels. We rescaled all the images into resolution 448 × 448
pixels when training EfficientNet-B4. Image resolution was chosen to
maximize GPU usage (two Nvidia P100, training batch size 64).

We trained five classifiers via 5-fold cross-validation (one for
each fold) and then created an ensemble predictor by averaging the
predicted label probabilities of an image from these five classifiers.
When averaging, we considered only the classifiers that produced a
maximum predicted probability (over all the labels) of at least 0.5.

Comparison to Clinicians
We compared our classifier to board-certified or board-eligible
clinical geneticist physicians via surveys sent by Qualtrics (Provo,
Utah, United States). As WS and 22q syndromes are relatively
distinct, we felt that it was more meaningful to evaluate WS test
images against their own controls and likewise for 22q test images.
We emphasize that for nontrivial comparisons, the control test
images were of conditions resembling WS and 22q. For WS
surveys, there were 50 WS (10 images per age group) and 50
corresponding control test images. To keep the survey length
reasonable, each participant went through a random subset of 25
WS (5 images per age category) and 25 age category-matched control
images. The ordering of the selected images in a survey was
randomized, and the answer choice for a question was either
“Williams Syndrome” or “Other Condition.” The same setup was
also employed for 22q surveys. In addition to asking clinical

geneticists to classify images, we also asked questions about the
impact of patients’ age on diagnosis to determine attitudes and
opinions on the age in the diagnosis process. Example surveys can
be found at https://github.com/datduong/Classify-WS-22q-Img.

Following previous methods (Tschandl et al., 2018; Tschandl
et al., 2019; Duong et al., 2021b), we estimated that 30 participants
would provide a statistical power of 95% to detect a 10% difference.
The participants were recruited via email. To identify survey
respondents, we obtained email addresses through professional
networks, departmental websites, journal publications, and other
web-available lists. A total of 225 clinical geneticists were contacted,
of which 36 completed the 22q survey and 34 completed the WS
survey. If multiple respondents completed the same survey, only
the first survey was used for analysis (see Supplementary Table S4
for the description of survey respondents).

Generative Adversarial Network (GAN)
We trained a GAN for each data partition from the 5-fold cross-
validation in section “Classifier.”We describe the GAN training
and image generation for a data partition p, which also will apply
to the other partitions (see Supplementary Figure S1 for the
flowchart of our GAN image production and its application with
the real images to train the disease classifier). The partition p
contains our images of affected individuals and FairFace
unaffected individuals. Ideally, we would want to train the
GAN model on all FairFace images and our dataset as
blending the features of different racial/ethnic groups in
FairFace with our dataset would generate diverse images of
affected individuals. However, the partition p has approximately
41,392 images of unaffected FairFace individuals, and our
preliminary GAN experiments required a large amount of
computational power. The larger FairFace dataset also often
skewed GAN output in which the generated images of affected
individuals looked more like the unaffected subset. Therefore, in
the partition p, we trained GAN on our images and a fixed subset

FIGURE 1 | Centered and aligned images of real individuals (different individuals are shown at different ages) affected with 22q (top row) and WS (bottom row).
These images have been previously published and are granted to be freely distributed for noncommercial research purposes.
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FIGURE 2 | Examples of GAN fake images for 22q and WS. Type 1 fake images of (A) 22q (top row) and WS (bottom row) were generated with GAN and are all
theoretically unique. For type 2 fake images (B) of 22q (top row) andWS (bottom row), general features, such as skin tone and hair color, are roughly preserved. For type
3 (C), the generated images of 22q (top row) andWS (bottom row) look consistent at depicting the same “person” progressing through different age groups. Type 4 fake
images (D)were created with blended facial characteristics of two disease labels. The main disease condition (22q or WS) represents 55% of the facial phenotype,
and the added disease condition represents 45% of the facial phenotype. For example, WS:unaffected is a blend of 55% WS facial features and 45% unaffected facial
features. Only the blended images were used for training, and the left most images are shown here as references.
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of FairFace. This subset was randomly chosen with 500
individuals in each age bracket. In each training batch, we
selected an equal number of affected and unaffected individuals.

