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Abstract: Artificial intelligence-assisted otologic diagnosis has been of growing interest in the sci-
entific community, where middle and external ear disorders are the most frequent diseases in daily
ENT practice. There are some efforts focused on reducing medical errors and enhancing physician
capabilities using conventional artificial vision systems. However, approaches with multispectral
analysis have not yet been addressed. Tissues of the tympanic membrane possess optical properties
that define their characteristics in specific light spectra. This work explores color wavelengths depen-
dence in a model that classifies four middle and external ear conditions: normal, chronic otitis media,
otitis media with effusion, and earwax plug. The model is constructed under a computer-aided
diagnosis system that uses a convolutional neural network architecture. We trained several models
using different single-channel images by taking each color wavelength separately. The results showed
that a single green channel model achieves the best overall performance in terms of accuracy (92%),
sensitivity (85%), specificity (95%), precision (86%), and F1-score (85%). Our findings can be a suitable
alternative for artificial intelligence diagnosis systems compared to the 50% of overall misdiagnosis
of a non-specialist physician.

Keywords: otology; artificial intelligence; middle and external ear; deep learning; convolutional
neural network

1. Introduction

Otolaryngology is a medical-surgical discipline that includes the prevention, diagnosis,
and treatment of different structures of the ear, nasal and paranasal cavities, pharynx, larynx,
trachea, head and neck [1]. It is estimated that between 10–20% of general practitioner
consultations are for ENT (ear, nose, and throat) complaints. In children, this rate rises
to around 50%. More significantly, ENT referrals constitute the third largest group of
patients referred to hospital specialists, where middle ear disorders are the most frequent
diseases in daily ENT practice [2]. Of particular note is chronic otitis media, the leading
cause of conductive hearing loss worldwide, affecting 65 to 330 million people, specially in
low-income countries [3].
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According to the Institute of Medicine of the National Academies of Science, Engineer-
ing, and Medicine from the US, nearly all patients will experience a diagnostic error in their
life [4]. In the US alone, approximately between 50,000–100,000 patients potentially may
die each year due to medical errors. Although otolaryngology has always been regarded
as a safe specialty due to the low morbidity and mortality rates, it is estimated that the
diagnostic error of non-specialist physicians is around 50%. Such percentage decreases to
close 30% when a specialist makes the diagnosis, but both values are still high [5]. The latter
is detrimental to the proper implementation of treatments, increases health costs, and could
lead to severe complications for the patient. There is a clear need to strengthen diagnosis
and consequent otolaryngological treatment in the health system. Due to the advent of
advanced processing techniques and the large volume of digital data available today, new
technology to assist medical diagnosis has been generated as an increasing tendency to
reduce diagnostic error in the last few years [6]. Some studies [7–9] have demonstrated
the benefit of using artificial intelligence (AI) to improve and diagnose safety for ENT
pathologies of various types by achieving a diagnostic performance of over 90%.

Otological analysis has recently attracted the attention from the scientific community
to generate new ear databases and to apply deep learning techniques [10,11]. However,
this analysis has mainly been carried out using images obtained with white light during
the external and middle ear examination by otoscopy or otoendoscopy. But tissues possess
optical properties that define their characteristics in specific light spectra. For example,
hemoglobin preferentially absorbs the light spectrum between 500 nm and 600 nm, whereas
water, lipids, or collagen predominantly absorbs infrared light spectra [12]. The tympanic
membrane and tympanic cavity also have different optical absorption and penetration
properties. For example, the tympanic membrane has an absorption pick in shorter wave-
lengths of the visible light spectrum (400–600 nm), while for wavelengths shifted to the
red or infrared (greater than 1000 nm), absorption is weak, having this chromatic spectrum
greater penetration through the tympanic membrane to the tympanic cavity [13].

