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The growth rate-dependent regulation of cell size, ribosomal
content, and metabolic efficiency follows a common pattern in
unicellular organisms: with increasing growth rates, cell size
and ribosomal content increase and a shift to energetically
inefficient metabolism takes place. The latter two phenomena
are also observed in fast growing tumour cells and cell lines.
These patterns suggest a fundamental principle of design. In
biology such designs can often be understood as the result of
the optimization of fitness. Here we show that in basic models
of self-replicating systems these patterns are the consequence
of maximizing the growth rate. Whereas most models of
cellular growth consider a part of physiology, for instance
only metabolism, the approach presented here integrates
several subsystems to a complete self-replicating system. Such
models can yield fundamentally different optimal strategies.
In particular, it is shown how the shift in metabolic efficiency
originates from a tradeoff between investments in enzyme
synthesis and metabolic yields for alternative catabolic
pathways. The models elucidate how the optimization of
growth by natural selection shapes growth strategies.
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Introduction

Growth is a fundamental property of life and, as we will reason
below, a property that is highly optimized in unicellular
organisms. Given this goal and given the knowledge of
physical and chemical limitations of living matter, it should
be possible to understand the design of certain growth
strategies in terms of growth rate maximization. Indeed, the
idea that maximization of growth is a design objective has
been successfully applied to predict experimentally observed
metabolic strategies from metabolic models. Nevertheless, as
we will see, there are limitations to these approaches since
they fail to predict a number of commonly observed metabolic
strategies, or they do so only under specific assumptions. We
believe the cause for this failure to be the fact that these models
consider only a subsystem, namely metabolism, and ignore
important aspects such as costs related to synthesis of proteins
and structural components. In this paper we will elaborate the
hypothesis that growth strategies are the result of tradeoffs in
the economy of the cell, in which growth rate maximization of
the entire system is the objective, and where the only
limitations are those set by the laws of physics and chemistry.

Growth and fitness in unicellular
organisms

In contrast to the situation for multicellular organisms, growth
of biomass and reproduction are tightly coupled processes in
unicellular organisms, since every cell division yields a new
individual. This also applies to cells originating from multi-
cellular organisms that have compromised growth control
mechanisms, like tumour cells and cell lines. The rate of
growth is an important factor in the long-term reproductive
success of such cells. Mutants, which are able to regulate their
cellular composition and metabolism in response to environ-
mental conditions in a way that increases their growth rate
under the given conditions, will outnumber their siblings. This
is clearly the case under conditions of constant nutrient
supply, but numerical dominance also provides an important
fitness advantage under fluctuating nutrient supply, because
it improves the odds for the mutant genotype to survive
starvation and colonize new resources.

Clearly, an organism cannot be optimally adapted to all
possible environmental conditions. This is the reason why
mutants with higher growth rates than the parental strain can
be obtained in the laboratory using a chemostat or by repeated
dilution in batch cultures (Helling et al, 1987; Mikkola and
Kurland, 1992; Vasi et al, 1994; Ibarra et al, 2002; Dekel and
Alon, 2005). However, the fact that these mutants are obtained
within a few hundred to thousand generations, a brief period
on an evolutionary scale, demonstrates that the selective
pressure on growth rate is high under these circumstances.
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Consequently, growth rate maximization forms a rational
basis for explaining growth strategies used by unicellular
organisms. Certainly, objectives other than maximizing
growth rate exist, such as being able to survive periods of
starvation. However, strategies that increase the growth rate
and those that improve the survival of starvation periods may
develop relatively independently. For example, sporulation in
the stationary phase of a culture may only have a minor effect
on the growth rate of that same culture during the exponential
phase. Some burden on growth probably exists because
sporulation genes have to be replicated, and some sensory
proteins have to be expressed. But these will have at most a
quantitative effect and not a qualitative effect on the general
types of growth strategies that are the focus of this paper.

