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Slow transit constipation (STC) is a common type of constipation with a high incidence rate and a large number of patients. We
aimed to investigate the therapeutic effects and potential mechanism of paeoniflorin (PAE) on loperamide-induced Sprague
Dawley (SD) rat constipation models. Rats with loperamide-induced constipation were orally administered different concen-
trations of PAE (10, 20, or 40mg/kg). In vitro, enterochromaffin (EC)-like RIN-14B cells were treated with 20, 40, or 80 μg/ml
PAE. We found that PAE treatment significantly improved the symptoms of constipation and increased the intestinal transit rate.
Hematoxylin and eosin (H&E) staining showed that PAE alleviated colonic tissue pathological damage. Besides, our results
implied that PAE concentration-dependently promoted the content of 5-hydroxytryptamine (5-HT) catalyzed by tryptophan
hydroxylase (Tph)-1 in the serum of loperamide-induced rats and in RIN-14B cells. Western blot and immunofluorescence (IF)
stain indicated that PAE also promoted the expression of G protein-coupled BA receptor 1 (TGR5), transient receptor potential
ankyrin 1 (TRPA1), phospholipase C (PLC)-c1, and phosphatidylinositol 4,5-bisphosphate (PIP2) in vivo and in vitro. RIN-
14B cells were cotreated with a TGR5 inhibitor (SBI-115) to explore the mechanism of PAE in regulating the 5-HTsecretion. We
observed inhibition of TGR5 reversed the increase of 5-HTsecretion induced by PAE in RIN-14B cells. We provided evidence that
PAE could promote 5-HT release from EC cells and improve constipation by activating the TRPA1 channel and PLC-c1/PIP2
signaling. (us, PAE may provide therapeutic effects for patients with STC.

1. Introduction

Chronic constipation is a common gastrointestinal com-
plaint characterized by decreased bowel movements or
defecation straining, which is considered to affect the quality

of life of patients [1]. It affects 2%–27% of the general
population in Western countries [2] and 4%–6% in China
[3] with a higher prevalence in the elderly and women. In the
USA, chronic constipation imposes a substantial economic
burden with 1.7 billion in direct and indirect costs [4]. Slow
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transit constipation (STC) is a common type of chronic
constipation caused by abnormalities of colonic motility [5].
STC is mainly manifested as weakened and/or disordered
colonic peristalsis and the slow speed of stool pushing
forward and emptying. Clinically, purgative abuse is often
encountered many times and is especially worsened in the
occurrence of STC.

Recently, seeking and developing high-effect, low-poi-
son, and cheap natural medicine for the treatment of
constipation has become an international research hotspot.
More than two thousand years ago, traditional Chinese
medicine (TCM) understood the symptoms of STC and
accumulated many documents and experiences in clinical
practice over the past dynasties.(us, TCM has the potential
to improve treatment of patients with STC. Paeoniflorin
(PAE) is a biologically active ingredient extracted from the
dried root of Paeonia veitchii Lynch. It was reported that
PAE has the effects of antiatherosclerosis, antitumor,
treatment of dementia diseases, and immune regulation
[6, 7]. Particularly, PAE has been considered as an effective
drug for improving digestive system function and treating
gastrointestinal injury. Previous studies indicated that PAE
prevented intestinal ischemia/reperfusion injury and in-
testinal barrier disruption via activating LKB1/AMPK sig-
naling-mediated autophagy and anti-inflammation,
respectively [8, 9]. However, the function of PAE on STC has
not yet been fully investigated.

Many studies found that sensory signals in the intestinal
mucosa played an important role in regulating intestinal
motility, and their abnormality was closely related with STC
progression [10, 11]. (e report demonstrated that 5-hy-
droxytryptamine (5-HT), known as an intestinal neuro-
transmitter, was abnormally distributed or expressed in the
colonic tissues of the STC mice model [12]. Enterochro-
maffin (EC) cells, which function as chemosensors in the
intestinal epithelium, are known to secrete 5-HT, contrib-
uting to physiological reactions such as the intestinal
peristalsis reflex [13]. Hence, this study investigated the
effect of PAE on the improvement of constipation in vivo
using the loperamide-induced rat model. Furthermore, we
also explored the underlying mechanism of PAE regulating
the release of 5-HT from EC cells.