The state of the art of spectral analysis for diagnosing middle ear pathologies is limited
and recent. One study published in 2015 [14] showed that differential absorption at the
multiple wavelengths provides a measure of biochemical and morphological information of
tympanic membrane. The study was conducted using a modified multi-wavelength narrow-
band otoscope in a limited cohort of five patients. More recently, a study [15] developed an
analysis of otoscopy images acquired in visible spectra and concluded that the blue and
green channels have an absorption pick for hemoglobin, highlighting vascular structures.
In contrast, the red channel has a high penetrance to the tympanic membrane, allowing
a better visualization of the structures inside the tympanic cavity. Another study [9]
identified the presence of effusions in the middle ear using machine learning algorithms.
The most important contribution was developing an otoscope that visualizes middle ear
structures and fluid in the shortwave infrared region. Although such an otoscope is not
commercially available, it encourages the development of new technology considering a
multispectral approach.

Our previous work [8] proposed a scheme for otological diagnosis using RGB (red,
green, and blue) images from the external auditory canal. The model achieved high
performance for nine ear pathologies (over 90%). However, the diagnosis of some relevant
pathologies such as chronic otitis media (COM) or otitis media with effusion (OME) that
arises from specific characteristics such as vascularization of the membrane (COM) or
the presence of fluid (OME), can be analyzed in a particular spectral band to obtain
more helpful information for the physician. In this work, we evaluate the dependence
of different color wavelengths in the performance of a computer-aided diagnosis system
based on convolutional neural networks. First, we preprocessed the data to discard useless
information and implemented a novel video summarization technique to reduce redundant
information. Next, we trained a customized convolutional neural network from scratch
to predict four possible diagnoses: normal ear, COM, OME, and earwax plug. Finally,
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we evaluate the relevant regions as a class activation heatmap employed by the model to
perform the prediction.

2. Materials and Methods

This section describes the ear imagery database and data preprocessing in detail. Also,
we present the architecture based on a convolutional neural network as a predictor of the
four ear conditions under study. Finally, this section shows the metrics used to evaluate the
performance of the proposed models.

2.1. Ear Imagery Database

Retrospective analysis of images from video otoscopy was performed in patients who
consulted at the Otolaryngology Departament of the Clinical Hospital of the University
of Chile (HCUCH) between 2018 and 2019. A total of 22,000 images of the eardrum from
195 patients were used as the database for this work. The images were extracted from
200 video otoscopies acquired by ENT specialists using a digital otoscope DE500 Firefly.
The video files were recorded at 20 FPS (frames per second) with a 640× 480 pixels resolution.

The ENT specialists of HCUCH performed at least two otoscopy examinations per
patient (left and right ear). They recorded up to three diagnoses for each ear. Our analysis
included those video otoscopies of patients with only one diagnosis related to four ear con-
ditions: normal, chronic otitis media (COM), otitis media with effusion (OME), and earwax
plug. The first row in Figure 1 shows an example of each ear condition.

0(s)  76(s) 0(s)  84(s) 0(s) 105(s) 0(s) 97(s)

Figure 1. Upper row: eardrum imaging for each ear condition. From left to right: normal, chronic
otitis media, otitis media with effusion, and earwax plug. Lower row: representation of the frames in
a video, the yellow lines are those selected as keyframes.

The study was approved by the Scientific or Research Ethics Committee of the Clinical
Hospital from University of Chile (approval number 65 996/18). All patients gave written
informed consent, and all procedures were conducted following national regulations and
the declaration of Helsinki, revision 2013.

2.2. Data Pre-Processing

We propose an image-level analysis of the frames extracted from each video otoscopy.
Some frames showed neither the ear canal nor the eardrum because the otoscopy recording
started or ended at a different location than the ear. In addition, blurred frames occurred
during acquisition due to camera movement (i.e., digital otoscope) or camera out-of-focus,
which the physician manually adjusted during the examination. We discarded all those
undesirable frames by first separating the images that effectively show the tympanic mem-
brane and then applying an algorithm to detect the level of blur in the image (considering
only uniform blurring).
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2.2.1. Image Domain Analysis

Several images acquired during otoscopy do not show the tympanic membrane or ear
canal. To avoid confusing the network by introducing useless information, we discard all
images outside the domain of interest.