Current growth models
and their limitations

The idea that the growth rate, or objectives related to growth
rate, may be maximized has been successfully applied in
theoretical models of microbial growth to predict experimen-
tally observed growth strategies related to gene expression
(Dekel and Alon, 2005) and global metabolic phenomena
(Pfeiffer et al, 2001; Kauffman et al, 2003). The latter are the
subject of this section. A well-known modelling framework
that has gained quite some momentum comprises the so-called
genome-scale models of metabolic networks (Price et al,
2004). These metabolic models are constructed using genomic
and biochemical knowledge of a particular organism. Within
this framework, flux balance analysis (FBA) has become a
popular tool to predict optimal global metabolic flux distribu-
tions (Kauffman et al, 2003). Successes of the FBA approach
were, for example, the demonstration that flux profiles in
Escherichia coli growing on acetate or succinate are optimal for
growth rate, and the prediction of flux profiles in E. coli
adapting in an evolutionary experiment to growth on glycerol
(Edwards et al, 2001; Ibarra et al, 2002). Despite the successes,
these models fail to explain a class of phenomena known as
overflow metabolism (Neijssel and Tempest, 1976) from first
principles, that is, without imposing multiple measured fluxes
as constraints on the models.

Overflow metabolism is manifested as the use of inefficient
metabolic routes and apparent spilling of energy resources,
and is generally observed in unicellular organisms growing at
high substrate availability. Well-known examples are the
Crabtree effect observed in Saccharomyces cerevisiae (van
Dijken et al, 1993), a bacterial counterpart, sometimes called
the bacterial Crabtree effect, observed for example in E. coli
(Vemuri et al, 2006) and the Warburg effect observed in many
types of tumour cells and cell lines (McKeehan, 1982; Hsu and
Sabatini, 2008). Under fully aerobic conditions these cells
divert a considerable part of the available glucose to
incompletely oxidized end products such as ethanol, acetate
or lactate. What is most surprising about this phenomenon is
that the energy-spilling catabolic pathways are used despite
the fact that these cells possess energy-efficient catabolic
pathways, which they can use to fully oxidize glucose to
carbon dioxide and water. In fact, microorganisms use energy-
efficient pathways when growing at low concentrations of
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glucose and only use energy-spilling pathways at high glucose
concentrations (Figure 1A and B). S. cerevisiae and E. coli fully
oxidize glucose at low concentrations and shift to overflow
metabolism at high glucose concentrations. Similar observa-
tions were made in other organisms. Many lactic acid bacteria
use the so-called mixed-acid fermentation at low substrate
concentrations and lactic acid fermentation at high substrate
concentrations, despite the fact that mixed-acid fermentation
yields more metabolic energy (Thomas et al, 1979; Teusink
et al, 2006). Bacillus subtilis uses full respiratory catabolism at
low glucose concentrations, but shifts to partially fermentative
metabolism at high glucose concentrations, producing lactate,
acetate and ethanol (Sonenshein, 2007).

Why these organisms do not use energy-efficient catabolism
at high substrate concentrations as well? If biomass formation
from glucose were optimized, the catabolic pathway yielding
most ATP should in general be preferred at any substrate
concentration, as is predicted by FBA. One explanation used in
a number of FBA models is that capacity constraints in the
energetically more efficient pathways prevent the cells from
behaving optimally. The term ‘overflow metabolism’ in fact
expresses this view. Only when using measured fluxes like
maximal oxygen uptake rates or other pathway capacities as
auxiliary constraints, do FBA models predict the use of
inefficient routes (Varma and Palsson, 1994; Famili et al,
2003; Oliveira et al, 2005; Vemuri et al, 2007; Figure 1, lower
panel). This approach is unsatisfying, because the auxiliary
constraints are no more than fitting parameters (Schuster et al,
2008), and it leaves us with a ‘just so” answer to the question
why these organisms do not increase the capacity of the
efficient routes by synthesizing more of the enzymes that
constitute these routes. Contradictory to the argument for a
limited capacity, there are indications that E. coli, B. subtilis
and S. cerevisiae actively suppress energy-efficient catabolism:
all three organisms have been observed to downregulate the
oxidative capacity at high glucose concentrations (DeRisi et al,
1997; Regenberg et al, 2006; Vemuri et al, 2006; Sonenshein,
2007; Westergaard et al, 2007). Also, mutants exist that display
reduced Crabtree effect and concomitantly reduced growth
rate as compared with the wild type (Diderich et al, 2001;
Westergaard et al, 2007). These data strongly suggest that
limiting the synthesis of the respiratory pathway at high
glucose concentrations, and hence switching to inefficient
catabolism, provides a fitness advantage.

