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ABSTRACT

Even though the role of DNA mutations in cancer is
well recognized, current quantification of the RNA ex-
pression, performed either at gene or isoform level,
typically ignores the mutation status. Standard meth-
ods for estimating allele-specific expression (ASE)
consider gene-level expression, but the functional
impact of a mutation is best assessed at isoform
level. Hence our goal is to quantify the mutant–
allele expression at isoform level. We have devel-
oped and implemented a method, named MAX, for
quantifying mutant–allele expression given a list of
mutations. For a gene of interest, a mutant refer-
ence is constructed by incorporating all possible
mutant versions of the wild-type isoforms in the
transcriptome annotation. The mutant reference is
then used for the RNA-seq reads mapping, which in
principle works similarly for any quantification tool.
We apply an alternating EM algorithm to the read-
count data from the mapping step. In a simulation
study, MAX performs well against standard isoform-
quantification methods. Also, MAX achieves higher
accuracy than conventional gene-based ASE meth-
ods such as ASEP. An analysis of a real dataset
of acute myeloid leukemia reveals a subgroup of
NPM1-mutated patients responding well to a kinase
inhibitor. Our findings indicate that quantification of
mutant–allele expression at isoform level is feasible
and has potential added values for assessing the
functional impact of DNA mutations in cancers.

INTRODUCTION

The role of DNA mutations in the initiation and progres-
sion of cancers is well recognized. In the era of individual-
ized medicine, the mutation profile in a specific patient is
used as biomarker for prognosis and prediction of response
to therapy (1,2). Most mutation sites are heterogeneous; in

fact, this characteristic is one of the filters used in mutation
callers such as Mutect (3). So, we can expect that both wild-
type and mutant alleles are expressed. However, existing
methods for the estimation of RNA expression from RNA-
seq data (4–8), either at gene or isoform level, typically ig-
nores the mutation status. Biologically, the impact of a mu-
tation is likely to be mediated by the expression level of the
mutant allele, it is informative to quantify the mutant–allele
expression separately from the wild-type alleles. Hence, our
goal is to develop, given a list of mutations, a method to es-
timate the mutant–allele expression based on the RNA-seq
data.

Traditional gene-expression microarrays do not include
multiple alleles due to DNA variants in a gene. RNA-
seq data potentially contains information of the allelic
heterogeneity. Analysis of allele-specific expression (ASE)
has been commonly done for normal tissues, assuming
there are polymorphic sites––usually single nucleotide poly-
morphisms (SNPs)––within the gene (9–11). Current algo-
rithms to estimate ASE are generally gene-based and mostly
based on individual samples (12,13). Moreover it is typically
DNA-based, even when analysing RNA-seq data. For ex-
ample, a recent study (9) employs the read counts-covering
SNVs based on mapping to a genome reference rather than
to a transcriptome reference. These two mappings in general
produce conceptually distinct datasets, because only the lat-
ter contains all the known alternative transcripts. The quan-
tification of ASE is used to assess allelic imbalance, which
might be associated with phenotypic diversity including dis-
eases among individuals. ASE is also related to the so-called
expression quantitative-trait locus (eQTL), although in gen-
eral eQTLs do not have to reside within a gene (14).

During its maturation process, for approximately 50% of
human genes, the mRNA of a gene is alternatively spliced to
produce potentially distinct transcripts (15,16). To be clear,
the term ‘transcript’ naturally refers to a biological entity,
while ‘isoform’ refers to a logical entity representing the
RNA sequence of a transcript. However, when there is no
danger of confusion, we use the terms interchangeably.

Alternative splicing is an important cellular mechanism
to generate transcriptomic and phenotypic diversity. The
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functional impact of a mutation in a gene is best assessed at
isoform level, since the codon-level translation of the RNA
to amino-acids is only meaningful at isoform level. A spe-
cific mutation inside a gene may not even appear in some
isoforms of the gene. We can see this, for instance, in NPM1
gene, which we describe in detail later. It has eight wild-
type (WT) isoforms, but even though there are 14 distinct
mutations in the gene (collected from 135 NPM1-mutated
patients of the BeatAML cohort), two WT isoforms do
not have any mutant versions. More generally, the mutation
load and expression level of a mutant isoform might be dif-
ferent across the different mutant isoforms. Therefore, es-
timation of the mutant–allele expression at isoform level is
important for investigating the mutation functional impact.
A recent study implements the ideas of splice junctions and
splice graphs to quantify isoform expression, which seems
promising when the transcript reference is uncertain or in-
complete (17).

Here, we describe a method for the quantification
of Mutant–Allele eXpression––called MAX––based on
RNA-seq data. To avoid extra complexities in the proce-
dure, we assume that a list of mutations is available, either
from the same or from an external set of samples. One can
also use cancer mutations available in public databases such
as COSMIC (18). When mutation data are available for
the same set of samples, a more flexible analysis is possi-
ble; see the description of MAX2 below. Briefly, given a set
of known wild-type isoforms in the transcriptome annota-
tion and the list of mutations, we construct a new transcrip-
tome annotation that contains the list of all candidate mu-
tant isoforms. In principle, we could then use any previous
tool available for isoform-level quantification, such as Sail-
fish (4), Kallisto (6) or Salmon (5). We found, however, that
the estimation is challenging because there are substantial
sequence similarities between the wild-type and mutant iso-
forms, and also amongst the mutant isoforms themselves.
Our previously developed method XAEM (7) is more suit-
able for this purpose, particularly in identifying and merg-
ing isoforms that have close sequence similarities.

When compared using simulated data, MAX performs
well against the procedures based on Salmon (5) and RSEM
(8), and achieves higher accuracy than conventional gene-
based ASE methods such as ASEP (11) . We apply MAX to
analyse a real RNA-seq dataset (n = 461) of acute myeloid
leukemia (AML) from the BeatAML project (19), includ-
ing three of the most common mutations in AML: NPM1,
FLT3 and TP53. The analysis reveals a subgroup of NPM1-
mutated patients with low NPM1 mutant-expression that
has a better drug response than those with high NPM1
mutant-expression. In summary, we have shown that quan-
tification of the mutant–allele expression from RNA-seq
data is feasible and has potential added values for assess-
ing the functional impact of DNA mutations in cancer.