Useless images were acquired at the beginning or the end of the otoscopy due to the
nature of the acquisition procedure. On the one hand, the physician starts the recording
before inserting the specula of the digital otoscope into the patient’s ear to ensure that the
camera is in focus (manual focus). On the other hand, the recording ends once the specula
have been removed from the patient’s ear producing unnecessary frames. Assuming that
the central frame of the video shows the tympanic membrane and (or) the ear canal [8], we
calculate the histogram of such a frame and compare it to each of the frames in the video
using the Kullback-Leibler divergence score. If the score falls below a certain threshold,
the frame is discarded.

2.2.2. Blurring Detector

To evaluate the blurriness in the image, we employ the Variance of the Laplacian
method as presented in [7]. Such a method computes the variance of convolving a single
image channel with the Laplacian Kernel. If the variance falls below a predefined threshold,
the image is considered blurred, and we discarded it. The Variance of the Laplacian
method is based on the fact that the Laplacian operator highlights regions of an image
containing rapid intensity changes (i.e., edges). Therefore, an image with a low variance is
considered blurred.

2.2.3. Keyframes Selection

To avoid the redundancy of the videos recorded, we implement a video summarization
technique based on Principal Component Analysis (PCA) and a clustering algorithm (e.g., K-
means). As a result, we obtain a subset of the most informative frames (keyframes) from a
video otoscopy to feed the deep neural network.

Once all blurred and out-of-domain frames were discarded, PCA was applied to find
those components that describe a whole image in the video. The first 20 components were
selected as principal components because, in our case, they explain 80% of the variance of
data. Also, the dimension of the new feature space allows decreasing the computational cost
of the process. Finally, we applied k-means to select N keyframes. The clustering algorithm
assigned each frame (represented by the previously obtained principal components) to a
specific cluster considering the smallest distance (e.g., Euclidean distance). We select only
one image per cluster, considering the one whose Euclidean distance is the smallest.

The duration of the videos ranged from 30 s until 120 s. The shorter videos belong
to the cerumen plug cases because the physician can only observe the earwax plug in
the tympanic cavity (except in partial earwax plug cases). In more complex conditions,
the physician performs a more extended examination to inspect the entire tympanic mem-
brane and gather as much information as possible. There are more data (frames) of certain
ear conditions in this sense. To avoid bias in the results due to an unbalanced database,
we apply the keyframe selection algorithm with k = N = 100 and use the same amount of
videos for each class. The bottom row of Figure 1 represents the selection of keyframes
for different video durations depending on the class. The lines in yellow represent those
frames selected.

2.3. Computer-Aided Diagnosis (CAD) System

Our proposal is implemented under the configuration of a CAD system. An image of
the tympanic membrane feeds a convolutional neural network that predicts four possible
diagnoses: normal ear, chronic otitis media, otitis media with effusion, or an earwax plug.
The network was previously trained on our otoscopy ear database. The spectral analysis of
the input data to the system and the neural network’s architecture are discussed below.
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2.3.1. Image Spectral Analysis

The database contains images in the RGB color space. That is, each pixel in the image
is composed of three values representing the light intensity in the three channels: red
(618–780 nm), green (497–570 nm), and blue (427–476 nm). With the aim to analyze the
color dependence in CNN performance, we process the images to obtain single-channel
information.