Our GAN is based on the conditional StyleGAN2-ADA and
generates images using both disease statuses and age categories
(Karras et al., 2020). We made the following key modification to
StyleGAN2-ADA. The default label embedding is L x 512, where L is
the number of labels and produces a vector of length 512 for each
label. Training this embedding requires many people with a specific
disease in a certain age category. However, some disease and age
label combinations have small sample sizes; for example, our dataset
has 39 WS and 35 22q individuals older than 35 years of age. We
replaced the default label embedding with two smaller matrices,
namely 4 × 256 and 5 × 256 to represent the four diseases (WS, 22q,
other conditions, and unaffected) and five age categories. Then,
training the 4 × 256 disease embedding uses all affected individuals
in every age category. Likewise, training the 5 × 256 age embedding
uses all the images in our dataset and in FairFace. The outputs of
these two components are concatenated to a vector of size 512 to
match the rest of the StyleGAN2-ADA architecture. Hence, except
for the label embeddings, we initialized all the StyleGAN2-ADA
weights with the pretrained values on FFHQ dataset at resolution
256 × 256 pixels (Karras et al., 2020); all fake images were also
generated in the resolution 256 × 256 pixels. Image resolution was
chosen to maximize GPU usage (two Nvidia P100).

After training GAN on the data partition p, we generated four
types of fake images: 1) unrelated faces for a specific disease and
age group; 2) similar faces at different ages for a specific disease; 3)
the same face at different ages for a specific disease; and 4) faces
containing characteristics of two different conditions, which we
hypothesized could aid classifier accuracy.

Given the large number of unaffected people in FairFace, we
generated just images of affected individuals from the disease label
d ∈ {WS, 22q, other condition} and age bracket a ∈ {infant, child,
adolescent, young adult, older adult}. The number of generated images
for each pair (d,a) is equal to the average count of all age groups with a
specific disease d in the data partition. Thus, for a specific condition,
respectively, wemademore and fewer images for the uncommon (less
represented) and common (more represented) age groups. In total,
each image type has the same count as the size of the affected
individuals in the data partition in which the GAN was trained.

For type 1, we generated a fake image i by concatenating the
random vector riadwith the label embedding ed and ea, denoted as
[riad, ea, ed] and then passing this new vector to our GAN image
generator. Each disease d and age group a combination has
images generated from their own unique random vector riad,
so that all the fake images are theoretically unique (Figure 2A).

Type 2 images are generated by varying the age embedding ea,
where a ∈ {infant, child, adolescent, young adult, older adult}, while
fixing the random vector rid and the disease embedding ed constant.
The vector rid is unique to the ith image having disease d. Following
this, every disease has own unique images, but within the same
disease the images at each age category have similar facial features
such as skin tone and hair color (Figure 2B).

For type 3 images, we interpolated three equally spaced vectors
between the age embedding einfant and eolder adult. For a disease d, we
generated five fake images from a random vector rid by passing these

five inputs, namely [rid, einfant, ed], [rid, 0.75einfant+0.25eolder adult, ed],
[rid, 0.5einfant+0.5eolder adult, ed], [rid, 0.25einfant +0.75eolder adult, ed], and
[rid, eolder adult, ed] into the GAN generator. These images closely
represent the same person affected with disease d at five different age
groups (Figure 2C). There are additional potential approaches for
depicting age progression, which we may explore in future studies
(Or-El et al., 2020). Of note, the previous work (Gurovich et al., 2019;
Porras et al., 2021) used different and/or additional age brackets,
some of which may not involve sufficient numbers of images for
robust analyses, at least in our datasets.

Type 4 images were generated like type 3 images; however, we
reversed the roles of disease d and age label a. With a random
vector ria, we generated three fake images from the inputs: [ria, ea,
ceWS + (1-c)e22q], [ria, ea, ceWS + (1-c)econtrol], and [ria, ea, ceWS + (1-
c)eunaffected], where c is a predefined fraction between 0 and 1. These
images represent a person at age a having facial characteristics of
two different diseases (Figure 2D). The true labels for type 4
images are soft labels; for example, the image created from the
vector [ria, ea, ceWS + (1-c)e22q] would have the label encoding [c, 1-
c, 0, 0] instead of the traditional one-hot encoding. Here, the
training loss function is still cross-entry but for soft label.