MATERIALS AND METHODS

Overview of MAX

Figure 1 shows the overview of the mutant–allele quan-
tification using MAX. We start with the gene model from
the standard transcription reference (panel A); we use the
gene NAA20 for illustration. From a list of mutations in

Figure 1. Overview of the mutant–allele expression quantification using
MAX. (A) The collection of wild-type isoforms from a gene (NAA20 is
used for illustration), and (B) the group of mutant isoforms as the basis
of WT+mutant reference with the G/A mutation in exon e6. (C) Mapping
of the RNA-seq data to the WT+mutant reference and the construction
of initial design matrix X. (D) The quantification of isoform expression �
and update of X using the AEM algorithm.

the exonic region, we construct a collection of mutant iso-
forms (panel B) to be added to the standard reference. This
extended reference will be called ‘WT+mutant Reference’.
Once the reference is constructed, we map the RNA-seq
data from multiple samples to produce read-count data y
(panel C). The initial design matrix X for the mutated gene
is then constructed following the method described in sec-
tion below. The WT and mutant isoform expression is the
parameter � in the Poisson model y ∼ X� and estimated
using the alternating expectation-maximization (AEM) al-
gorithm (D). The output is the read count for each wild-
type and mutant isoform. For down-stream analyses that
require comparisons across samples, a counts-per-million
(CPM) value is calculated to normalize the counts rela-
tive to the library size in each sample. The AEM algo-
rithm is described in more detail in (7), and the implemen-
tation of MAX is publicly available at https://github.com/
wenjiangdeng/MAX/.

Isoform quantification model

The isoform quantification model has been described pre-
viously (7). Briefly, after mapping, the RNA-seq reads that
map to a gene are summarized into a read-count vector
y, which is assumed Poisson with mean �. The most com-
monly used model is

μ = Xβ, (1)

where � is the vector of isoform expression values to be es-
timated. X is a design matrix which integrates multiple at-
tributes such as isoform length, non-uniformity effects and
RNA-seq biases. Mathematically, the elements of X trans-
late the isoform-level expression into expected read-counts.
X also summarizes the exon-sharing between isoforms (see
the example below). In general we use an alternating EM
algorithm, where in step (i) given y and an initial X, the pa-
rameter � is estimated using the EM algorithm, and in step

https://github.com/wenjiangdeng/MAX/
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Table 1. The WT design matrix X for the gene NAA20

EqClass NM 016100 NM 181527 NM 181528

001 0 0 0.40
010 0 0.26 0
100 0.04 0 0
101 0.10 0 0.10
110 0.48 0.41 0
111 0.38 0.33 0.50

(ii) given y and �, X is updated using the EM algorithm, and
iterate back to (i) until convergence.

To construct the initial X matrix, we follow a compu-
tational scheme as described previously (7). Briefly, the R
package Polyester (20) is used to simulate the RNA-seq
data. The setting of the read length, mean and standard
deviation of fragment length are obtained from real data.
For each isoform, the simulated data have a read depth of
20×, which guarantees a high coverage of each nucleotide
in the isoform. The RNA-seq reads are mapped to the ref-
erence transcriptome using the mapping tool Rapmap (21).
Table 1 shows an example of the WT design matrix X for the
N-acetyl transferase 5 (NAA20) gene, which contains three
isoforms.

A total of six equivalence classes (eqClasses) are shared
between the three wild-type isoforms. The entries in X indi-
cate the proportions of reads distributed by each isoform to
the different equivalent-classes. Each equivalence class (eq-
Class) is identified by a binary pattern that tells us which iso-
forms contribute to the eqClass. In RNA-seq mapped data
processing, an eqClass represents all the reads that map to
the same set of isoforms that define the eqClass. In some
cases, an eqClass does represent a biological exon, but in
general an eqClass represents only the sequence similarities
across isoforms as implied by the transcriptome reference.
We can see this by comparing the exon map in Figure 1A
with Table 1. Analytical evaluation of X is possible, but ex-
tremely complicated. Therefore, in MAX we build it com-
putationally from simulated mapped reads. In practice, we
use Rapmap for a fast read alignment, which outputs an eq-
Class table (22). As shown in Supplementary Table S1, this
table contains detailed information for each eqClass.

Construction of mutant X

To construct the initial X for a mutant gene, we need to con-
sider the mutant versions of each wild-type isoform. If there
are M WT isoforms and N distinct mutations in a gene, the
potential number of mutant isoforms is up to M × 2N. The
maximum occurs if each isoform contains all the mutation
positions, and all possible present-absent combinations of
mutations exist. Since the number of mutations is poten-
tially large, for example the FLT3 gene in the BeatAML
cohort contains 120 distinct mutations, it is not practical
and sometimes not even feasible to code and quantify each
possible mutant isoform separately. Statistically, the large
X matrix will also lead to indeterminate solution in model
(1). To avoid this problem, we need a more flexible way to
integrate the mutations.

Specifically, we consider estimating only the sum of all
the mutant isoforms associated with one WT isoform. Cru-

cially, this implies that joint mutations do not need to be
coded explicitly. For example, if two mutations occur in one
isoform, there is no need to code the mutant isoform that
contains both mutations. It is sufficient to code one mutant
isoform for each mutation. The reason is that mismatches
in mapping are allowed, where if the singly-mutated ver-
sions exist in the reference then the jointly-mutated ver-
sion will be differentiated from the WT version, and will
instead be mapped to the closest one of the singly-mutated
versions.

