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Abstract

Background

Neutralizing antibodies develop in natural HIV-1 infection. Their development often takes

several years and may rely on chronic virus exposure. At the same time recent studies show

that treatment early in infection may provide opportunities for immune preservation. How-

ever, it is unknown how intermittent treatment in early infection affects development of the

humoral immune response over time. We investigate the effect of cART in early HIV infec-

tion on the properties of the memory B cell compartment following 6 months of cART or in

the absence of treatment. The patients included participated in the Primo-SHM trial where

patients with an early HIV-1 infection were randomized to no treatment or treatment for 24

or 60 weeks.

Methods

Primo-SHM trial patients selected for the present study were untreated (n = 23) or treated

for 24 weeks (n = 24). Here we investigate memory B cell properties at viral set-point and at

a late time point (respectively median 54 and 73 weeks) before (re)-initiation of treatment.

Results

At viral set-point, the memory B cell compartment in treated patients demonstrated signifi-

cantly lower fractions of antigen-primed, activated, memory B cells (p = 0.006). In contrast

to untreated patients, in treated patients the humoral HIV-specific response reached a set

point over time. At a transcriptional level, sets of genes that showed enhanced expression in

memory B cells at viral setpoint in untreated patients, conversely showed rapid increase of

expression of the same genes in treated patients at the late time point.
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Conclusion

These data suggest that, although the memory B cell compartment is phenotypically pre-

served until viral setpoint after treatment interruption, the development of the HIV-specific

antibody response may benefit from exposure to HIV. The effect of viral exposure on B cell

properties is also reflected by longitudinal changes in transcriptional profile in memory B

cells over time in early treated patients.

Introduction

Patients that start treatment in the early phase of infection are currently seen as candidates for

therapeutic interventions aiming to achieve post-treatment viral remission, such as therapeutic

vaccination. The very early reduction in viral reservoir in these early treated patients may be

key for the potential preservation of HIV-specific immune responses. From this perspective,

well-equipped T and B cells that control virus replication after cART interruption are consid-

ered to be very important. Therefore, the identification of immune parameters associated with

preservation of the memory response during HIV infection is important to providing clues for

the development of therapies needed to achieve post-treatment viral control. In the present

study we focus on the development of the humoral immune response in a cohort of patients

that were intermittently treated during early infection.

The development of a broadly neutralizing antibody (bNab) response is a key component

of an effective protective HIV-specific immune response and a target for vaccine development

[1][2][3][4]. Furthermore, bNabs limit viral rebound after structured treatment interruptions

[5] and reduce viremia in non-human primates [6][7] and humans [8]. However, only 20% of

HIV infected individuals develop bNabs that can neutralize greater than 80% of genetically

diverse viruses [9][10][11]. Although viral exposure is an important driving factor for the for-

mation of bNab, the precise mechanisms leading to development and maintenance of bNab

remain to be elucidated. Furthermore, how treatment initiated in early infection affects the

development of HIV-specific humoral immune response once treatment is interrupted, is still

unknown. Insight herein may help the design of therapeutic interventions.

The generation of long lasting protective humoral immunity requires the elicitation of neu-

tralizing antibodies secreted from long lived plasma cells, in addition to the establishment of a

pool of antigen experienced memory B cells [12]. However, the homeostasis of the memory B

cell compartment becomes perturbed during the natural course of HIV infection. This pertur-

bation consists of an increased fraction of activated memory cells, plasmablasts and exhausted

B cells at the expense of long lived plasma cells [13][14]. In acute and chronic viremic HIV-

infected individuals, envelope-specific, class-switched IgG expressing B cells, are enriched in

these activated memory and in resting memory B cell subsets and found at lower frequencies

in the tissue-like and intermediate memory B cell subsets [15]. At a functional level, HIV in-

fection induces hyperglobulinemia and drives expansion of cells with an exhausted B cell phe-

notype (CD19posCD27negCD21negFCRL4pos). The induction of exhausted B cells is also

characteristic of other chronic infections and some autoimmune disorders [16][17][18]. Para-

doxically, the same factors that drive B cell exhaustion are also related to the development of

neutralization breadth. In this context, the duration of infection, virus load and viral diversity

have been linked to the development of bNabs [19][20][21][22][23]. These studies suggest

that a balance may exist between viral exposure, perturbation of the B cell response and the
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development and maturation of Nab. A key question is how this balance is driven by the mod-

ulation of viral exposure and how it affects the properties of the B cell compartment.