Next, we created four new larger datasets by combining partition p
with each of the four fake image types. We then trained EfficientNet-
B4 on each of these new larger datasets. For each type of new dataset,
we created the ensemble predictor over all the data partitions
following the approach mentioned in section “Classifier.”

Attribution Analysis for Features in Different
Age Groups
To visualize which facial features of an image the classifier
considered to be important, we produced saliency maps using
a window size 20 × 20 pixels and stride 10 × 10 pixels using the
occlusion attribution method (Zeiler and Fergus, 2014). For a test
image, we averaged the saliency maps of the classifiers in the
ensemble predictor. We used the permutation test to measure
how much the facial features identified by the classifiers differ
with respect to age. Our Qualtrics surveys had 10 test images for
each disease and age label combination. Conditioned on a disease
and two age groups, we permuted the 20 images into two sets and
repeated this permutation 100 times. Each time, we averaged the
saliency map over the 10 images in each set and then retrieved the
embedding of this average attribution via the EfficientNet-B4
trained on ImageNet. In each permutation, we computed the
Euclidean distance between the embeddings of these two sets. If
the observed Euclidean distance is smaller than 5% (or some
other threshold) of the permutation values, then the two age
groups of a specific disease were defined as not statistically
different. That is, the key facial features identified by the
classifier do not differ with respect to age.

RESULTS

Classifier Accuracy
Our classifier, which was trained on images of individuals with WS,
22q, other genetic conditions, and individuals who are presumably
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unaffected, correctly classified unique test images 68–100% of the
time, with the lowest accuracy for 22q and the highest accuracy for
unaffected individuals (Figure 3). While unaffected individuals are
not misclassified as affected, the opposite is not typically true,
presumably as some affected individuals may show only subtle
features of the condition. A similar situation happens in clinical
situations, where it can sometime be difficult to tell whether a person
may be affected by a genetic condition and what that conditionmight
be based on physical examination features (or other information).
Classification accuracy of WS (86%) was the highest among the
affected individuals we examined; our results suggest that these
individuals often clearly display key findings (e.g., the
dysmorphology or distinctive features affecting the eyes and
mouth) compared to individuals with 22q, who are frequently
misclassified (30%) as the control group (genetic or congenital
conditions other than WS or 22q).

Comparison to Clinical Geneticists
Clinical geneticists completed the survey(s) classifying images of
individuals withWS versus other conditions and 22q versus other
conditions. We intentionally used two separate surveys, based on
preliminary testing, as we felt that WS and 22q would typically be
considered a distinct condition by clinical geneticists and that it
would be more meaningful to evaluate these conditions
separately. The statistical differences between clinical
geneticists and our model were measured via the paired t-test.
As our model was trained with four labels, we took the highest
prediction probability betweenWS and control for a test image in
surveys containing WS and control images. The same idea
applied to surveys containing 22q and their corresponding
controls. Our model outperformed clinical geneticists by 15.5%
(77.5 vs. 93%, p = 6.828e−11) for WS and by 22.7% (59.3 vs. 82%,
p = 3.203e−13) for 22q.

To determine whether patient age affects accuracy, we
determined the average accuracy for each age group (Table 1).
On an average, the clinical geneticists had the most difficulty
identifying infants affected with WS (67.3%) and the greatest
accuracy with adolescents (80.7%). The clinical geneticists had
the most difficulty classifying older adults with 22q (50.7%) and
the greatest accuracy classifying adolescents (67.3%). Our
classifier outperformed the clinical geneticists in all age groups
(see Supplementary Table S5). However, we emphasize that
because each age group has 10 images, performance
differences may represent only a few images. Despite the small
test size per condition and age bracket, our results suggest clinical
diagnosis may be more difficult in some age groups.