So we first generate one mutant isoform for each muta-
tion in the isoform. This process produces up to M × N
mutant isoform sequences, which are substantially less than
the M × 2N potential mutant isoforms mentioned above.
The sequences are then added into the WT reference and
used as the reference for RNA-seq data mapping. In the
processing of the mapping output, we then combine the mu-
tant isoforms associated with one WT isoform into one mu-
tant isoform. We illustrate the case where there are only two
mutant versions––isoform Mut1 and isoform Mut2––for a
WT version isoform WT. In Step 1, for every eqClass that
contains isoform Mut1 and isoform Mut2, we relabel iso-
form Mut1 and isoform Mut2 as isoform Mut. In Step 2,
we compare the isoform patterns from all eqClasses, and
merge eqClasses with the same binary pattern by adding the
corresponding read counts. The new eqClass table is then
used to construct the mutant X matrix. MAX also inherits
the procedure to merge paralogs from XAEM (7) method.
However, to avoid merging wild-type isoforms with mutant
isoforms, it applies the procedure only for the wild-type iso-
forms, then the mutant version follows the paralog structure
of the wild-type.

In the NAA20 gene example, there are three WT iso-
forms: NM 016100, NM 181527 and NM 181528. We
simulate a G-A point mutation at the position of
Chr20:20026790. The mutation is carried by all three iso-
forms, which means that the mutant NAA20 will have six
isoforms in total: the original three WT isoforms and the
mutant isoforms NM 016100 Mut, NM 181527 Mut and
NM 181528 Mut. For comparison, the wild-type and mu-
tant X matrices are given in Tables 1 and 2. The number of
eqClasses in the mutant X increases from 6 to 16, a large
increase in complexity due to just a single mutation. The
X matrix here is well conditioned, so it is possible to esti-
mate the expression of all isoforms and their mutant ver-
sions. Note that there are no eqClasses that correspond to
the mutant NM 016100 uniquely. This means it is not nec-
essary to have reads that cover both the mutation and the
isoform-defining part uniquely.

MAX2: extension of MAX for heterogeneous samples

Empirically, a mutated gene has one or a few variants in a
given sample, and they may vary from sample to sample,
potentially creating heterogeneity between samples. Sample
heterogeneity violates our model, where the same X ma-
trix is assumed across the samples. The single X matrix es-
timated from the pool of all samples could differ from the
appropriate X for an individual sample. Statistically, this in-
duces bias in the estimation, so sample heterogeneity will re-
duce the accuracy of a quantification method. To solve this
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Table 2. The initial design matrix X for the mutant NAA20 gene, which
contains six isoforms and 16 eqClasses

NM 016100 NM 181527 NM 181528

EqClass WT Mut WT Mut WT Mut

000001 0 0 0 0 0 0.16
000010 0 0 0 0 0.16 0
000011 0 0 0 0 0.23 0.22
000100 0 0 0 0.11 0 0
001000 0 0 0.11 0 0 0
001100 0 0 0.16 0.16 0 0
010001 0 0.07 0 0 0 0.08
010100 0 0.12 0 0.11 0 0
010101 0 0.01 0 0.01 0 0.04
100010 0.07 0 0 0 0.08 0
101000 0.12 0 0.11 0 0 0
101010 0.01 0 0 0 0.04 0
110000 0.05 0.04 0 0 0 0
110011 0.03 0.03 0 0 0.03 0.03
111100 0.36 0.36 0.31 0.32 0 0
111111 0.36 0.36 0.31 0.31 0.46 0.46

issue, we develop MAX2, an extension of MAX for hetero-
geneous samples.

We assume that the mutation data are available, for in-
stance, in a separate exome sequencing. Since each DNA
mutation corresponds to its own list of mutant isoforms,
we use the observed DNA mutations as input in MAX2.
Briefly, MAX2 starts by clustering the samples based on
their common mutation(s). Then for each cluster we derive
an initial mutant X that correspond to the relevant muta-
tion(s) that identify the group. Finally, the AEM algorithm
is applied to each cluster to obtain the isoform abundance.
If the number of individuals in a cluster is deemed too few,
such as less than five, we do not update the X matrix, so the
AEM algorithm reduces to the standard EM.

Real RNA-seq data

To investigate the mutation-specific expression, we study a
cohort of AML patients from the BeatAML project, which
provides a comprehensive resource including omics data,
clinical records and drug response data (19). A total of 461
RNA-seq samples are included for isoform quantification.
In the original study of BeatAML, the whole-exome se-
quencing (WES) data were produced as input of Mutect (3)
and Varscan2 (23) to detect the single-nucleotide variations
and indels. We collect mutations that are predicted to have
functional impact for further analysis.

Previous studies have proposed a two-hit model for the
tumorigenesis of AML, involving two classes of mutations
(24). According to the model, class-I mutations provide pro-
liferative and cancer-cell survival advantages, while class-II
mutations impair the processes of cell differentiation and
apoptosis. The most common class-I mutated genes include
FLT3 (FMS-like tyrosine kinase 3) and TP53, while NPM1
is the most common in class-II (25). The FLT3 gene is a cru-
cial component which involves haematopoiesis such as pro-
liferation and differentiation. Mutations in FLT3 have been
strongly associated with high blast counts, increased risk of
relapse and unfavorable prognosis (26). The most common
type of FLT3 mutation is an internal tandem duplication
(ITD), where the length of duplication ranges from 40 to

400 base pairs (bp). The FLT3-ITD occurs in about 27%
of AML patients, which is significantly related to the poor
overall survival (27).

TP53 is the key player in the apoptosis pathway and is
one of the most commonly mutated genes in cancer (28).
TP53 mutation in AML patients is associated with poor
survival (29). NPM1 mutations represent another common
group of genetic abnormalities in AML patients. The mu-
tations usually involve exon 12 in NPM1, which occur in
8% of pediatric AML and 30% of adult AML cases (30).
The most frequent mutation in NPM1 is a 4 bp insertion
at chr5:171410539. In this study, we focus on analysing
mutant–allele expression of the FLT3, NPM1 and TP53
genes. Further information about the mutations in these
genes from the BeatAML data is given in Supplementary
File II.