Studies in patients with chronic HIV-1 infection show that reduction in viral load by com-

bination anti-retroviral therapy (cART) leads to a reduction in polyclonal B cell responses but

partial restoration of perturbed B cell subpopulations [24][25][26][27][28]. The effect of cART

upon the restoration of memory B cell responses was more evident when cART was initiated

early in the course of infection. This leads to improved in vitro memory B cell responses to

HIV envelope (gp120) and influenza, compared to individuals who started cART during

chronic infection [29]. Therefore, in the present study we explore how intermittent interven-

tion with cART during the early phase of infection to promptly contain viral replication affects

the memory B cell compartment. Moreover, it is not known how phenotypic alterations of

memory B cell subsets relate to the generation of Nab responses after interruption of cART

that has been initiated in early infection. Here we were able to address the effect of early cART

upon the properties of the memory B cell compartment following 6 months of cART or in the

absence of treatment. The Primo-SHM trial lends itself to perform memory B cell analysis in

patients who were or were not treated during early infection [30]. We explore memory B cell

phenotype, transcriptional profile, function (HIV-envelope-specific antibody titers and neu-

tralization breadth) at viral set point (36 weeks after diagnosis in untreated patients or 36

weeks after treatment interruption in the treated patients) and at the latest available time point

before (re)-start of therapy in case of decreasing CD4 counts.

Materials and methods

Please see supplementary materials (S1 File) for details of the materials and methods used in

this study.

Study subjects

The study population consisted of patients who were enrolled in the Primo-SHM study [30].

Patients included in the Primo-SHM study were over 18 years and had laboratory evidence of

PHI infection, defined as a negative or indeterminate Western blot in combination with

detectable plasma HIV-1 RNA (Fiebig stage I–IV) or, in case of a positive Western blot, a doc-

umented negative HIV screening test in the previous 180 days (Fiebig stage V–VI [31]). In the

Primo-SHM study patients were randomized to ‘no-treatment’ or ‘short term’ treatment for

24 weeks or 60 weeks. Briefly, the results of the Primo-SHM study were as follows. Patients

randomized to short- term treatment had a significantly lower viral set-point (4.0 (standard

deviation (sd) 1.0 log10 copies/ml (24 weeks arm) and 4.3 (sd 0.9) log10 copies/ml (60 weeks

arm) compared to the no-treatment arm (4.8 (sd 0.6) log10 copies/ml) (p = 0.001). The median

total time off therapy in the untreated group was 0.7 (95% CI 0.0–1.8) years compared to 3.0

(1.9–4.2) years in the 24 weeks treated group and 1.8 in the 60 weeks treated group (p = 0.001)

and [30]. The patients selected for the present study were those of whom plasma samples were

available. Furthermore, given the similar clinical outcome in the two treatment arms, patients

receiving 24 weeks of treatment were included for the analyses. In the present study patient

samples obtained at viral set-point (defined as plasma viral load (pVL) at 36 weeks after ran-

domization in untreated patients and 36 weeks after treatment interruption in the early treated

patients to allow for stabilization of the pVL) and the last available time point before (re-) start

of cART were chosen to allow for analysis of neutralizing antibodies (Fig 1). Short term treated

patients are hereafter referred to as the “treated” patient group and patients that received no

treatment to “untreated” patient group.
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The Primo-SHM trial was prior to initiation approved by the Medical Ethics Committee of

the Academic Medical Center. The informed consent included consent for participation in the

trial as well as for viro-immunological analyses. All patients gave written informed consent.

Flow cytometry

PBMC were obtained by density-gradient centrifugation and cryopreserved prior to analysis.

Multicolor flow cytometry was performed by using standard protocols using the following

antibodies: CD3 (QD655), CD14 (QD800), CD19 (ECD), CD20 (allophycocyanin [APC]-

Cy7), CD21 (Cy5PE), CD27 (QD705), CD38 (Alexa680), and IgG (BrilliantViolet421), IgD

(Cy7PE), IgA (APC) and IgM (Cy55PerCP) and CXCR5 (Alexa488). Antibody labeling was

performed at room temperature for 30 min. The data were collected on a LSRII flow cytometer

using FACSDiva software (BD Biosciences). Color compensation was performed using single-

stained samples for each fluorochrome used in addition to an unstained control. The data

were further analyzed by using FlowJo software (TreeStar, Cupertino, CA). Flow cytometric

cell sorting was performed on a 20-parameter FACSAria (BD), running FACSDiVa software

(version 6.1.3 (BD)). HIV-specific memory B cells were identified by staining with a trimeric

PE labeled YU2 gp140-foldon probe. Influenza-specific memory B cells were identified by

staining with an H1-APC labeled probe.