Estimating Facial Differences Across Age
Groups
Conditioned on a disease, we compared the saliency maps of the test
images in different age groups based on the method in “Attribution
Analysis for Features in Different Age Groups.” The composite images
of saliency maps averaged over all the test images were generated for
each age group. Figure 4 provides qualitative descriptions for the
differences among the key facial features identified by the classifier for
each age bracket. Figure 5 quantitatively compares these differences

bymeasuring the Euclidean distances among the embeddings of these
composite saliency maps. Assuming the standard 5% statistical
significant threshold, there were significant differences among the
five age brackets. For example, the observed distance between the
embeddings of the 22q infant and child composite saliency maps
ranks higher than 43 of the 100 permutation values (Figure 5). The
greatest differences are seen for the infant and older adults in both
WS and 22q. Compared to 22q, WS facial features identified by our
model differ more with respect to age, which may show how facial
features of a condition can be age-specific. Again, we emphasize that
there can be confounding factors. For example, a person’s facial
expression (e.g., whether a person is smiling) may explain why
features of adolescent WS test images are different from those of
the other age groups (Figure 5). Clinical geneticists may also rely on
nonspecific facial clues (as well as other clinical manifestations) to
classify syndromes and conditions. For example, high sociability and
friendliness are common features of people with WS (Morris et al.,
1993; Morris et al., 2020). While we did not intentionally select
images based on facial expression (e.g., whether they were smiling or
were not smiling), we found that more WS test images (60%) had a
partial or full smile than other conditions (44%). Clinical geneticists
were more likely to misclassify a Williams syndrome image if the
image showed a person who was not smiling (58.3%) vs. smiling
(82.4%) (see Supplementary Table S6). The presence or absence of a
smile did not appear to impact classification of other conditions.

FIGURE 3 | Confusion matrix of accuracy of the classifier trained on real
images. Rows represent the correct label, while columns represent the label
chosen by the classifier. The diagonal numbers represent the percent
accuracy for each category (the percentage of images when the correct
label was identified), while the off-diagonal numbers represent
misclassification percentage ascribed to an incorrect category. Accuracy is
based on 50 test images of WS, 50 of 22q, and 81 of other conditions.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8640926

Duong et al. Neural Networks in Syndromic Aging

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Classifiers Trained onReal andGAN Images
Table 2 shows the accuracies of the classifiers trained on real
images and different types of GAN images [see Supplementary
Figure S2 for the corresponding confusion matrices]. Although
the improvements are minimal, all four types of GAN images
obtain slightly higher average accuracy than the base classifier,
with type 3 GAN images (showing age progression for the same
person) performing the best.

We also compared the classifier trained with type 3 GAN
images against the clinical geneticists in each age bracket
(Table 1). The cumulative improvements over humans are 95
vs. 77.5% (p = 1.846e−11) for WS and 87 vs. 59.3% (p = 1.703e−15)
for 22q.

We suspect that type 3 GAN images improved the base classifier
more because key facial features varied with respect to age (Figure 4,
5). By conditioning on the same person, we may capture more
specific details of how a condition progresses with time.

DISCUSSION

The practice of medical genetics has shifted considerably in the
last several decades. One major reason is the growing availability
of high-throughput genetic/genomic testing, such as exome and
genome sequencing. These testing methods allow more precise
diagnosis and have changed the approach to phenotyping
(Hennekam and Biesecker, 2012). However, access to these
testing technologies is uneven, and it remains important to be
able to quickly recognize patients who may be affected by certain
conditions, especially those with near-term management
implications (Solomon et al., 2013; Bick et al., 2021). For
example, people with WS are prone to infantile electrolyte
abnormalities and immunologic dysfunction, and people with
22q may be affected by endocrine, immunologic, cardiovascular,
and other sequelae that require immediate attention (Campbell
et al., 2018; Morris et al., 2020). Recognizing the likelihood of
these conditions quickly—before the results of even the fastest

genetic/genomic tests may be available—can be important for
these and other conditions.

To provide examples of ways to bolster the standard diagnostic
process as well as to build on the impressive findings of previous,
related studies, (Gurovich et al., 2019;Duong et al., 2021b;Hsieh et al.,
2021; Porras et al., 2021), we analyzed and provided a larger dataset of
WS and 22q individuals (although these other studies contained a
much larger total number of individuals having multiple other
diseases). We also compared results for different ages of
individuals. Our classifier outperformed clinical geneticists at
identifying WS and 22q individuals by large margins (15.5 and
22.7%, respectively). This was consistently true for each age group.