Simulated RNA-seq data

The simulation of RNA-seq data has been commonly used
to evaluate the performance of quantification methods
(5,6). To mimic the real RNA-seq dataset, we derive the ex-
pression values from a human cancer cell-line HCT116 (31),
which is processed using the Sailfish method (4). The aver-
age library size per sample is nine million, or ∼420 read-pair
counts per isoform. We simulate both non-mutated and mu-
tated RNA-seq samples for a comprehensive assessment. In
the non-mutated samples, we only assign read counts to the
wild-type isoforms, which means that the mutant isoforms
are not expressed. This is aiming to evaluate the false posi-
tive rate in each method. As described above, in this simula-
tion, we focus on FLT3, NPM1 and TP53. According to the
BeatAML data, the FLT3 gene contains 120 distinct muta-
tions, the NPM1 14 mutations and the TP53 49 mutations.

To simulate realistic mutated samples, we use the ob-
served DNA-mutations in BeatAML patients, so each sam-
ple has one or a few mutations in the gene of interest, and
the mutation profile varies across samples. For FLT3, there
are 179 patients carrying 120 unique mutations, which result
in 202 mutation events. Thus, each patient has an average of
1.13 mutations. For NPM1, a total of 135 mutation events
occur in 135 patients, which indicate that each patient car-
ries only one mutation on average. For TP53, there are 67
mutation events in 54 patients, so that each patient has an
average of 1.24 mutation events. For each sample, we gener-
ate only mutant isoforms relevant to the mutation(s) of that
sample. We then assign equal read counts to a wild-type iso-
form and its mutant isoform. If there are multiple mutant
forms of the wild-type isoform (due to multiple mutations),
each mutant isoform is expressed equally to its wild-type ex-
pression. The software Polyester is used to simulate paired-
end sequencing reads (20). We set the read length at 100 bp,
the average fragment length at 250 bp and the standard de-
viation at 25.

Method comparisons

The alignment-free methods, such as Sailfish (4), Salmon
(5) and Kallisto (6), are widely used to quantify the iso-
form expression. These methods have highly similar perfor-
mance (7,32), so we implement Salmon as the main com-
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Table 3. Comparison of median APEs in 100 non-mutated and 100 mu-
tated samples for FLT3, NPM1 and TP53

FLT3 NPM1 TP53

WT Mut WT Mut WT Mut

Non-mutated samples
MAX 0.05 0 0.06 0 0.20 0
Salmon 0.06 0.04 0.07 0 0.39 0
RSEM 0.06 0 0.08 0 0.57 0

Mutated samples
MAX 0.16 0.14 0.06 0.07 0.40 0.37
MAX2 0.13 0.10 0.07 0.07 0.13 0.12
Salmon 0.11 0.10 0.08 0.07 0.38 0.38
Salmon PTR 0.10 0.09 0.07 0.07 0.44 0.40
RSEM 0.13 0.11 0.08 0.10 0.61 0.58
RSEM PTR 0.09 0.10 0.08 0.10 0.56 0.54

parison to MAX. In principle, once a transcriptome refer-
ence annotation is established, one could use Salmon to es-
timate isoform-level expression. Our comparisons are fair
as far as they are based on exactly the same WT and WT +
mutant transcriptome references that we use for MAX. We
also implement RSEM in combination with Bowtie2 as
an alignment-based method for comparison (8). The gene
model hg38 is used as the genome and transcriptome refer-
ence. The scripts and commands to run each method are up-
loaded in MAX Github repository, the link is https://github.
com/WenjiangDeng/MAX.

Given that the mutation profiles of simulated samples
are available, as a fair comparison to MAX2, we have con-
structed the personalized transcriptome reference (PTR)
and re-run Salmon and RSEM for isoform quantification.
The methods are called Salmon PTR and RSEM PTR in
Table 3.

To measure the accuracy of each method, we calculate the
absolute proportion error (APE) defined by

APE = |E − T|/(T + 1). (2)

where E is the estimated read count and T is the true read
count (with 1 added to avoid division by zero). We sum-
marize the median APE from each isoform across all sim-
ulated samples as the final metric. In computing the APE
for MAX/MAX2, paralogs are treated like other isoforms.
Paralogs are a unique feature of MAX/MAX2, but neither
Salmon nor RSEM are aware of or warn about the para-
log problem. So, while they are not ‘apples to apples’, the
APE comparisons of the default output from each method
indicate the real performance of the existing methods when
paralogs are necessary, as in the case of TP53 gene. How-
ever, we subsequently also compare the results when we in-
clude the paralog information from MAX into the output
of Salmon and RSEM.

When using the WT + mutant reference, both the wild-
type and mutant isoforms are estimated. This means that
we can use the known non-mutated samples, which should
produce no mutant–allele expression, to assess the false
positive rate of a method. In this case, we use the wild-
type expression T to assess the mutant–allele expression
estimate E.

RESULTS

Mutant expression of the FLT3 gene in BeatAML patients

We start by illustrating the quantification of the mutant ex-
pression of FLT3. The wild-type FLT3 contains 24 exons,
organized into two isoforms: NM 004119 and NR 130706.
In the BeatAML data, we observed 120 unique muta-
tions in the exonic regions. In standard quantification, the
mutation status is ignored and the RNA-seq reads are
mapped to the WT transcriptome reference. In MAX we
construct a WT+mutant reference, by incorporating 240
possible mutant isoforms. Therefore, in addition to the ex-
pression of WT isoforms, we also have the expression of mu-
tant isoforms. As described above, the expression values of
the mutant isoforms are combined according to their WT
versions.

Figure 2 compares the isoform abundance using MAX
and the standard WT reference versus the WT + mutant
reference for 122 FLT3-mutated samples. Each isoform for
each sample will have three expression values: (i) the stan-
dard expression estimate from the WT reference, (ii) the WT
expression estimates using WT+mutant reference and (iii)
the mutant expression using WT + mutant reference. Note
that when using the WT reference, we can only get the stan-
dard WT expressions, while the mutant–allele expression is
not available. In contrast, using the WT+mutant reference,
we can quantify both WT and mutant allele expressions.
As expected, the WT-allele expression in the WT + mutant
reference (grey circles) is smaller than the standard expres-
sion estimated using the WT reference. However, the sum
of the WT and mutant–allele expression of each isoform,
estimated based on mapping to the WT + mutant reference
(black circles), match the expression estimated from the WT
reference. The results indicate that, for mutated genes, the
standard quantification using the WT reference indeed in-
cludes the mutant–allele expression.