Pfeiffer et al (2001) proposed a hypothesis that roots on one
hand in the thermodynamics of ATP-generating pathways and
on the other in the effects of spatial structure. For brevity, we
call this the ‘Composite hypothesis’ in this paper (Figure 1).
First, applying the principles of irreversible thermodynamics,
it was shown that maximal ATP production rates are attained
in such pathways at intermediate yields of ATP (Waddell et al,
1999). Hence, assuming that the growth rate increases with the
ATP production rate, it was concluded that maximal growth
rates are achieved at intermediate ATP vyields, and that this
provides an explanation for the existence of energy-spilling
metabolic strategies. However, this argument would exclude
the existence of energy-efficient strategies altogether. To
explain why energy-efficient strategies do exist, the authors
showed that these could be the result of natural selection in a
structured environment where cells are relatively immobile,
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Figure 1

A general trend in the use of alternative metabolic pathways and a comparison with the predictions of different models. (A) A schematic representation of the

metabolism of a cell that has a metabolically or energetically efficient and an inefficient pathway to regenerate NAD. A small fraction of the intermediate metabolite is
used in anabolism for biomass synthesis. (B) Use of efficient and inefficient pathways at different growth rates (or, equivalently, at different substrate concentrations) as a
fraction of the total flux, which equals the flux through glycolysis, in this case. The gradually increased use of inefficient pathways is a generally observed phenomenon.
The lower panel shows how different types of growth models try to explain the use of these alternative pathways. Predictions from FBA are the following: as growth rate
increases (indicated by the arrow), the flux through the efficient pathway hits its maximal limit (indicated by the butterfly symbol) and the surplus of substrate flows through
the inefficient pathway. In what we call here the ‘Composite hypothesis’, the efficient pathway is active when cells cooperate in a structured environment (left) and the
inefficient pathway is active when in free-living cells the ATP production rate, as a proxy for the growth rate, is maximized (right). The self-replicator model predicts a shift
from efficient to inefficient use of substrate as the growth rate increases, only as a result of growth rate maximization. The self-replicator model is explained in this paper.
For the other models we also refer to reviews of FBA (Kauffman et al, 2003) and the Composite hypothesis (Pfeiffer and Schuster, 2005).

for example, an agar plate, say, or soil. In such environments
cells with different metabolic strategies hardly compete for the
same resource, because they form relatively isolated colonies
of genetically identical individuals. Under these conditions,
selection on maximal biomass yield instead of growth rate will
take place, because more biomass implies more individuals.
According to this theory, a population using the energy-
efficient strategy is only stable against the invasion of fast
growing, energy-inefficient mutants in a structured environ-
ment. Consequently, in suspension cultures the energy
efficient strategy should disappear. This is a weak spot in the
theory, because there are no experimental indications for a
strict association between the use of energy-efficient strategies
and propagation in structured environments. The organisms
mentioned above have been propagated for decades in the
laboratory in well-stirred suspensions, and yet they still use
energy-efficient catabolism at low substrate concentrations.
An alternative explanation for the existence of energy-
efficient metabolism was formulated by MacLean and Gudelj
(2006). Their hypothesis stated that at high culture densities
energy-spilling individuals inhibit their own growth because
they poison themselves with the acids and alcohols that are
waste products from such metabolism. In a medium with high
concentrations of waste products, energy-efficient individuals
then have a growth advantage because their intracellular

© 2009 EMBO and Macmillan Publishers Limited

concentrations of these waste products are lower. Conse-
quently, at alternating low and high culture densities, like in
batch cultures, individuals using the energy-efficient strategy
could coexist with those using the energy-spilling strategy.
The authors were able to obtain experimental evidence for
this hypothesis using mutants of yeast. Yet, both this hypo-
thesis and the ‘structured environment’ hypothesis referred
to above are not in agreement with the observation that even
after prolonged cultivation in the chemostat, at low substrate
concentrations an yeast cell, which is capable of both types
of metabolism, continues to use the energy-efficient variant
(Wu et al, 2006).