2. Methods and Materials

2.1. Animals and Treatment. 30 Sprague Dawley (SD) male
rats (SPF grade, 6 weeks) were purchased from Chengdu
Dossy Experimental Animals Co., Ltd. (Chengdu, Sichuan)
and raised at Chengdu University of TCM. (e feeding
environment was 25± 1°C, relative humidity 50%–60%, and
light/darkness for 12 h circulation. SD rats are allowed to eat
and drink freely. All experiments were approved according
to the Ethics Committee of Chengdu University of TCM.

PAE (purity, >95%) was purchased from Guizhou Dida
Technology Co., Ltd. (Guizhou, China). Five different
groups of rats were categorized (n� 6), namely, control
group, model group, 10mg/kg PAE (PAE low) group,
20mg/kg PAE (PAE medium) group, and 40mg/kg PAE
(PAE high) group. Constipation was induced by

subcutaneous injection of loperamide (3mg/kg) twice a day
for 6 days, and the rats in the control group were injected
with saline. After establishing the constipation models, the
PAE low group, PAE medium group, and PAE high group
were orally administered with 10mg/kg/d, 20mg/kg/d, and
40mg/kg/d PAE, respectively. After 2 weeks of different
treatments, all rats were euthanized after being sedated with
1% sodium pentobarbital (50mg/kg). (e colons were
extracted and stored at −80°C for further examination.

2.2. Measurement of Faecal Output and Water Content.
Rat stool pellets were collected for 24 hours and counted,
and then the characteristics were assessed. Manure pellets
were dried in an incubator at 60°C. (e fecal water content
was calculated as follows: water content (%)� ((wet
weight− dry weight)/wet weight)× 100.

2.3. Intestinal Transit Ratio. (e intestinal transit ratio was
determined as described previously [14]. In brief, after 30
minutes of gavage with PAE on the last day of the experi-
ment, 2mL of 10% charcoal aqueous suspension was ad-
ministered orally. And 25 minutes later, the rats were
euthanized by cervical dislocation, the small intestines were
collected, and the total length and the travel distance of the
charcoal in the intestine were measured. (e intestinal
transit ratio was calculated as follows: intestinal transit
ratio� (travel distance of the charcoal in the intestine/the
length of the small intestine)× 100.

2.4.Hematoxylin andEosin (H&E) Stain. (e colonic tissues
of rats were fixed in 4% paraformaldehyde for 24 hours
before being embedded in paraffin. (e colon was used for
histopathological examinations by staining with hematox-
ylin and eosin (H&E). (en, pathological changes of colonic
tissues were examined using the BX70 research microscope
(Olympus, Tokyo, Japan).

2.5. Cell Culture and Treatment. RIN-14B (a rat pancreatic
islet cell line) was obtained from the Shanghai Cell Bank
(Shanghai, China). RIN-14B cells were maintained in
RPMI1640 medium complemented with 10% FBS at 37°C
with 5% CO2 in a humidified incubator. For cell processing,
cells were treated with PAE (Solarbio, Beijing, China) at
different concentrations (20, 40, or 80 μg/ml) for 24 hours.

2.6. CCK-8 Assay. RIN-14B cells (2×104 cells/well) were
seeded into 96-well plates and cultured for 24 hours. (en,
the cells were incubated with PAE (20, 40, or 80 μg/ml) for 24
hours. (e cell vitality of RIN-14B cells was determined by
CCK-8 ((ermo Fisher Scientific) as directed by the man-
ufacturer. Absorbance was recorded at 450 nm.

2.7. 5-HTReleaseAssay. Small pieces of colonic tissue were
washed with PBS followed by homogenizing with PBS
(10mg tissue per 100 μL PBS). (e resulting suspension
was subjected to ultrasonication to further break down
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the cell membranes, and then homogenates were
centrifuged for 15 minutes at 1500 × g. (e supernatants
were collected and stored at −80°C until the 5-HT
measurement.