Gene expression profile

B cell subsets were sorted at 100 cells per well in duplicates for pooled cell (nanoarray)

dynamic RT-qPCR array (Fluidigm Biomark) and gene expression profiles were quantified

using a panel of 96 gene-specific primers as previously described [32]. Results were analyzed

Fig 1. Plasma viral load after randomization / treatment interruption in untreated and 24 weeks treated

patients. The patients depicted consist of a subgroup of the initial Primo-SHM trial [30]. The graph shows the

median viral load over time. The time points that were selected for analyses in the present study are viral setpoint

(defined as 36 weeks after randomization / treatment interruption) (*) and the latest available time point before (re)-

start of treatment (median weeks for each group) (**) (see also Table 1).

https://doi.org/10.1371/journal.pone.0173577.g001
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using JMP version 10. For each of the genes in the panel, two ratios were calculated as follows:

the first ratio denoted as ‘temporal variation’ was calculated as the ratio of difference in gene

expression occurring over time from viral setpoint to the late time point in the treated group,

to the difference in gene expression occurring over time from the viral setpoint to the late time

point in the untreated group. The second ratio denoted as ‘inter-group’ variation was calcu-

lated as the ratio of the difference in gene expression observed at viral setpoint between the

two groups to the difference in gene expression observed at the late time point between the

two groups. Statistical significance was computed for gene expression differences over time

observed within each group and between the two groups at each time point using one-tailed

and two-tailed tests. P values� 0.05 on the two-tailed t test were considered significant. Fur-

thermore, genes were mapped to pathways using KEGG Mapper.

Probes for the detection of envelope-specific antibodies

To detect serum antibodies directed towards total envelope, gp 41 (membrane proximal region

(MPER)) and CD4 binding site (CD4bs), well characterized recombinant proteins were

used: Total envelope antibodies were detected using YU2 gp140-foldon [33]. CD4bs reactive

antibodies were measured by using a resurfaced stabilized gp120 core (RSC3) as described

previously [34][35]. The RSC3 probe is a resurfaced version of the stabilized core of gp120

(HXB2Ds12F123) [36]. MPER reactive antibodies were detected by reactivity against 10E8

peptide epitope [37].

HIV-1 protein binding and neutralization assays

To evaluate the ability of patients to neutralize virus, a 6-virus panel of heterologous pseudo-

viruses was constructed. The panel contained a selection of tier 1 and 2 viruses from 3 clades

(clade A: DJ263 (tier 1b), Q168.a2 (tier 2); clade B: SF162 (tier 1a), JRFL (tier 2); clade C:

ZM109.4 (tier 1b), DU156.12 (tier 2)). Serum antibodies against HIV-1 gp140, CD4 binding

site and MPER were measured as previously described [38]. Based on background levels in

sera from uninfected donors and titers against a control pseudovirus using murine leukemia

virus Env, the cutoff for neutralization was set at an ID50 of 100.

Statistical analysis

Between-group analyses were performed using the nonparametric Mann-Whitney U test. Com-

parisons within groups were made using the Friedman test. If this yielded a significant result,

further pairwise comparisons within the group were made using the Wilcoxon matched-pairs

signed ranks test. Two-sided testing was done; P< .05 was considered to be statistically signifi-

cant. The software used for statistical analysis was IBM SPSS statistics (version 22).

Results

Patient characteristics

The Primo-SHM study patients diagnosed in early infection were randomized between two

arms: those that did not receive cART at diagnosis (untreated group) and those who received

24 weeks of cART (treated group). The patients that were analyzed in the present study are a

subgroup of the total Primo-SHM trial and consist of patients of whom samples were available.

The two time points that were selected for the analyses in the present study were viral set point

(36 weeks after randomization or 36 weeks after treatment interruption) and the latest avail-

able time point prior to (re-) start of cART (hereafter named as late time point) (median 54
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weeks (range 21–183) after inclusion in the study in untreated patients and median 73 weeks

(range 24–301) after treatment interruption in treated patients (Fig 1 and Table 1).