Finally, a hypothesis often encountered in the literature
considers the production of overflow metabolites as a
chemical warfare strategy, since the acids and alcohols
produced will inhibit the growth of organisms that are less
resistant to these products (Piskur et al, 2006). The implicit
assumption in this hypothesis, contrary to the opinion
advocated by this paper, is that for growth it would always
be optimal to use an energy-efficient pathway, but that some
energy is sacrificed by all individuals of the population to kill
competitors. The consequence, however, of this individual
sacrifice for the benefit of the population would be that
‘cheater’ mutants that exclusively use the energy-efficient
route invade the population. These mutants would grow faster
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and take advantage of the warfare carried out by others. When
the need for chemical warfare disappears, as in single-species
laboratory populations, the energy-efficient cheater mutants
should even completely take over the population. However,
there are no indications that such metabolic deserters exist in
laboratory microbial populations.

So, after careful inspection of the theoretical explanations in
relation to the experimental evidence, we concluded that there
is to date no satisfying explanation, let alone a unifying one,
which explains both overflow metabolism during substrate
excess and efficient metabolism during substrate limitation.
The reason, we believe, is that current models only look at a
subsystem of the cell.

Metabolic models ignore specific protein
costs and benefits

Purely metabolic explanations for the occurrence of metabolic
strategies, like the FBA approach or the Composite hypothesis
discussed above, ignore the aspects of physiology that are
likely important for the choice of metabolic strategy. One of
these is the cost and benefits of synthesizing specific proteins
expressed in terms of their effects on growth rate. Although
some FBA models take into account the burden of synthesis of
a fixed amount of protein on metabolic energy and carbon and
nitrogen supply, the costs and benefits of specific proteins, and
also their effects on the remaining capacity of the ribosomes,
cytosolic space, and so on are ignored (Beg et al, 2007). The
significance of the costs and benefits of synthesis of specific
proteins was experimentally demonstrated by showing that
tuning of the expression of even a single transcriptional unit
can have an effect on growth and fitness, and that the optimal
state is a balance between the costs of protein synthesis and
the benefits of the enzymatic activities (Dekel and Alon, 2005).

Since a metabolic strategy usually requires tuned expression
of a set of enzymes, a significant effect on growth rate of the
synthesis of the enzymes for the alternative pathways may be
expected. These costs introduce additional tradeoffs between
the alternative metabolic pathways. For example, although
mixed-acid fermentation in Lactococcus lactis yields additional
ATP in comparison with lactic acid fermentation, the mixed-
acid fermentation pathway requires, in addition to glycolytic
enzymes, synthesis of at least five enzymes, whereas lactic
acid fermentation requires only lactate dehydrogenase (Tho-
mas et al, 1979). So, to attain the same ATP synthesis rate it is
likely that more protein has to be synthesized for the mixed-
acid fermentation pathway than for the lactic acid fermenta-
tion pathway. The same is true for ethanol fermentation in
S. cerevisiae. Although it generates more metabolic energy,
respiration requires synthesis of citric acid cycle and electron
transfer chain enzymes, as well as additional mitochondrial
machinery, whereas ethanol fermentation is accomplished
with only two additional cytosolic enzymes. The existence
of such tradeoffs is a potential source for the generation of
shifts in metabolic strategies or growth strategies in general
under different environmental conditions (Pfeiffer and
Bonhoeffer, 2004; Gudelj et al, 2007). We will work out this
idea in the next section.
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The basic properties of an optimized
self-replicator