RIN-14B cells were seeded into 6-well plates and cul-
tured for 24 hours. Subsequently, cells were treated with PAE
(20, 40, or 80 μg/ml) for 24 hours.(e cells were washed with
Hank’s balanced salt solution (HBSS) containing 0.1% BSA
and preincubated with 2 μM fluoxetine (5-HT reuptake
inhibitor) for 1 hour. (en, the cells were incubated with
2ml HBSS containing stimulants for 30 minutes at 37°C.(e
assay buffer was collected and centrifuged for 3 minutes at
1000 × g to remove any detached cells.

(e 5-HT concentration in colonic tissues and in the
culture supernatant of RIN-14B cells was measured using an
ELISA kit (Takara, Japan) as per the manufacturer’s in-
structions. (e absorbance was measured at a 450 nm
wavelength using an enzyme-linked immune monitor
((ermo Fisher Scientific, Inc., USA).

2.8. Immunofluorescence (IF) of Tryptophan Hydroxylase
(Tph)-1 and G Protein-Coupled BA Receptor 1 (TGR5).
Paraffin sections of colonic tissues were dewaxed and hy-
drated. (e sections were incubated in QuickBlock™
Blocking Buffer (Beyotime Biotechnology, Jiangsu, China,
P0260) for 30 minutes at room temperature. RIN-14B cells
were fixed with 4% paraformaldehyde for 30 minutes at 4°C.
After cells were washed with PBS three times, they were
incubated with 0.5% Triton X-100 for 15 minutes. (en, the
sections of RIN-14B cells were incubated with Tph-1 anti-
body (Abcam, ab228588; 1/150) or TGR5 antibody (Abcam,
ab114081; 1/200) at 4°C overnight and washed 3 times with
phosphate-buffered saline (PBS). (en, DAPI (Abcam,
ab104139; 1/2000) was added dropwise into the sections for
5 minutes. (e staining was observed under a fluorescence
microscope (BX53 Olympus, Tokyo, Japan) at 100×

magnification.

2.9. Western Blot Analysis. Colonic tissues or RIN-14B cells
were fabricated using RIPA buffer (Signaling Technology,
Inc.). (e protein concentration was examined by a BCA kit
(Sigma-Aldrich; Merck KGaA). Total protein (30 μg/sample)
was separated via 10% SDS-PAGE and to nitrocellulose
membranes. 5% nonfat dried milk was used to block the
membranes. (e corresponding protein antibodies were as
follows: TGR5 (Abcam, ab72608; 1/1000), transient receptor
potential ankyrin 1 (TRPA1; Alomone Labs, ACC-037; 1/
1000), phospholipase C (PLC)-c1 (Abcam, ab76155; 1/
5000), phosphatidylinositol 4,5-bisphosphate (PIP2; Santa
Cruz, sc-53412; 1/200), Tph-1 (Abcam, ab228588; 1/1000),
and β-actin (Boster, BM0627; 1/1000). (en, the membrane
washing was performed with Tris-buffered saline/0.1%
Tween (TBST) and incubated for 1.5 hours with anHRP goat
antirabbit IgG (Abcam, ab6721). (e band visualization was
carried out using the ECL system (Affinity Biosciences,
Cincinnati, Ohio, USA), and as an internal control, β-actin
was used.

2.10. Statistical Analysis. Means and standard deviations
were used to represent the data. SPSS 20.0 (IBM Corp.) was
used for statistical analysis. (e comparison between groups
was done using a one-way analysis of variance (ANOVA)
with Tukey’s post hoc test of means. P< 0.05 were deter-
mined as statistically significant.

3. Results

3.1. Paeoniflorin Concentration-Dependently Accelerated
Colonic Motility and Defecation. As shown in Figure 1(a),
food intake did not differ significantly among all groups.
20mg/kg PAE and 40mg/kg PAE treated rats demonstrated
more water consumption than in the normal control rats
(Figure 1(b)). Similarly, macroscopic evidence of watery
stool in the colon was dramatically observed in PAE (10, 20,
and 40mg/kg)-treated rats compared with the model group
(Figure 1(c)). In addition, loperamide-induced rats showed a
decrease of fecal pellet number and their moisture content,
while PAE treatment concentration-dependently improved
these differences (Figures 1(d)–1(f)). Compared with the
model group, PAE significantly increased the rate of in-
testinal transit in a dose-dependent manner (Figure 1(g)).
Taken together, these results indicated that administration of
PAE improved colonic motility and defecation in consti-
pated rats.