Changes in memory B cell compartment in treated patients until viral set

point after treatment interruption

We first set out to characterize the phenotype of B cells with respect to known B cell differentia-

tion markers. Gating strategies are shown in S1 Fig. Expression of CD21 can be used to discern

antigen experienced (immature/transitional B cells, tissue-like or activated memory) B cells and

an increase in CD21neg B cells is associated with HIV-induced B cell expansion [39]. In the

treated patient group, at viral set point, the fraction of CD21neg cells was significantly higher

compared to untreated patients (p = 0.006). At the late time point this difference persisted, albeit

not significant (p = 0.06) (Fig 2A). Furthermore, plasmablasts (PB) (CD19posCD27hiCD38hi)

were significantly higher in untreated patients at viral set point (p = 0.0005) compared to treated

patients (p = 0.38) (Fig 2B). Next we characterized the distribution of subtypes of memory B

cells based on CD21 and CD27 within IgGpos memory fraction: activated memory (AM) B cells

(CD21negCD27pos), intermediate memory (IM) B cells (CD21posCD27neg), resting memory

(RM) B cells (CD21posCD27pos) and tissue-like memory (TLM) B cells. Treated patients showed

at viral setpoint a significantly lower percentage of AM B cells (CD21negCD27pos) (p = 0.01),

TLM B cells (CD21negCD27neg) (p = 0.02) and IM B cells (CD21posCD27neg) (p = 0.008) (Fig

3A), as compared to untreated patients. At the late time point (54 weeks (median) after viral set-

point in the untreated group and 73 weeks (median) in treated patients) these differences in

memory B cell subsets were no longer apparent (Fig 3B). When interpreting the given p-values

one should realize that shifts in B cell subsets are interconnected. These data suggest that inter-

mittent treatment during early infection is associated with prolonged phenotypic changes in the

memory B cell compartment in the peripheral blood until viral set point. However, these pheno-

typic changes are transiently lost as time progresses, CD4 counts decline and virus rebounds

[30].

In order to investigate the phenotype of envelope-specific B cells at both time-points, a YU2

gp140 probe, containing a labeled trimerized envelope complex, was used. As a control for

specificity of the YU2 gp140 probe, we performed combined staining with an influenza probe

(S1 Fig). The overall frequency of gp140-specific IgGpos B cells between groups at viral set-

point were comparable ((untreated group: gp140-positive cells as percentage of IgGpos B cells:

median 0.81 (range 0.15–2.09)); treated group: gp140-positive cells as percentage of IgGpos B

cells: median 0.62 (range 0.12–2.1)(p = 0.71). Next, within the gp140-positive IgGpos B cell

Table 1. Characteristics of study participants.

untreated treated p-value

Number of patients 23 24

Age 42 (26–56) a 41 (25–60) 0.89

Viral setpoint

CD4pos T cell count (cells/uL) 340 (210–610) 600 (230–1510) 0.0001

HIV RNA (copies/mL) 7x105(3,3x103-1,2x106) 1,2x104(53–2,8x105) 0.004

Late time point

CD4pos T cell count (cells/uL) 340 (170–730) 360 (190–670) 0.56

HIV RNA (copies/mL) 2,3x104 (319–5,3x105) 1,3x104 (268–2,5x105) 0.84

weeks between viral setpoint and late sampling time point 54 (14–183) 73 (24–301)

a In the table median values and ranges are given.

https://doi.org/10.1371/journal.pone.0173577.t001
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Fig 2. Treated patients show A: a smaller fraction of antigen-primed, CD21neg, B cells at viral setpoint

as well as B: a smaller fraction of plasmablasts at viral setpoint. Horizontal bars represent median values

and statistical significance was calculated using the nonparametric Mann-Whitney U test.

https://doi.org/10.1371/journal.pone.0173577.g002
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fraction, the phenotypic distribution of the B cells was determined. In treated patients, the phe-

notype of B cells tends to shift towards a higher frequency of RM, whereas in untreated

patients this shift did not reach statistical significance (Fig 4).