We hypothesized that because geneticists overall often have more
clinical experience with children, and as textbooks and the overall
medical literature tend to focus more on pediatric presentations of
congenital disorders, respondents would feel the most confident
about diagnosis in younger age groups and would also perform
best with images of younger patients. However, for WS, our results
show that respondents’ accuracy did not correlate with their
confidence level in diagnosing the conditions at various ages. For
example, 46.7% (14/30) and 50% (15/30) of clinical geneticists
surveyed reported that infants and older adults with WS are
difficult to classify based on facial features, respectively, but the
geneticists were able to classify these patients with similar
accuracy to those of other ages (see Supplementary Table S7).
This may imply other explanations. For example, clinicians may
feel the most confident considering patients at ages they most often
see in clinical practice, but this confidence may not be reflected in
their performance. The features ofWSmay also bemore pronounced
with age such that clinicians canmore readily recognize the condition
in older patients, even when they have less real-life experience with
patients at older ages. On the other hand, 60% (18/30) and 40% (12/
30) of clinical geneticists, respectively, reported that infants and older
adults affectedwith 22q are difficult to classify based on facial features,
which aligns better with their performance in the survey we
administered. There are again multiple explanations, but one
possibility is that 22q may simply be a more subtle condition

TABLE 1 | Average accuracy over all 10 test images in each age group. Each test image was viewed and classified by 15 clinical geneticists. Our classifier, either trained on
real images alone or on both real and GAN age progression (age prog) images, obtains higher accuracy for each age group, except for the oldest 22q cohort. P-values in
parentheses comparing the human against model were computed via the permutation test.

Age

22q WS

Model Model

Human Real images + Age prog Human Real images + Age prog

Disease Infant 0.54 0.7 (0.18) 0.8 (0.05) 0.673 1 (0) 1 (0
Child 0.527 0.8 (0.04) 0.9 (0) 0.707 1 (0) 1 (0)
Adolescent 0.673 0.7 (0.44) 0.8 (0.21) 0.0807 0.(0.24) 1 (0)
Young adult 0.613 0.8 (0.10) 0.9 (0.01) 0.74 1 (0) 1 (0)
Older adult 0.507 0.5 (0.50) 0.5 (0.50) 0.713 0.9 (0.09) 1 (0)

Other conditions Infant 0.753 1 (0) 1 (0) 0.84 0.9 (0.35) 0.9 (0.35
Child 0.6 0.9 (0) 0.9 (0) 0.767 0.8 (0.40) 0.8 (0.40)
Adolescent 0.52 1 (0) 1 (0) 0.86 0.9 (0.39) 0.9 (0.39
Young adult 0.6 0.9 (0.01) 1 (0) 0.787 0.9 (0.19) 0.9 (0.19
Older adult 0.593 0.9 (0.01) 0.9 (0.01) 0.86 1 (0) 1 (0)
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FIGURE 4 |Occlusion analysis of 22q andWS facial images across the lifespan. Composite saliency maps were made by averaging over all the test images in each
age group: infant, child, adolescent, young adult, and older adult (reading left to right) for both 22q (A) and WS (B). Green indicates positive contribution, and red
indicates negative contribution to the correct label. For 22q, specific regions of interest (e.g., periorbital regions, glabella, nasal bridge, and the mandible) subjectively
appear to be consistently important at all ages analyzed. However, there appear to be some areas that are more specific for people in certain age groups, such as
the areas superior to the lateral mandibular region in the youngest age group. Additionally, the periorbital region and nasal root appear to be more important in older age
groups. For WS, facial features of interest across all age categories include the eyes (possibly due to the stellate iris or other important ocular features; we note that this
pattern was not seen in people with 22q) and the mouth. Our composite WS images suggest that as aging progresses, the positive attribution present during infancy in
the nasal root and periorbital region, as well as the eyes to some degree, decreases through older adulthood.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8640928

Duong et al. Neural Networks in Syndromic Aging

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


based on facial features, or that facial features in people with 22q do
not become more obvious with age. Our saliency maps suggest that
age-specific changes in key facial features exist in both 22q and WS.
While saliency maps provide insights into the behavior of a neural
network, these approaches have not been fully standardized or
validated yet for the interpretation of medical data (Saporta et al.,
2021). To explore these and other questions further, we plan to
extend our analyses in the future to additional images and conditions,
including by determining which particular features are objectively
assessed by humans. This may help reveal underlying reasons for
diagnostic patterns.