The first approach is to keep images of three channels but with two equal to zero,
as shown in the top row of Figure 2. The network receives all three channels as input data.
However, only the non-zero channel will provide the network with information. The next
step was to work with single-channel images (grayscale images) with intensity values of
each channel, as shown in the bottom row of Figure 2. In this case, the network is set to
work with single-channel images. Finally, we also use grayscale images converted from the
RGB images as a weighted linear combination of the three channels. Each pixel (i, j) of the
grayscale image is calculated as:

gi,j = 0.2989 · Ri,j + 0.5870 · Gi,j + 0.1140 · Bi,j (1)

RGB image

Grayscale image

143 201

25 237 151 123 201 141 53

10 127 51 123 221 240 16

115 217 151 125 101 154 77

150 67 91 183 251 14 76

15 27 51 23 81 174 28

35 27 51 122 201 74 149

51 23 81 154 77

25 237 151 123 201 141 53

10 127 51 123 221 240 16

115 217 151 125 101 154 77

150 67 91 183 251 14 76

15 27 51 23 81 174 28

35 27 51 122 201 74 149

10 127 51 123 251 14 76

15 27 51 143 201 14 76

25 237 151 123 201 141 53

10 127 51 123 221 240 16

115 217 151 125 101 154 77

150 67 91 183 251 14 76

15 27 51 23 81 174 28

35 27 51 122 201 74 149

R-channel

1-channel

3-channels

0 0

25 237 151 123 201 141 0

10 127 51 123 221 240 0

115 217 151 125 101 154 0

150 67 91 183 251 14 0

15 27 51 23 81 174 0

35 27 51 122 201 74 0

0 0 0 0 0

25 237 151 123 201 141 0

10 127 51 123 221 240 0

115 217 151 125 101 154 0

150 67 91 183 251 14 0

15 27 51 23 81 174 0

35 27 51 122 201 74 0

0 0 0 0 0 0 0

15 27 51 143 201 14 76

25 237 151 123 201 141 53

10 127 51 123 221 240 16

115 217 151 125 101 154 77

150 67 91 183 251 14 76

15 27 51 23 81 174 28

35 27 51 122 201 74 149

10 127 51 123 221

115 217 151 125 101

150 67 91 183 251

15 27 51 23 81

35 27 51 122 201

25 237 151 123 201 141

10 127 51 123 221 240

115 217 151 125 101 154

150 67 91 183 251 14

15 27 51 23 81 174

35 27 51 122 201 74

15 27 51 143 201 14 76

25 237 151 123 201 141 53

10 127 51 123 221 240 16

115 217 151 125 101 154 77

150 67 91 183 251 14 76

15 27 51 23 81 174 28

35 27 51 122 201 74 149

10 127 51 123 221

115 217 151 125 101

150 67 91 183 251

15 27 51 23 81

35 27 51 122 201

25 237 151 123 201 141

10 127 51 123 221 240

115 217 151 125 101 154

150 67 91 183 251 14

15 27 51 23 81 174

35 27 51 122 201 74

15 27 51 143 201 14 76

25 237 151 123 201 141 53

10 127 51 123 221 240 16

115 217 151 125 101 154 77

150 67 91 183 251 14 76

15 27 51 23 81 174 28

35 27 51 122 201 74 149

G-channel

1-channel

3-channels

25 237 151 123 201 141

10 127 51 123 221 240

115 217 151 125 101 154

150 67 91 183 251 14

15 27 51 23 81 174

35 27 51 122 201 74

25 237 151 123 201 141 53

10 127 51 123 221 240 16

115 217 151 125 101 154 77

150 67 91 183 251 14 76

15 27 51 23 81 174 28

35 27 51 122 201 74 149

10 127 51 123 251 14 76

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0

0

0

0

0

0

10 127 51 123 221

115 217 151 125 101

150 67 91 183 251

15 27 51 23 81

35 27 51 122 201

25 237 151 123 201 141

10 127 51 123 221 240

115 217 151 125 101 154

150 67 91 183 251 14

15 27 51 23 81 174

35 27 51 122 201 74

215 237 151 123 201 241

15 137 89 123 221 230

135 217 191 125 101 194

152 167 71 183 251 18

16 67 31 23 81 184

75 17 41 72 241 94

53

16

77

76

28

149

10 127 51 123 251 14 76

B-channel

1-channel

3-channels

143 201

25 237 151 123 201 141 53

10 127 51 123 221 240 16

115 217 151 125 101 154 77

150 67 91 183 251 14 75

15 27 51 23 81 174 23

35 27 51 122 201 74 149

51 23 81 154 77