3.2. Paeoniflorin Improved the Pathological Changes of Co-
lonic Tissue in Constipated Rats. We then investigated the
effect of PAE on structural alteration of the colonic tissue
using H&E staining. As shown in Figure 1(h), in the model
group, the structure of colonic tissue was damaged, in-
cluding mucosal epithelial cell necrosis and abscission, in-
flammatory cell infiltrates in the laminae propria.
Fortunately, the structure of the colonic tissue of the rats in
PAE-treated groups was gradually recovered to the same
level of as that of the control group, and the infiltration of
inflammatory cells in the colonic tissue was decreased
(Figure 1(h)).

3.3. Paeoniflorin Triggered 5-HT Secretion and Tph-1 Ex-
pression for GutMotility. As 5-HT is an important signaling
molecule in the gut [15], we investigated the release of 5-HT
in the serum of constipated rats. Marked upregulation of 5-
HTwas observed in the serum of constipated rats, which was
reversed by PAE treatment in a dose-dependent manner
(Figure 2(a)). Tph-1 expression was reported to reduce in the
bowels of patients with gastrointestinal dysfunction, in-
cluding constipation [16]. And Tph-1 catalyzed the bio-
synthesis of 5-HT in EC cells [15]. (us, we next used a
western blot assay and IF staining to explore the effect of
PAE on Tph-1 expression. As shown in Figures 2(b)–2(d),
the expression of Tph-1 was decreased by prucalopride
treatment. Moreover, PAE (10, 20, and 40mg/kg) treatment
concentration-dependently hindered a significant decrease
in the expression of Tph-1 in the colonic lamina propria of
constipated rats (Figures 2(b)–2(d)).
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Figure 1: Paeoniflorin concentration-dependently improved constipation and colonic tissue pathology in rats. Food intake (a) and water
consumption (b) were tested immediately using an electric balance and measuring cylinder. (c) Visual observation of stool morphology. (d,
e) Fecal pellet number was recorded in 24 hours. (f ) Water content was measured after drying stools in a 60°C oven for 12 hours. (g)
Intestinal transit rate was detected. (h) H&E-stained colonic tissue after administration of PAE (10, 20, and 40mg/kg) was observed at 100×

and 400×. Arrows, mucosal epithelial cell abscission. Data are mean± SEM. ∗P< 0.05 and ∗∗P< 0.01 vs. NC group; #P< 0.05 and ##P< 0.01
vs. model group.
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Figure 2: Continued.
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3.4. Paeoniflorin Activated TGR5/TRPA1 Signaling Pathway
for Gut Motility. TGR5, as a metabolic regulator, was in-
volved in energy homeostasis and control of gastrointestinal
motility [17]. We further found that the expression of TGR5

was significantly decreased in the loperamide-induced group
than that in the control group (Figures 3(a)–3(c)). However,
PAE treatment markedly concentration-dependently in-
creased TGR5 expression in the mucosal epithelium of
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Figure 2: Paeoniflorin triggered 5-HT secretion and Tph-1 expression for gut motility. (a) (e 5-HT secretion in the serum of rats was
assessed using ELISA. (b–d) (e expression of Tph-1 in colonic tissues of rats was tested using western blot and immunofluorescence (IF)
stain. Scale 100 μm. Data are mean± SEM. ∗∗P< 0.01 vs. NC group, #P< 0.05 and ##P< 0.01 vs. model group.
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Figure 3: Paeoniflorin activated the TGR5/TRPA1 signaling pathway for gut motility. (e protein level of TGR5 in the colonic tissues of
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colonic tissues (Figure 3(a)–3(c)). Indeed, the TRPA1
channel, a downstream regulatory protein of TGR5, was
reported to induce 5-HT release in EC cells [17]. Western
blot assay showed that the protein expression of TRPA1,
PLC-c1, and PIP2 were attenuated in colonic tissues of
constipated rats (Figures 3(d) and 3(e)). Consistently, we
observed enhanced TRPA1, PLC-c1, and PIP2 expression in
PAE-treated groups (Figures 3(d) and 3(e)).