The fact that current growth models consider only part of the
cellular design, is also the reason why they do not apply the
growth rate of the modelled system as the maximization
objective (Figure 1, lower panel). Instead, proxies for growth
rate are used. In FBA (see Edwards et al, 2001; Schuster
et al, 2008) a flux ratio like biomass yield on substrate is
maximized, and a measured flux like substrate uptake rate is
imposed as a constraint to be able to derive a corresponding
maximal growth rate. In the composite hypothesis, ATP pro-
duction rates are maximized (Pfeiffer et al, 2001). However,
in self-replicating systems growth rate is a highly complex
function of the composition of the cell and the properties of
its components. To avoid making such simplifying assump-
tions, we model a complete self-replicating system. From
this model, growth rate emerges as a system property. The
simplest self replicating system, or self-replicator as we will
call it, consists of one catalyst, a kind of ribosome, synthe-
sizing itself from a precursor (Figure 2 and see Lincoln and
Joyce, 2009, for a real-life example of such a self-replicator).
At constant concentration of metabolite, a pool of such ribo-
somes would grow exponentially. The specific growth rate,
W, that is, the rate at which the pool grows relative to its size,
would be constant and equal to the specific catalytic rate at
which the ribosome operates at the given metabolite concen-
tration. For a ribosome with Michaelis-Menten-type Kinetics
using a substrate with concentration S, p=k.,S/(Kpm+S). In a
situation in which different ribosomes would compete, the
ones with highest growth rate would win. The growth rate
could be increased by increasing k.,; and decreasing K. There
are, however, limitations to changes that can be made to these
parameters. For example, the k.,/Ky ratio is bound by the
diffusion rates of enzyme and substrate (Berg et al, 2002).
Growth rates are constrained by this limit and by other
physical laws. This illustrates a general principle that applies
to any self replicating system, no matter how simple or
complex: the optimization of such a system cannot go beyond
the limits imposed by physical and biochemical laws. At the
same time, natural selection pushes life toward these limits.
These first principles are the universal limits to growth and the
basic reason why cells cannot grow infinitely fast (Ehrenberg
and Kurland, 1984; Koch, 1988).

In this paper we will not consider the optimization
of individual enzymes as we focus on optimization of

o S ...

——pp Metabolic conversions

——p» Protein synthesis

Figure2 The simplest self-replicator. It consists of a ‘ribosome’ that reproduces
by converting a precursor to copies of itself. The types of arrows are also used in
the other figures to indicate general metabolic conversions and protein synthesis
in particular. Conceptually, however, there is no difference between these types
of reactions.
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self-replicating systems consisting of sets of enzymes that are
already (nearly) optimal, and, therefore, would hardly change
as a result of natural selection. Rather, we investigate what the
optimal ratio of synthesis of each of the enzymes, including the
ribosome, should be to maximize the growth rate of the entire
self-replicating system.

Imagine a cell as depicted in Figure 3A: it contains four
proteins with enzymatic activity and a structural component in
the form of a lipid membrane that demarcates the intracellular
volume. One of these enzymes is a ribosome that synthesizes
all the enzymes, including itself. The ensemble of reactions
constitutes a self-replicator. We assume a steady state in the
system, called ‘balanced growth’ (Ingraham et al, 1983).
Under balanced growth, each component of the self-replicat-
ing system grows at the same rate. Experimentally, this
situation occurs at constant or slowly changing substrate
concentrations during exponential growth. Let us assume that
this hypothetical cell can regulate the relative size of the four
protein pools by adjusting the proportion of ribosomes that are
engaged in the synthesis of each protein. The optimal relative
size of the protein pools will affect the growth rate of the cell.
The relative proportions of protein pools leading to highest
growth rate will in turn depend on the concentration of
substrate in the growth medium. Selecting the relative
proportions of proteins produced at different concentrations
of substrate can, in this model, be seen as a form of adjustment
to the environmental conditions, which mimics gene regula-
tion in real cells. Since optimal growth rate will increase
monotonously with the substrate concentration, such regula-
tion will be manifested as a growth rate-dependent regulation
of the relative proportions of protein pools.