Longitudinal changes in transcriptional profile of memory B cells

The phenotypic characterization of the B cell compartment in our patient cohort suggests that

the intermittent treatment of early infection results in a relative redistribution of B cell fractions,

even until 36 weeks after treatment interruption (viral set point). To investigate how early treat-

ment affects the transcriptional profile in memory B cells (IgGposCD21posCD27pos) over time,

after treatment interruption, a 96-gene panel consisting of genes involved in cell signaling,

adhesion, differentiation, activation, maturation, proliferation and trafficking was developed. At

viral setpoint and at the late time point a multiplexed qPCR assay was run in both groups. Four

of the genes in the panel did not yield any expression (AICDA, B4GALT1, PAX5, TCL1A). In

order to quantify dynamic shifts in gene expression levels between the two groups at viral set

point and the late time point, two ratios were computed for each of the remaining 92 genes (see

methods section and S1 Table): the temporal variation ratio to quantify gene expression changes

occurring over time within each group and the inter-group variation ratio to quantify differ-

ences in gene expression observed between the two groups at each time point. In Fig 5 the

results are displayed for temporal variation (x-axis) and inter group variation (y-axis). The anal-

ysis showed that the data points of 70 genes (76%) localized to lower left quadrant and 11 genes

(12%) to the upper right quadrant (Fig 5). This indicates that temporal variation within each of

the groups occurred respectively in 76% in opposite and in 12% in the same direction as did the

inter-group variation between the two groups at each time point.

Fig 3. Differences in phenotype of the B cell compartment at viral setpoint (A) and the late time point (B) between untreated

(empty symbols) and treated (filled symbols) patients. Scatterplots show the frequency of memory B cells divided by subset.

Horizontal bars represent median values and statistical significance was calculated using the nonparametric Mann-Whitney U test. Open

symbols represent untreated patients and closed symbols represent treated patients. On the y-axis percentages of cells are depicted

gated on aquanegCD19posIgGpos cells

https://doi.org/10.1371/journal.pone.0173577.g003
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To investigate if the of the size temporal variation (= changes over time) differed between

the two groups, the temporal variation ratio was calculated. For the majority (65 of the 92) of

genes (71%), the temporal variation ratio was less than 1, indicating that temporal variation

from viral setpoint to the late time point within the untreated group was greater than that in

the treated group. To investigate the magnitude of differences between groups at viral set point

compared to the late time point, the inter-group variation was calculated. This analysis showed

that for 59 of the 92 genes (64%), the inter-group variation ratio was less than 1, indicating that

differences in gene expression between the untreated and treated groups at the late time point

were greater than the observed differences at viral setpoint. 81% of those 59 genes were also a

subset of the 65 genes that accrued more gene expression changes over time in the untreated

group compared to the treated group.

In the untreated group, 59 genes (64%) showed significantly higher gene expression at viral

setpoint compared to the late time point, while in the treated group, only 5 genes (5%) showed

significantly higher gene expression at viral set point compared to the late time point. Of these

59 genes with a higher expression at viral set point in the untreated group, 41 genes (70%)

were also found to be significantly upregulated with time in the treated group. These genes

constitute 89% of all the genes that had significantly higher expression at the late time point.

This could again be a reflection of increasing viral loads in the treated group that drives the B

cell compartment towards a state comparable to that of the untreated group at viral setpoint.

Untreated patients mount a significantly better envelope-specific

antibody response over time compared to treated patients

Finally, the effect of early modulation of viral exposure on the generation of the HIV-specific

antibody response was investigated. Both patient groups showed a comparable increase in

Fig 4. The phenotype of HIV gp-140-specific B cells shows a shift towards a predominance of resting memory B cell phenotype

in treated patients. Scatterplots show the distribution of gp140 positive memory within IgGposCD19pos B cells (RM: resting memory; IM:

intermediate memory; AM: activated memory; TL: tissue like memory) in untreated (left) and treated (right) patients at viral setpoint.

Horizontal bars represent median values. On the y-axis percentages of gp140pos cells expressed as percentage of IgGposCD19pos cells

are depicted. P values show the significance level calculated by Friedman test. Further testing for differences between B cell subsets in

each group was performed using Wilcoxon matched-pairs signed ranks test and shows the following significance levels. In summary for

treated patients: RM compared to IM p<0.001; RM compared to AM p = 0.16; RM compared to TLM p = 0.18. In summary for untreated

patients: RM compared to IM p = 0.08; RM compared to AM p = 0.4; RM compared to TLM p = 0.8.

https://doi.org/10.1371/journal.pone.0173577.g004
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Fig 5. Dynamic shifts in gene expression occurring within each group with time was quantified as a ratio between

temporal gene expression differences observed in the treated group to that of the untreated group, for each of the