Intuitively, due to sample size difference, a classifier trained on
fake and real images should outperform the one trained on just
real images. Interestingly, this approach does not always improve
the prediction outcome in previous works from other disciplines
(Finlayson et al., 2018; Qin et al., 2020). Our results also showed
that there was a small improvement with the incorporation of
images (up to 3.25% accuracy gain). In the future, we plan to
evaluate whether GAN images may be useful in other
applications, for example, the generated images could help as
educational tools. The GAN images could also be used to generate
realistic images to obviate data sharing and privacy concerns.

Along these lines, our results suggest areas of weakness that could
be targeted for the generation of GANs, such as images of infants
and older individuals, which could be used for medical training
purposes. It would also be informative to conduct a meta-analysis
on the existing literature across different disciplines to estimate
the improvement of training GAN images and real images.

Our study has multiple limitations. First, our dataset is small
compared to other datasets used for image recognition and may
involve biases. Since collecting publicly free images of confirmed
cases is challenging, we did not have balanced numbers of images
for each condition and age bracket combination (Supplementary
Table S3), and the types of images may have differed in certain
categories. For example, we included some gray-scale images;
having different numbers of these in some subsets could affect the
color consistency for GAN-based transformation (see
Supplementary Figure S3). However, the average age for each
age grouping was consistent (see Supplementary Table S8). For
example, the average age for the child age grouping was 5.54, 5.01,
and 5.33 years for 22q,WS, and controls, respectively. Second, but
also related to our sample size, wemay have suboptimal grouping.
For example, grouping all individuals older than a certain age into

FIGURE 5 | Quantitative comparison of key facial features during aging. Rank of the observed Euclidean distance (in fraction out of 100 permutations) between
embeddings of the averages of occlusion analysis for two age groups. A small number indicates that key features identified by the neural network for two age groups are
more statistically similar, whereas a larger number indicates that key features are more statistically different. Possible key facial feature differences across age categories
are qualitatively explained in Figure 4.

TABLE 2 | Accuracy of the classifier trained on real images compared to classifiers trained on both real images and each of the four types of fake images. Column names
unrelated, age related, age progression (age prog), and blended correspond to fake GAN images of type 1, 2, 3, and 4, respectively. The greatest improvement in
accuracy was observed with the addition of age progression fake images.

Real images + Unrelated + Age
related

+ Age
prog

+ Blended
55–45%

+ Blended
75–25%

22q 68 76 74 76 68 76
Controls 86.4 81.5 82.5 82.7 85.2 85.2
Unaffected 100 100 100 100 100 100
WS 94 96 96 100 96 96
Average 87.1 88.375 88.175 90.35 87.3 89.3
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the oldest age group may have obscured differences within
that group.

CONCLUSION

Our contributions and findings can be summarized in the
following four points.

First, we collected a dataset of publicly available WS and 22q
images, which may be larger than others previously studied
(Gurovich et al., 2019; Liu et al., 2021; Porras et al., 2021).
Second, beyond the dataset, our approaches (and available code)
may be used as subcomponents of other algorithms (Duong et al.,
2021b). We trained a neural network classifier on our dataset (N =
1,894), which is still small compared to many other deep learning
datasets, thus pushing the capability of the neural network model.
Our classifier consistently outperformed clinical geneticists at
recognizing individuals in the test set with these two syndromes
for individuals in all five age brackets. Third, we show that key facial
features (analyzed via saliency maps) identified by the classifier differ
with respect to age. This type of approach is important for DL in
biomedical contexts (DeGrave et al., 2021), including related to
disease progression and other temporal factors. Fourth, there is a
modest prediction accuracy increment by jointly training real images
with different types of fake images created via GAN, in which
including the fake images illustrating age progression for the same
person yielded the best improvement.

Despite the rarity (and therefore lack of data availability) of
many genetic conditions, neural networks have high potential in
this area, due to both the ability to accurately categorize patients
based on underlying molecular causes and the lack of trained
experts throughout the world such that these tools could be highly
valuable (Solomon, 2021). This area provides a ripe opportunity
for patients, clinicians, researchers, and others to collaborate for
the good of the impacted community. Privacy and data handling
issues must be taken seriously; we hope that obstacles around data
and code sharing can be addressed so as not to impose undue
barriers for helping affected individuals and families.
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