Simulation results

To investigate the performance of MAX in quantifying
the mutation-specific expression, we simulate the RNA-seq
data of 100 non-mutated samples and another 100 mutated
samples. From the BeatAML data the FLT3 gene has 120
unique mutations, NPM1 has 14 mutations, and TP53 has
49 distinct mutations. The numbers of WT isoforms for
FLT3, NPM1 and TP53 are 2, 8 and 15, respectively; and
a total of 240, 84 and 522 mutant isoforms are incorpo-
rated in the WT+mutant reference for these genes. Because
of substantial sequence similarities, MAX merges the 15
WT isoforms of the TP53 gene into four paralogs. The mu-
tant versions are merged in the same way. The procedure to
merge paralogs is inherited from XAEM (7) method. In the
100 non-mutated samples, we only assign read-counts to the
wild-type isoforms, while in the mutated samples, an equal
number of read counts are assigned to both the wild-type
and mutant isoforms. We then implement MAX, RSEM
and Salmon to quantify the isoform expression. The median
APE for each isoform is calculated to evaluate the accuracy.
Since the number of isoforms is large, we summarize the me-
dian APE across all isoforms for each gene as the final APE
in Table 3.

https://github.com/WenjiangDeng/MAX
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A B

Figure 2. Comparison of the isoform quantification of the FLT3 gene in 122 mutated samples in the BeatAML real dataset, using the WT reference vs
WT + mutant reference. The grey circles represent the expression of the WT isoform based on the WT (x-axis) versus the expression of WT isoform based
on the WT + mutant references (y-axis). The black circles are the expression of the WT isoform based on the WT reference (x-axis) versus the sum of WT
and mutant–allele expressions based on the WT + mutant reference (y-axis).

Figure 3 shows the estimated and true expression of the
mutant isoforms of FLT3, the circles represent the 100 sim-
ulated samples. It can be seen that the circles are distributed
near the diagonal line, which indicates that MAX, RSEM
and Salmon have accurate and similar performances. The
exact value of accuracy is summarized in Table 3. The cor-
responding plots for NPM1 and TP53 are presented in Sup-
plementary Figures S1 and S2, which demonstrate similar
results.

Table 3 shows the comparison of APEs between MAX,
Salmon and RSEM, combining the isoforms of the three
genes. Supplementary Tables S2– S5 show the results for
each constituent isoform. For the WT isoforms in non-
mutated samples, MAX and Salmon generally perform a
little bit better than RSEM. For the FLT3 gene, the me-
dian APEs of MAX for NM 004119 and NR 130706 are
0.04 and 0.06, respectively, compared with 0.05 and 0.06 for
Salmon, and 0.05 and 0.08 for RSEM (Supplementary Ta-
ble S2). When summarized across isoforms in Table 3, the
corresponding median APEs are 0.05, 0.06 and 0.06. How-
ever, Salmon has some false positives for mutant FLT3 iso-
forms, giving a median APE 0.04. For NPM1, the median
APEs of MAX, Salmon and RSEM are 0.06, 0.07 and 0.08,
respectively. For the TP53 gene, the quantification results
are generally worse than for FLT3 and NPM1; the APEs for
MAX, Salmon and RSEM increase to 0.20, 0.39 and 0.57,
respectively. It seems reasonable however that as the num-
ber of constituent isoforms increases, the estimation prob-
lem becomes harder.

Isoform quantification in mutated samples is potentially
noisier, because the mutant isoforms are set to be expressed
so there is more chance for them to influence the overall
performance. Indeed, as seen in Table 3, RSEM’s perfor-
mance becomes worse for both WT and mutant isoforms,
with median APEs larger than MAX and Salmon. In con-
trast, MAX and Salmon have a stable performance in mu-
tated samples. For example, the median APEs of MAX2
in WT and mutant FLT3 are 0.13 and 0.1, respectively;
for Salmon the values are 0.11 and 0.1, respectively. As ex-

pected, MAX2 improves on MAX for the FLT3 and TP53
genes, which have a rich mutation landscapes across sam-
ples. In contrast, there is no significant improvement for
the NPM1 gene, as it is dominated by a single mutation: 4-
bp TCTG insertion. Overall, the estimates from alignment-
free methods, i.e. MAX and Salmon, are highly accurate
for both WT and mutant isoforms in non-mutated and mu-
tated samples. RSEM performs somewhat worse than the
other two methods. Salmon is better than MAX for FLT3 in
the mutated samples, and comparable to MAX2 for NPM1;
otherwise, MAX2 is more accurate than Salmon.

We now turn to the results for RSEM and Salmon based
on the personalized transcriptome reference (RSEM PTR
and Salmon PTR). For the FLT3 gene, which has hetero-
geneous mutations across individuals, the median APEs of
RSEM decrease from 0.13 to 0.09 for the WT alleles, and
from 0.11 to 0.10 for the mutated alleles. The performance
of Salmon improves slightly when using the personalized
reference. However, for the NPM1 gene, the median APEs
between the two runs were practically the same. Intrigu-
ingly, for the TP53 gene, RSEM’s accuracy improves from
0.61 to 0.56 and from 0.58 to 0.54 for WT and Mut alleles,
respectively; but the accuracy of Salmon becomes a little bit
worse, where the APEs increase from 0.38 to 0.44 and from
0.38 to 0.40 for WT and Mut alleles, respectively. These find-
ings suggest that there can be some improvements in APEs
but it is not guaranteed. The improvement depends on the
gene and the heterogeneity of the mutation profiles.