3.5. Paeoniflorin Induced TGR5/TRPA1 Signaling Activation
for 5-HT Release and Tph-1 Expression in EC Cells. Since EC
cells are the main source of peripheral 5-HT, we then in-
vestigated the role of PAE in EC cells. Different concen-
trations of PAE (20, 40, or 80 μg/ml) were used to treat RIN-
14B cells, which are considered to be a model for EC cells
due to 5-HTsecretion.(eCCK-8 assay indicated that 20 μg/
ml and 40 μg/ml PAE increased cell proliferation compared
with the control group at the first 24 hours, and at 48 hours,
cell proliferation was dose-dependently promoted by PAE
treatment (Figure 4(a)). Meanwhile, 5-HT secretion was
increased in PAE treated-RIN-14B cells in a dose-dependent
manner (Figure 4(b)).

(en, we used western blot and IF analysis to check for
changes in Tph-1 expression and TGR5/TRPA1 signaling
activation. As shown in Figures 4(c)–4(e), PAE treatment
dose-dependently activated Tph-1 expression in RIN-
14B cells compared with the control group. Additionally, the
protein levels of TGR5, TRPA1, PLC-c1, and PIP2 were also
increased by PAE treatment (Figures 5(a)–5(d)). (erefore,
we hypothesized the TGR5/TRPA1 signaling pathway me-
diated the regulatory effects of PAE on 5-HTrelease from EC
cells.

3.6. TGR5/TRPA1 Signaling Activation Was Required for
PAE-Induced 5-HT Release and Tph-1 Expression. Finally, a
TGR5 inhibitor SBI-115 was cotreated with PAE (80 μg/ml)
to verify the mechanism of PAE on 5-HT release and Tph-1
expression in RIN-14B cells. We found that the increases of
TGR5, TRPA1, PLC-c1, and PIP2 expression in PAE
treated-RIN-14B cells were significantly weakened by SBI-
115 (Figures 6(a)–6(e)). Meanwhile, SBI-115 silted the in-
crease of RIN-14B cell proliferation induced by PAE
treatment (Figure 7(a)). As shown in Figures 7(b)–7(e), the
5-HT release and Tph-1 expression were significantly de-
creased in SBI-115 cotreated-RIN-14B cells compared with
that in PAE treated-RIN-14B cells. (ese data suggest that
PAE promoted 5-HT release and Tph-1 expression through
stimulating the TGR5/TRPA1 signaling pathway in EC cells.

4. Discussion

Loperamide is a common antidiarrheal drug in the clinic.
(e studies suggested that loperamide could inhibit intes-
tinal motility and intestinal fluid secretion through several
mechanisms such as blocking acetylcholine release [18] and
calcium channels [19], as well as inhibiting the function of
calmodulin [20]. (us, loperamide is extensively used to
establish animal constipation models [21–23]. In the present

study, we successfully established a constipation rat model
using loperamide treatment, as evidenced by decreases in
fecal pellets, fecal water content, and intestinal transit rate.
And we observed that PAE could improve these symptoms
of constipated rats and relieve the pathological changes of
colonic tissues in a concentration-dependent manner. We
confirmed that 40mg/kg was the best dose of PAE in our
experiment.