92 genes. This temporal variation ratio was taken as the x-coordinate. Differences in gene expression observed between the

two groups at each time point was quantified as a ratio between differences observed between the two groups at viral

setpoint to that observed at the late time point, for each of the 92 genes. This inter-group variation ratio was taken as the y-

coordinate. This graphs shows the distribution of the 92 genes based on the two calculated ratios. The polarization towards

the double negative quadrant indicates that temporal variation occurring with time within each group occurs in opposite

directions; and that the inter-group variation observed between the two groups at the viral setpoint and the late time point are

in opposite directions. In addition, for 65 genes temporal variation ratio was <1 indicating that the changes in gene expression

accrued with time in the untreated group was greater than changes accrued with time in the treated group. Also, for 59 genes

inter-group variation ratio was <1 indicating that differences in gene expression observed between the two groups were

greater at the late time point compared to those observed at the early time point.

https://doi.org/10.1371/journal.pone.0173577.g005
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number of viruses neutralized over time (S2 Fig). Next, we determined the serum antibody

titer of total gp140 specific antibodies. Although both patient groups had comparable levels of

binding anti-gp140 antibody titers, untreated patients showed a significant increase in total

binding antibody titers over time compared to treated patients (Fig 6A). Env-specific antibod-

ies can be subdivided into categories based on the epitopes of the envelope to which they bind.

In order to investigate the longitudinal dynamics of the development of envelope-specific

Fig 6. Scatterplots showing the serum endpoint titers of antibodies directed against gp140 (A), CD4

binding site (CD4bs) (resurfaced stabilized gp120 core (RSC3))(B) and membrane proximal region (MPER)

(C) in untreated (left panels) and treated (right panels) patients at viral set point (VS) and at the late time point

(late). Statistical significance was calculated with nonparametric Wilcoxon matched-pairs signed-ranks test.

https://doi.org/10.1371/journal.pone.0173577.g006
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antibodies, antibody binding titers against CD4 binding site (CD4bs), resurfaced stabilized

gp120 core (RSC3) and membrane proximal region (MPER) were determined [40][41][37]. At

viral set point, 14 of 22 patients in the untreated group (64%) had detectable antibodies against

CD4bs, versus 8 of 16 patients in the treated group (50%). In contrast to treated patients,

untreated patients showed a significant increase in CD4bs titer over time (p = 0.21 and

p = 0.008, respectively) (Fig 6B). MPER binding antibodies were detectable in all but one

patient in the untreated group and 13 of 16 patients in the treated group at viral set point.

MPER antibody binding titers were stable over time in both groups (p = 0.31 untreated

patients and p = 0.98 treated patients) (Fig 6C). These data suggest that untreated patients

mount an enhanced envelope antibody binding titer over time compared to patients treated in

the early phase of infection.

Discussion

In the present study we characterized the effect of intermittent cART intervention during the

early phase of infection on the humoral immune response by prompt containment of viral rep-

lication. The Primo-SHM study, where patients were temporarily treated during early infec-

tion, allowed us to address this subject. We showed a shift in the B cell subpopulations towards

phenotypically exhausted and activated subsets at viral setpoint in untreated individuals com-

pared to individuals given cART during early infection. These findings suggest that early

reduction of viral load phenotypically preserves the B cell compartment for periods after treat-

ment interruption. However, the predominance of this activated and exhausted B cell com-

partment in untreated patients did not preclude the development of significantly increasing

levels of envelope (CD4 binding site) -specific antibodies over time.

Earlier studies showed that shifts in B cell subpopulations occur early after infection, within

6 months after seroconversion, and that the lowering of viral load by cART is associated with

less activated and exhausted B cells [28]. In our study, we observed fewer activated and anti-

gen-primed B cells in the periphery in treated patients compared to untreated, and these num-

bers were maintained for a median of 24 weeks after structured treatment interruption. B cell

dysfunction in HIV can either be the result of direct binding of virions to the CD21 molecule

or through immune activation and / or reduced T follicular helper cell function [13][42][43].