25 237 151 123 201 141

10 127 51 123 221 240

115 217 151 125 101 154

150 67 91 183 251 14

15 27 51 23 81 174

35 27 51 122 201 74

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0

0

0

0

0

0

10 127 51 123 221

115 217 151 125 101

150 67 91 183 251

15 27 51 23 81

35 27 51 122 201

25 237 151 123 201 141

10 127 51 123 221 240

115 217 151 125 101 154

150 67 91 183 251 14

15 27 51 23 81 174

35 27 51 122 201 74

65 217 151 123 201 141

14 127 51 123 221 240

115 217 255 125 135 154

153 67 91 255 250 143

255 27 151 21 81 174

85 27 51 255 201 74

143 201

53

16

77

75

23

149

51 23 81 154 77

Figure 2. Matrix representation of a digital image: (upper row, from left to right) image in the RGB
color space, 3-channel image with the non-zero red channel, 3-channel image with the non-zero green
channel, 3-channel image with the non-zero blue channel; (lower row, from left to right) weighted
linear combination grayscale image, red channel grayscale image, green channel grayscale image,
blue channel grayscale image.
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2.3.2. Convolutional Neural Network

Our approach is based on the VGG-16 neural network [16], which has a simple
configuration with a quite deep architecture (about 138 million trainable parameters).
In addition, the reduced number of hyperparameters compared to other architectures
makes the VGG-16 network a practical solution for training from scratch.

The network was adapted to work with a single image channel with an input tensor
of 224× 224× 1 or 224× 224× 3 depending on the input data. The architecture, as well
as the output dimension of each layer, is shown in Figure 3. The network maintains a
consistent layout with convolution layers of a 3× 3 kernel-sized filter (always of stride 1,
and the same padding), maximum pooling layer of a 2× 2 kernel-sized filter, and stride
2. In the end, it has two fully connected layers (FC) followed by a softmax layer for the
output (prediction).

224x224x64 

112x112x128  

56x56x256
28x28x512

14x14x512
7x7x512 1x1x4096 1x1x1000

Input Tensor

224x224x1

Diagnosis

Convolution + ReLU Max Pooling Fully connected + ReLU Softmax

CNN ARCHITECTURE

Figure 3. Convolutional neural network architecture for image classification.

First convolutional layers extract low-level features such as edges, corners, or lines
from the image. The last convolutional layers recognize structures and larger shapes in the
input data. Each convolutional layer generates a feature map Xl−1

i feeding to the next layer
by convolving the input with the learnable kernels kl

ij and a trainable bias parameter bl
j and

passing through an activation function g(.) as shown in Equations (2) and (3).

Zl
j = ∑

i∈Mj

Xl−1
i ∗ kl

ij + bl
j (2)

Xl
i = g(Zl

j) (3)

where, l represents the number of layer, j de number of neuron inside the layer, and i de ith
element in the input map Mj. In our proposal, the activation function g(.) is a Rectified
Linear Units (ReLU) [17].

Pooling layer reduces the number of computational nodes and prevents overfitting.
There are not learnable parameters just realize a downsampling operation using aver-
age or maximum methods. This layer is include to provide a summary of the local
distinctive features.

Fully connected layer flattens the input data, typically the output of a convolutional
or pooling layer, and performs the same operations given in Equations (2) and (3). The in-
formation moves in one direction to a final softmax activation function. Based on Luce’s
choice axiom, softmax normalizes the output to a probability distribution over the predicted
output class [18].