We have also checked the scenario where 100% read
counts are assigned to the mutant isoforms. The simula-
tion setting is the same as for Table 3 (100 mutated samples
with mutation profiles taken from the BeatAML data). The
results in the Supplementary Table S6 show that MAX is
slightly better than Salmon, and these two methods are bet-
ter than RSEM. We further investigate whether the paralog
merging leads to more accurate estimates than the level of
individual transcripts of other methods. We apply the same
paralog merging of the TP53 isoforms for both RSEM and
Salmon, then calculate the new median APEs for the mu-
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Figure 3. Comparison between true and estimated values for the mutant isoforms in FLT3 gene. A total of 100 simulated FLT3-mutated samples are
included in this comparison. Each circle represents one sample. (A) The estimated values of NM 004119 from MAX2 and (B) estimations of NR 130706
from MAX2. (C) The estimated values of NM 004119 and (D) estimations of NR 130706 from RSEM. (E) and (F) are estimates from Salmon. The x-axis
and y-axis are in log scale.
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Table 4. The median APE of ASEP method of FLT3 from the 100 simu-
lated RNA-seq samples

NM 004119 NR 130706

Sample group Num. of samples WT Mut WT Mut

one SNV 13 0.08 0.12 0.07 0.11
>one mutation 29 1.37 0.66 1.25 0.68
one ITD mutation 58 0.85 0.86 0.89 0.85
Total 100 0.89 0.89 0.80 0.79

tated samples. The Supplementary Table S7 shows that us-
ing the paralog merging both RSEM and Salmon achieve
lower median errors. Since TP53 has a complex mutation
profile, in this case MAX2 is more suitable than MAX and
it performs better than the other methods.

Comparison with a conventional ASE method ASEP

We apply a conventional gene-based ASE tool named
ASEP (11), which estimates allele-specific expression across
a population of samples, to analyze the 100 mutated sam-
ples. To get isoform-level estimates, it is assumed that the
mutant:WT ratio estimated at gene level applies to the iso-
form level. The assumption is satisfied in the simulation set-
ting above. We first implement STAR (33), Varscan2 (23)
and Pindel (34) to produce the input files for ASEP, which
are read counts supporting the REF and ALT allele. We
note that Pindel was designed for DNA-seq rather than
RNA-seq data, so its use here might not be as intended by
its authors. We then use ASEP to estimate the ASE at gene
level, hence get the mutant:WT allelic ratio. The XAEM
method is applied to quantify isoform-level expression us-
ing the wild-type transcript reference (7). We then apply the
mutant:WT ratio from ASEP to XAEM-based estimates to
get the allele-specific expression at the isoform level.

Here, we take FLT3 for illustration, since it only has two
isoforms, so it is straightforward to compute and compare
the mutant and WT isoforms. We use the same 100 mu-
tated samples in Table 3 and the APE is used as the perfor-
mance metric. The results are summarized in Table 4. The
overall performance of ASEP for the total 100 samples is
very poor, with APEs around 0.8–0.9, compared to APEs
around 0.10–0.13 for MAX2, Salmon or RSEM.

To understand the details, we divide the 100 samples into
three groups according to their mutation profiles. There are
13 samples with only one SNV. This group is the most nat-
ural case for ASEP. The median APEs for WT and mutant
NM 004119 are 0.08 and 0.12, respectively; for NR 130706
the APEs are 0.07 and 0.11. For the WT isoforms these are
even smaller than the overall APEs of the other methods.
This indicates that gene-based methods such as ASEP can
indeed work well in this highly specific scenario (one SNV
and equal mutant:WT ratio across isoforms).

However, when it comes to the 29 samples with more than
one mutation (e.g. two SNVs, or one SNV and one ITD
mutation), the APEs increase greatly to ∼1.3 and ∼0.67
for the WT and mutant isoforms. Thus substantially worse
than the other methods. In fact, the predominant genomic
alteration of FLT3 in AML patients is the ITD mutation,
which involves tandem duplications of varying length across
individuals. As shown in Table 4, the median APEs are

Table 5. The comparison of median APEs of ASEP, MAX and MAX2
using the 100 simulated data carrying only one SNV mutation

NM 004119 NR 130706

WT Mut WT Mut

ASEP 0.29 0.27 0.25 102
MAX 0.24 0.25 0.22 39
MAX2 0.12 0.08 0.13 0.05

∼0.85 in the ITD group (n=58), which indicates that ASEP
has a really poor performance for this mutation. Overall,
these results demonstrate that the conventional ASE meth-
ods are not applicable as a general method for quantifying
mutation-specific expression at isoform level, even when the
mutant:WT ratio is equal across isoforms.

As ASEP works well only in the case of one SNV mu-
tation, we shall continue under this setting. There are 17
unique SNVs among the real BeatAML patients. We then
sample the 17 SNVs with replacement to generate 100
SNVs and simulate the corresponding 100 RNA-seq sam-
ples, where each sample carries only one SNV mutation.
To produce a challenging dataset, in each sample, we only
assign read counts to mutant NM 004119, but mutant
NR 130706 is not expressed, so that the mutant:WT ratios
of NM 004119 and NR 130706 are 1:1 and 0:1, respectively.
We then run ASEP, MAX and MAX2 to quantify the ex-
pression. MAX2 is included because here the samples have
heterogeneous mutation profiles. ASEP-based estimates are
computed as described above. The APEs are calculated and
summarized in Table 5.

The median APEs of ASEP for WT and mutant
NM 004119 are 0.29 and 0.27, respectively. MAX has
slightly lower APEs, which are about 0.25. MAX2 achieves
a substantially higher accuracy for WT and mutant
NM 004119, the APEs are 0.12 and 0.08, respectively. For
WT NR 130706, the APEs across three methods are similar
with those of NM 004119, where MAX2 has the smallest
APE. The greatest challenge is for the mutant NM 004119,
which is not expressed. ASEP has a high APE at 102, which
indicates substantial false positive rate, which is expected
since it presumes equal mutant:WT ratios across isoforms.
The APE of MAX is 39, which is smaller than ASEP but
still shows many false positives. In contrast, MAX2 is highly
accurate and achieves a small APE at 0.05. This high accu-
racy shows the ability and advantage of MAX2 in dealing
with heterogeneous samples. Taken together, this analysis
demonstrates that an isoform-based method, under a gen-
eral scenario of unequal mutant:WT expression ratio across
isoforms, can have substantially better performance than
conventional gene-based ASE tools.