Enterochromaffin cells are located throughout the mu-
cosal layer of the gastrointestinal tract [24]. As mechanical
and chemical sensors, they can synthesize and release pe-
ripheral 5-HT and ultimately participate in many patho-
physiological processes of the gastrointestinal tract [25, 26].
5-HT is an important neurotransmitter, which binds to the
corresponding receptors in the enteric nervous system
(ENS) and smooth muscle epithelial cells and ultimately
participates in the regulation of gastrointestinal motility and
secretion functions [27, 28]. Strikingly, recent studies in the
literature have reported the different regulatory effects of
PAE on 5-HT secretion. PAE significantly attenuated
chronic unpredictable stress (CUS)-induced reductions of 5-
HTand its metabolite 5-hydroxyindoleacetic acid (5-HIAA)
in rats’ serum [29]. Meanwhile, PAE also significantly en-
hanced the expression of 5-HT and 5-HIAA in the hippo-
campus of Institute of Cancer Research (ICR) mice, which
implied that PAE had antidepressant-like effects [30]. A
study showed that PAE reduced the content of 5-HT in the
medulla of a mouse brain, whereas it expanded the content
of 5-HIAA in anesthetic rat cortex and striatum [31]. In
addition, PAE regulated hepatocellular carcinoma (HCC)
development through inhibiting the level of 5-HT receptor
1D (5-HT1D) in HepG2 and SMMC-7721 hepatoma cells
[32]. Taken together, PAE had the opposite effect on the
regulation of 5-HTsecretion and its receptor expression.(e
reason may be that PAE simultaneously regulates the ex-
pression of multiple enzymes that mediate the synthesis of 5-
HT. Tryptophan hydroxylase (Tph) is recognized to be a
rate-limiting enzyme for 5-HTsynthesis, which catalyzes the
production of 5-HT from the essential amino acid trypto-
phan [33]. Tph includes two types Tph-1 and Tph-2 to in-
volve in the synthesis of 5-HT. Intriguingly, Tph-1 is mainly
expressed by EC cells and by other non-neuronal cell types
such as adipocytes, which affects the synthesis of peripheral
5-HT [34]. Tph-2 is primarily found in the brain stem and
mesenteric nerve cells, which affects the synthesis of 5-HT in
the central nervous system [35]. In our results, we found that
PAE promoted Tph-1 expression and 5-HT secretion in the
serum of loperamide-induced rats and in RIN-14B cells.
(ese findings indicate that PAE specifically increased the
content of 5-HT catalyzed by Tph-1 in EC cells.

TGR5, a member of the G protein-coupled receptor
(GPCR) family, is recognized to be a membrane receptor for
bile acids which consists of 330 amino acids forming 7
transmembrane structural domains [36]. TGR5 is ubiquitous in
human organs and tissues, including the spleen, lung, liver,
kidney, gastrointestinal tract, bone marrow, and so on [37, 38].
As a metabolic regulator, TGR5 plays an important role in bile
acid metabolism, glucose metabolism, and energy homeostasis,
as well as inflammatory response regulation [17].Moreover, the
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function of TGR5 was also extended to intestinal dynamics
regulation. And its agonists may be considered as therapeutic
options for digestive disorders [39, 40]. TGR5 mediated the
prokinetic actions of intestinal bile acids, and its deficiency
caused constipation inmice [41]. In TGR5-overexpressedmice,
colonic transit time was reduced, and the defecation frequency
was increased [41]. In the intestine, TGR5 was expressed in 5-
HTstoring EC cells and enteric neurons that firmly implicated
it in the release of 5-HT [42]. Our data indicated that PAE
increased TGR5 expression in the colonic tissue of constipated
rats and in EC cells. And inhibition of TGR5 significantly
reduced 5-HT secretion from EC cells.

Here, we also observed that PAE promoted the ac-
tivation of the TRPA1 channel and PLC-c1/PIP2 ex-
pression, which were obstructed by the TGR5 inhibitor.
TRPA1 is a sensor molecule on the EC cell membrane,
which can sense mechanical and chemical stimuli in the
intestinal cavity, mediate the release of 5-HT from EC
cells, and thereby regulate gastrointestinal motility [13].
GPCRs (including TGR5) have been shown to modulate
the activation of phospholipase C (PLC) -c1/PIP2/
TRPA1 signaling cascade [43]. And TGR5 overexpression
activated the TRPA1 channel to exacerbate itch in mice
[44]. Meanwhile, the study found that the IL-33-ST2 axis
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stimulated PLC-c1/TRPA1 signaling in EC cells for 5-HT
release, thereby maintaining intestinal homeostasis [45].
Our research provided evidence that PAE could promote
5-HT release from EC cells and improve constipation by
activating the TRPA1 channel and PLC-c1/PIP2
signaling.

5. Conclusions

In conclusion, the present findings identify PAE as signif-
icantly improving the symptoms of constipation in rats and
promoting the release of 5-HT from EC cells. And its
molecular mechanism was to promote the activity of the
TGR5/TRPA1 signaling pathway. Our results provided the
rationale for preclinical studies of PAE as a potential therapy
for STC.
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