2.4. Evaluation Metrics

We use a confusion matrix, which is a tool often used to describe the performance
of a classification model. The matrix is generally defined for a binary approach with a
positive and negative class (e.g., the patient has or does not have a particular disease).
However, it can be extended to a multi-class approach by using the One-vs-All method [19].
The confusion matrix is formed from four possible outcomes: true positive (TP) and true
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negative (TN) are all instances where the model correctly predicts the positive class or
negative class, respectively; false positive (FP) and false negative (FN) are all those instances
incorrectly predicted by the model as the positive class or negative class, respectively.

From the confusion matrix, other metrics are computed. The most widely used metric
is accuracy formulated in Equation (4), which represents the overall effectiveness of the
classifier. However, this metric is strongly dependent on the data distribution and can be
biased in imbalanced datasets [20]. Other metrics can be helpful in medical applications,
such as sensitivity, see Equation (5), that quantifies the capability of the model to avoid
false negatives. A high value of specificity described by Equation (6) is desirable in the
model, because it implies that the model is able to identify those true negative outcomes.

AccuracyM =
∑c

i=1
TPi+TNi

TPi+FNi+FPi+TNi

c
(4)

Sensitivity/recallM =
∑c

i=1
TPi

TPi+FNi

c
(5)

Speci f icityM =
∑c

i=1
TNi

TNi+FPi

c
(6)

Precision/PPVM =
∑c

i=1
TPi

TPi+FPi

c
(7)

F1− score =
2 · precision · recall
precision + recall

(8)

where c represents the number of classes (i = 1, . . . , 4). We also used the method One vs.
All to plot the receiver operating characteristic (ROC) curve. The horizontal axis represents
the False positive rate (1-specificity) in such a curve. In contrast, the vertical axis represents
the True positive rate (or sensitivity). A suitable classifier is expected to have the ROC
curve as close to the upper left corner as possible in the graphical space.

3. Results

This section presents the experimental setup and configuration, the performance of
individual networks using different channels, and a graph of the relevant area used for
each classifier to make the diagnosis prediction.

3.1. Experimental Setup and Configuration

We implemented the proposed scheme using the TensorFlow framework with Python
programming language. For training, we used an Intel 2.9-GHz CPU and NVIDIA GeForce
GTX1080 GPU.

After the keyframes selection stage, the ear imagery database resulted is balanced and
contains 22,000 images from four ear conditions: normal (5500 samples), OMC (5500 am-
ples), OME (5500 samples), and earwax plug (5500 samples). The database was randomly
partitioned into training/validation and testing sets with no overlap. We employed 500 sam-
ples of each class for testing. The remaining 5000 images were used for training and valida-
tion in a partition of 80% and 20%, respectively. The results reported below are derived
after an average of 10 trials with the respective dataset partitioning.

The input tensor of every single model receives an image of 224× 224. Therefore,
all images were resized before feeding the neural network. In addition, a real-time data
augmentation technique, available in Keras, was implemented to prevent the model from
overfitting. Such an option allows generated new samples per batch during the training
by performing rotations, zoom-in, zoom-out, and horizontal/vertical flips on the original
data. The hyperparameters were set as given in [16], using Adam stochastic optimiza-
tion [21] with a learning rate of 10−5. The batch size was 32, with 100 epochs during the
training process.
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3.2. Evaluation of Single-Channel CNN Model

We compute the confusion matrices for the seven models implemented as shown in
Figure 4. One model was trained with grayscale images converted from the RGB images.
The other three models were trained with grayscale images from the R, G, and B channels,
respectively. Finally, the remaining three models were trained with three-channel images,
but only one channel enabled (i.e., non-zero) R, G, and B.