Real data analysis

We have estimated the WT and mutant isoform expression
of FLT3, NPM1 and TP53 in the BeatAML data. The num-
ber of mutated samples are 122, 82 and 36, respectively, and
all the non-mutated samples are included in the quantifica-
tion for validation purposes. The expression profile of the
isoforms of NPM1 is given in Figure 4A. This gene has
eight WT and six mutant isoforms; the mutants are put next



NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 3 9

A

B

Figure 4. (A) Boxplots of WT and mutant expression of the NPM1 gene in 82 NPM1-mutated samples from the BeatAML data. The WT and mutant
status are given at the bottom of the panel. (B) Boxplots of the mutant/WT expression ratio. The isoforms are in the same order as in (A). The red stars
at the bottom of the panel are the corresponding median ratios from the 379 non-mutated samples. (Note: the median ratio for NM 199185 is 5.21, hence
the boxplot for this isoform falls above the plotting region.)

to the WT version. Isoforms number 1 (NM 001037738)
and number 6 (NM 001355009) do not have mutant
versions.

Figure 4B shows the mutant/WT expression ratios for
the six mutant isoforms. All mutant isoforms, except for
NM 199185, do not reach the same expression level as their
WT versions. This could be partly due to the clonality,
where only some fraction of the cells carry the mutations.
The red stars at the bottom of panel (B) are the corre-
sponding median ratios from the 379 non-mutated sam-
ples. This shows that there is little false positive mutant-
expression estimated in the non-mutated samples. Similar
figures for the FLT3 and TP53 are shown in Supplemen-
tary Figures S3 and S4. We also observe little false-positive
mutant expression in the non-mutated samples of these
genes.

We next assess the biological significance of the mutant–
allele expression. Even though mutations in the NPM1 and
FLT3 genes are well-known driver mutations in AML, as
shown in the survival curves of Supplementary Figure S5,
the NPM1 and FLT3 mutation status alone are not associ-
ated with survival (logrank P-value = 0.83 and 0.10, respec-
tively). We note that these patients were normally treated,
so we are not looking at their natural history. It is possible
that differential treatment effects in the mutated and non-
mutated groups attenuated any underlying/treatment-naive
differences. The clinical significance of these mutations is,
however, visible in their interaction: the group with the best
survival is found among the ITD-negative NPM1-positive
(logrank P-value= 0.0009 versus ITD-positive NPM1-
positive). One possible explanation is that the ITD-negative
NPM1-positive group respond well to their treatment. Or,
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alternatively, the ITD-positive NPM1-positive patients are
poor responders. So, we ask the question whether there is a
subgroup of the ITD-positive NPM1-positive patients that
are good responders to some experimental treatments.

We first define two subgroups within the NPM1-positive
patients according to their level of mutant–allele expression.
Since the mutant isoforms vary substantially both in their
absolute expression level and the relative expression to the
WT version, we choose only the mutant isoform of the dom-
inant isoform NM 002520 Mut for further analysis. High
mutant expression is defined as the ratio of mutant/WT ex-
pression greater than its median value.

We then compare the high versus low mutant-expression
subgroups in terms of their drug response; statistical com-
parisons are performed using the standard t-test. We collect
a total of 32 263 experiments of these AML patients from
the ex-vivo drug screening of 122 drugs in the BeatAML
project. For each experiment, the drug sensitivity is mea-
sured in terms of its IC50 and AUC (area under the curve)
metric. A small value of either metric indicates an effective
drug for that specific tumor, or similarly the tumor is re-
sponsive to the drug. Vice versa, a high value indicates an
ineffective drug for the tumor, or a drug-resistant tumor.

Figure 5A and B shows the volcano plots of the 122 drugs.
We now consider only drugs that are significant in both
the IC50 and AUC values. This analysis identifies VX-745
and panobinostat as potentially effective drugs in the high
mutant-expression subgroup. VX-745 is a p38� mitogen-
activated protein (MAP) kinase inhibitor. Panobinostat is
an inhibitor of histone deacetylase, which regulates gene
transcription, cell-cycle progression, and apoptosis.

Figure 5C and D shows the boxplots of the IC50 and
AUC as response to VX-745 in the six subgroups defined
by ITD status and NPM1 mutant expression level. The
latter is only defined within the NPM1-positive patients.
Among the ITD-negative patients (three left-most box-
plots), both mutant subgroups have better drug response
than the NPM1-negative patients (P-value= 0.04 for low
mutant-expression versus NPM1-negative group for the
IC50 metric and 0.0004 for the AUC; there was no signifi-
cant difference between the low- versus high-mutant groups
for both metrics).

However, within the ITD-positive group (three right-
most boxplots), a good drug response is achieved only by
the low mutant-expression subgroup (P-value = 0.001 ver-
sus the high mutant-expression subgroup for the IC50, and
P-value = 0.03 for the AUC). Supplementary Figure S6
shows that the total NPM1 gene expression does not carry
the same information (P-value = 0.39 for the low- ver-
sus high-mutant subgroups.) In summary, based on the
mutant–allele expression information and in conjunction
with ITD-status, we have identified a subgroup of NPM1-
positive with a potentially good response to VX-745.

As shown in Supplementary Figure S7, panobinostat
seems to kill most cells at low dose, so there is not much
scope for individualized therapy. However, there is also
some evidence that high mutant-expresssion of NPM1 in
the ITD+ group is associated with higher drug resistance
(P-value=0.05 versus the low mutant-expression group).