Although our study does not provide a mechanistic insight in how cART interferes with HIV

induced B cell changes, the findings in our study in which viral load is modulated by early

treatment, point to a role of viral exposure (reflected by height of viral load and duration of

infection). Furthermore, plasmablasts have a profile characterized by increased expression of

activation markers and enhanced proliferative capacity that is normalized by lower levels of

virus [44]. The frequency of plasmablasts in early HIV infection (with high plasma viral loads)

was higher in early compared to chronic infection. This is indicative of a role in viral load bur-

den driving the size of this population [45]. In our patient group we did not observe a direct

correlation between viral load at setpoint and the phenotypic distribution of B cell subsets

(data not shown), possibly due to the rather small number of patients. The observation that

plasmablast frequencies in treated patients in our study increased at the late time point, when

virus rebounded during treatment interruption to levels comparable to untreated individuals,

is suggestive for the role of viral exposure. Furthermore, in our study we observed a tendency

towards a shift of gp140-specific B cells towards the resting memory B cell fraction in treated

patients. Although we have to be precautious in drawing firm conclusions given the smaller

number of untreated patients compared to treated patients, these data suggest that early treat-

ment may lead to a relative maintenance of RM phenotype within envelope-specific IgGpos B

cell fraction.
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In addition to the described changes in B cell subset distribution, we used transcriptional

profiling to investigate differences within memory B cells between groups and over time. It

was found that changes in transcriptional profile were more profound in the untreated group

when compared to treated patients. Furthermore, there was a large overlap between genes that

were differentially expressed at viral setpoint and at the late time point. This leads to the specu-

lation that the greater differential observed in gene expression levels between the two groups at

the late time point might largely be a consequence of the sustained gene expression changes

occurring over time in the untreated group due to greater viral exposure. These findings sug-

gest that indeed viral exposure may drive these changes in transcriptional profile in untreated

patients and that these are limited by early treatment. These findings suggest that early events

in B cell priming may lead to genetic imprinting that is maintained over the course of infection

and results in decelerated gene expression changes over time in the treated group. This area of

our study warrants further investigation using next generation sequencing to elucidate path-

ways and mechanisms for potential therapeutic intervention. A caveat in our study is that it

relies on peripheral blood evaluation of B cells, and the distribution and mechanisms that

underpin the homeostatic maintenance of B cell subsets may differ significantly in secondary

lymphoid tissues where humoral responses are initiated.

From perspective of viral factors that drive the formation of neutralizing antibodies, the

height of viral load as well as diversification of the virus may play a role. The development of

neutralization breadth during acute infection is associated with a high viral load during acute

infection [46] and early cART plays a limiting role on viral diversification [47]. An unanswered

question thus far is how changes in B cell compartment by early lowering of viral load can be

linked to the development of the neutralizing antibody response. The temporal modification

of viral load early in the course of infection in the Primo-SHM trial allowed us to address this

issue. Neutralizing antibodies are directed against the surface exposed envelope spike that con-

sists of the trimeric gp120 molecule and the transmembrane gp41 molecule [48]. Many anti-

bodies target gp120 and gp41, however only a small number bind to epitopes on the envelope

spike that are broadly reactive and can neutralize the virus. The development of the antibody

response occurs in a sequential manner whereby the first to appear are non-neutralizing class-

switched antibodies [49] including antibodies targeting gp41. In the gp41 molecule, the mem-

brane proximal region of the envelope stalk (MPER) is the site that is target for binding of

neutralizing antibodies. Our finding that the increase in MPER-specific antibodies was com-

parable between untreated and treated patients can be a reflection of very early priming,

before start of treatment, of MPER antibodies producing B cells [50]. Much later, in rare cases,

broadly neutralizing antibodies develop directed against conserved epitopes on the envelope

[51][52][53]. Our observation that the untreated patients, in contrast to the treated patients,

developed a significant increase in antibody titers against total envelope and CD4 binding site

suggests that it may be the high antigen load that drives this process and that antigenically

activated memory B cell subsets may be needed for the generation of this response. Taken

together, the enhanced antibody response, in combination with the presence of an exhausted

B cell compartment in untreated infected patients as compared to patients that were treated

during early infection, illustrate the key paradox in HIV. Our data indicate that at least a cer-

tain extent of viral exposure is required for the selection of memory B cells that would give rise

to a neutralizing antibody response. Currently ongoing post-treatment control cohort studies

focus on patients that start treatment very early after infection. Recent studies showed that the

antibody response in patients that start in the earliest phase of acute infection in some cases

not even develops [54]. Together with our data this study indicates that at least a certain extent

of viral exposure is required for the selection of memory B cells that would give rise to a

neutralizing antibody response. Therefore, the design of therapeutic vaccine interventions
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aiming to achieve post-treatment control by induction of memory responses should take into

account that the development of inducible HIV-specific memory may lag in acutely treated

individuals.
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