422 22 52 4

48 280 127 45

7 13 480 0

2 14 0 484

C1 C2 C3 C4

C1

C2

C3

C4

417 37 42 4

61 318 79 44

8 23 458 11

2 9 0 489

C1 C2 C3 C4

C1

C2

C3

C4
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T
ru

e
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a
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e

l
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a
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l
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e
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433 28 34 5

30 338 101 31

11 21 468 0

3 24 7 466
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350

400

450

357 86 48 9

32 345 98 25

14 59 425 2
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43 338 100 19
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417 36 41 6
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27 101 362 10

5 6 0 489
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Figure 4. Confusion matrix for each trained model using: weighted linear combination grayscale
images, red channel grayscale images, green channel grayscale images, blue channel grayscale images,
3-channel images with the non-zero red channel, 3-channel images with the non-zero green channel,
3-channel images with the non-zero blue channel. C1: normal, C2: chronic otitis media, C3: otitis
media with effusion, and C4: earwax plug.

We have plotted ROC curves per each ear condition from seven models, as shown in
Figure 5. As can be seen, all models can give a promising diagnosis on all four models.
However, the performance of the classifiers is better at predicting earwax plug conditions.
In contrast, predicting COM is more challenging.

Using the metrics established in Equations (4)–(8), we evaluated the results of all
models to find the best classifier that fits the data in the diagnosis of the four ear conditions
under study, as shown in Figure 6. The radial chart shows that the model that achieved
the best performance in terms of accuracy (92.6%), sensitivity (85.25%), specificity (95.1%),
precision (85.6%), and F1-score (85%) was the one trained with grayscale green channel
images. We also show the metrics for each ear condition, and these are summarized in
Table 1. The highest values of each evaluation metric per pathology were highlighted in
bold. It can be seen that the model trained with grayscale images of the green channel
is still adequate for predicting normal ear and COM cases. However, a more accurate
prediction of OME cases is obtained when working with the red channel as well as the
accurate prediction of earwax plug cases is obtained from the blue channel.
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Figure 5. ROC curves generated by all models on the testing set for: (upper row, from left to
right) normal ear, chronic otitis media; (lower row, from left to right) otitis media with effusion,
and earwax plug.
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The evaluation was conducted on the testing set.
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Table 1. System performance comparison per class (diagnosis) using testing set.

Metric Normales COM OME Earwax Plug Model

Accuracy

93.3 86.6 90.1 96.8 Grayscale
92.3 87.4 91.9 96.5 R gray channel
94.5 88.3 91.3 96.5 G gray channel
92.5 86.4 85.0 98.0 B gray channel
90.6 84.6 88.8 97.7 R channel
90.2 86.2 89.9 98.0 G channel
93.7 85.4 85.8 97.1 B channel

Sensitivity

84.4 56.0 96.0 96.8 Grayscale
83.4 63.3 91.6 91.9 R gray channel
86.6 67.6 93.6 93.2 G gray channel
80.8 64.4 82.8 95.6 B gray channel
71.4 69.0 85.0 97.8 R channel
71.8 67.6 92.2 96.8 G channel
83.4 70.2 72.4 97.8 B channel

Specificity

96.2 96.7 88.1 96.7 Grayscale
95.3 95.4 91.9 96.1 R gray channel
97.1 95.1 90.5 97.6 G gray channel
96.3 93.7 85.7 98.8 B gray channel
96.9 89.8 90.1 97.6 R channel
96.3 92.3 89.1 98.4 G channel
97.1 90.5 90.2 96.9 B channel

Precision

88.1 85.1 72.8 90.8 Grayscale
85.5 82.2 79.1 89.2 R gray channel
90.8 82.2 76.7 92.8 G gray channel
88.0 77.4 65.8 96.4 B gray channel
88.6 69.3 74.0 93.1 R channel
86.7 74.6 73.8 95.3 G channel
90.5 71.1 71.1 91.2 B channel

F1-score

86.2 67.6 82.8 93.7 Grayscale
84.4 71.5 84.9 93.3 R gray channel
88.6 74.2 84.3 93.0 G gray channel
84.3 70.3 73.3 96.0 B gray channel
79.1 69.1 79.1 95.4 R channel
78.6 70.9 82.0 96.0 G channel
86.8 70.6 71.8 94.4 B channel