DISCUSSION

One reason why MAX performs well against other methods
is likely due to the handling of sequence similarities. Mutant
alleles have strong sequence similarities with their wild-type
versions as well as with each other. Statistically, the model
is of the form � = X�, where the design matrix X captures
the exon sharing between isoforms. The sequence similar-
ities will result in an X with a poor condition number or
nearly singular. This will generally produce large variability
in the estimates. MAX can identify and avoid/reduce this
problem, since X is available explicitly. This facilitates anal-
ysis of the problem and suggests solutions by constructing
paralogs or merging of mutant isoforms. In contrast, stan-
dard methods such as Salmon, which attempt to jointly es-
timate the expression of all isoforms in the whole transcrip-
tome and do not have any explicitly defined X matrix, lack
a natural way to perform anything similar.

To some extent, mutant–allele expression is similar to
allelic-specific expression (ASE), but as far as we know cur-
rently used methods to estimate ASE are gene-based. We
have previously described that isoform level is a more mean-
ingful context to assess the impact of mutations. Moreover,
ASE is typically assessed in germ-line tissues, where allelic
imbalance is often the main interest as it might lead to
phenotypic variation. However, mutant–allele expression in
cancer may have a functional impact that has nothing to do
with allelic imbalance. Interestingly, mutant allele expres-
sion from RNA-seq is currently not commonly measured
nor reported.

The analyses of a large collection of non-mutated sam-
ples in the BeatAML data indicate very little false positive
mutant expression. We have used this fact as a validation
of MAX in real data. However, it also means that in prin-
ciple we can use MAX for gene-centric mutation detection
from RNA-seq data, based on an external list of mutations
detected by exome sequencing on independent samples or
from some public databases of known mutations. However,
this approach will presume that the mutated gene(s) are ex-
pressed, as obviously we cannot detect mutant expression if
it is unexpressed.

Our work was partly motivated by the challenge of dis-
covering an effective therapy in AML, one of the most com-
mon hematological malignancies, accounting for approxi-
mately 80% in acute leukemia patients (35). The pathogen-
esis of AML is associated with the abnormally proliferated
and differentiated myeloid stem cells, which are theoreti-
cally driven by somatic mutations. We have used a large co-
hort of AML patients from the BeatAML project to illus-
trate our method and have revealed an association between
mutant–allele expression and drug response in a subgroup
of NPM1-mutated patients. The current advances in treat-
ment have improved the outcome of young patients signifi-
cantly. However, the prognosis of the elderly patients, which
account for the majority of new cases, remains poor and
challenging. The information on the expression pattern of
mutation alleles using MAX could provide novel insights
for individualized treatment of AML patients.

Our study has some strengths and weaknesses. The main
strength is that MAX is based on a flexible tool that was
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Figure 5. (A and B) Volcano plots of the association between drug response and mutant expression in the BeatAML data. The drug response is measured
by IC50 (A) and AUC (B); 122 drugs are included in the analysis. The x-axis is the difference in drug response between the high vs low mutant subgroups,
and the y-axis is the corresponding –log10P-value. The concordant drugs 83 and 113 are panobinostat and VX-745, respectively. (C) Boxplots of IC50s of
the six groups defined by ITD status and NPM1 mutant expression. The sample sizes for the six groups are 196, 12, 20, 47, 15, 10, respectively. (D) Same
as (C) using the AUC values for drug response.

previously shown to perform well against other isoform-
quantification methods. We have assessed the performance
of MAX in a realistic simulation study and applied it to a
large cohort of 461 AML samples. In the real data anal-
ysis, it shows promising added value in identifying a sub-
group of patients that respond well to specific therapy. But
our study also has a number of shortcomings. The discov-
ery of the interesting subgroup is based on small number
of patients (n = 32 patients with ITD-positive and NPM1-
positive), so more work is needed to validate the result. The
simulation study focuses on single genes such as TP53 and
NPM1; this may violate some distributional assumptions of
isoform expression. It may also reduce the spurious map-
ping of reads from elsewhere in the transcriptome. We have
however tried to make the simulation setting as realistic as
possible. Firstly, note that MAX, RSEM and Salmon are
all accurate for non-mutated samples, so it could be more
practical and reasonable to just focus on certain mutated
genes. All mutation patterns and wild-type expression lev-
els are as observed in the real BeatAML data. In our pre-
vious method (specifically during the construction of tran-
scription clusters in XAEM (7)), we can check for each gene
whether there are reads that spuriously map from elsewhere.
For the three genes we study here there is no issue of spuri-
ously mapped reads (if there were, the X matrices for these
genes will include other genes).

One of MAX’s current shortcomings is that the muta-
tions must be in the exonic regions. If a driver mutation is in

the intronic or in the intergenic regions, then it is not clear
how to define mutant–allele expression in a meaningful way.
The concept of expression quantitative-locus (eQTL) could
be extended to these mutations. MAX assumes that the
samples are relatively homogeneous so that a single design
matrix X is appropriate. This is violated, for example, in the
analysis of TP53 gene, which contains many mutations, gen-
erating potentially heterogeneous samples. To deal with this
problem, we have developed an extension called MAX2,
which uses only the simplest clustering based on mutation
profile. A more sophisticated clustering might improve the
method further. These issues are worthy of future investiga-
tion.

CONCLUSION

We have developed and implemented a method named
MAX for isoform-level quantification of mutant–allele ex-
pression. MAX provides biologically more meaningful in-
formation than the standard quantification of mutated
genes, which is included in the wild-type allele expression.
We have shown in the simulation study that MAX per-
forms well against an implementation based on a stan-
dard isoform-quantification method. In the analysis of real
dataset of AML patients, we reveal a subgroup of NPM1-
mutated patients with a good drug response. Overall, MAX
represents a promising and informative tool for RNA-seq
data analysis.
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DATA AVAILABILITY

The MAX pipeline and source codes can be found at
https://github.com/wenjiangdeng/MAX. We also upload
the original dataset and scripts for RNA-seq data sim-
ulation and analysis in github repository, the folder is
Scripts and Files. The BeatAML dataset used in this study
is available from the BeatAML project (19).

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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