We employed Gradient-weighted Class Activation Mapping (Grad-CAM) [22] to visu-
alize the regions of input data that are relevant for predictions from the models. The class
activation heatmap for each CNN model was extracted from the last group of convolutional
layers. The results shown in Figure 7 reveal the model’s most important regions to be
considered to perform the prediction. Visually, the blue channel model correctly considers
the tympanic membrane region for the prediction. In the case of earwax plug, the wax
region is always correctly considered for prediction in all models.
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Grayscale

CNN - 1 channel 

Red

CNN - 1 channel 

Green

CNN - 1 channel 

Blue

Figure 7. Visual representation of class activation heatmap obtained from the last group of convolu-
tional neural networks using Grad-CAM, overlapped with an original image: (per row, from top to
bottom) normal ear, chronic otitis media, otitis media with effusion, and earwax plug.

4. Discussion

There is a clear need to strengthen the diagnosis and consequent otolaryngological
treatment in health systems. The accurate diagnosis of middle and external ear diseases is
challenging due to similar signs and symptoms between several pathologies. In addition,
for almost all cases is necessary an inspection using an otoscope, a tool that has remained
unchanged for, over a half-century. The inspection-based diagnosis will depend on the
expertise of the examiner.

Multispectral imaging analysis has several advantages over standard otoscopy, includ-
ing increased image contrast, clear visualization of middle ear elements, better assessment
of tympanic membrane vascularity, and improved demarcation of critical morphological
structures (e.g., the malleus and the promontory). Although there are no commercial
otoscopes available that acquire images in different spectral bands in addition to RGB,
the research results of the few works [9,14,15] in state of the art encourage the development
of new technologies considering a multispectral approach. In this work, we explored the
dependence of three different color wavelengths, including red, green, and blue channels,
in the performance of a CNN-based model to predict the diagnosis of four ear conditions.
All models could predict the diagnosis with higher accuracy than the non-specialist physi-
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cian (50%). However, COM is more challenging to predict, as evidenced by the ROC curve
presented in Figure 5, which sensitivity is also the lowest among the four conditions (70%)
–followed by normal (84.4%), OME (96%), and earwax plug (97.8%). In fact, all models
present high performance when predicting cases of earwax plug, as shown in Table 1.

The findings in this work encourage an analysis in which more pathologies that a
physician is confronted with in daily practice can be included, as well as an images analysis
in non-visible spectra such as infrared or ultraviolet.

5. Conclusions

Middle and external ear diseases with conductive hearing loss are frequent medical
consult of general practitioners and ENT specialists. However, misdiagnosis reaches
rates around 30–50%. We evaluate the dependence of different color wavelengths in
the performance of a computer-aided diagnosis system based on convolutional neural
networks. The results showed that the model trained on green channel grayscale images
outperformed others models in terms of accuracy (92%), sensitivity (85%), specificity (95%),
precision 12 (86%), and F1-score (85%). In addition, our findings showed that the model
trained with grayscale images of the green channel is still adequate for predicting normal
ear and chronic otitis media cases. However, a more accurate prediction for otitis media
with effusion cases is obtained when working with the red channel. Whereas, the accurate
prediction of earwax plug cases is obtained from the blue channel. Also, the system could
assist in different areas of medicine such as primary health care consultation, emergency
rooms, clinics, and hospitals that demonstrate the usefulness and versatility of the method,
especially for the general practitioner and the ENT specialist in case of diagnostic doubt.
More studies are needed to associate the improvement in diagnostic performance with
the establishment of clinical outcomes, such as early initiation of treatment, reduction in
adverse effects and complications, or clinical prognosis.
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Abbreviations
The following abbreviations are used in this manuscript:

ENT Ear, nose, and throat
CNN Convolutional neural network
RGB Red, green, blue
COM Chronic otitis media
OME Otitis media with efussion
HCUCH Clinical Hospital of the University of Chile
PCA Principal component analysis
fps frames per second
CAD Computer-aided diagnosis
FC Fully connected layer
ReLU Rectified linear unit
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