To substantiate these ideas, we constructed a mathematical
model of the cell as shown in Figure 3A and performed
numerical simulations. The Supplementary information con-
tains a description of the model and model simulations. The
equations of the model give rise to a nonlinear optimization
problem. The adjustable parameters in this mathematical
model are the gene regulation parameters, that is, the
proportions of ribosomes engaged in the synthesis of each of
the four proteins, as well as a cell shape factor representing the
volume-to-surface ratio of the cell. The only constraints on the
system are: (1) a minimal lipid-to-transporter protein ratio
required for membrane integrity and (2) a total concentration
of intracellular protein not exceeding a certain maximum.
When optimizing gene regulation and cell shape for growth
rate in this simulated cell at different substrate concentrations,
optimal growth rate is a hyperbolic function of the substrate
concentration (Figure 3B), which follows closely, but not
exactly, the empirical relation proposed by Monod (1949). The
substrate concentration at which half maximal specific growth
rate is attained (Ks=0.34) is lower than the Michaelis constant
(Km=1.0) of the transporter; the reason being that the
proportion of transporter increases with decreasing substrate
concentration, an observation backed up by experiments
(Teixeira de Mattos and Neijssel, 1997; Brown et al, 1998).
Also, optimal cell shape, or volume-to-surface ratio parameter,
increases with increasing substrate concentration to accom-
modate the decreasing proportion of the transporter (not
shown). This would correspond to a larger cell at high
substrate concentrations or a smaller cell at low substrate
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concentrations. Observations show that under conditions of
poor nutrient supply, microorganisms indeed tend to be
smaller (Schaechter et al, 1958; Fantes and Nurse, 1977) and
have a smaller volume-to-surface ratio (Koch, 1985). The
model shows that at decreasing nutrient concentrations it is
optimal to increase the proportion of transporters. An
explanation for this behaviour is that this ensures a relatively
high level of all intracellular metabolite concentrations
(Figure 3A, Substrate;, and Precursor) and concomitantly high
specific activity and efficient use of all intracellular enzymes.
The model also predicts that mutations leading to an increase
of the catalytic constant of the transporter (k.,;) would lead to
increase in growth rate and increase in the optimal volume-to-
surface ratio, equivalent to an increase in cell size (not
shown). In agreement with this prediction, a parallel increase
of growth rates and cell sizes was observed in a laboratory
evolution experiment using E. coli (Lenski and Travisano,
1994; Mongold and Lenski, 1996).

Notice also that the fraction of proteins represented by the
ribosomal pool increases almost proportionately with growth
rate. This relation between ribosomal content and growth rate
has been predicted before and has been observed in several
organisms, among which E. coli (Gausing, 1977; Ingraham
et al, 1983; Figure 3E) and tumour cells (Ruggero and Pandolfi,
2003). It is likely not to be an exclusive property of the
ribosomal machinery. In our model, the proportion of protein
devoted to the metabolic pathway also increases with the
growth rate. Pioneering proteome studies showed that in E. coli
the concentration of a considerable number of proteins
increases with growth rate (Pedersen et al, 1978). Similarly,
the expression of a large part of yeast genes is highly correlated
with growth rate under various medium conditions (Brauer
et al, 2008). From these results we concluded that our basic
model of bacterial growth reproduces the global patterns of
regulation of macromolecular composition observed in real
microorganisms.

Metabolic strategies resulting
from growth rate optimization

We will now, by extending this basic model, show that it is
possible to explain a number of phenomena observed in
biology that are related to shifts in metabolism. We first show
how the shift between metabolically or energy-efficient and
inefficient metabolism can be explained (Figure 1).

Use of alternative pathways at different
substrate concentrations

We reasoned that a shift in metabolic strategy might be the
result of a tradeoff between the metabolic or energetic
efficiency of pathways and the costs invested in synthesizing
enzymes for the pathways. The alternative pathways were
mimicked in the self-replicator model by giving the cell a
choice between a metabolically efficient pathway (MetEf),
which generates one Precursor molecule from each Substrate;,
molecule, and a catalytically efficient but metabolically
inefficient pathway (CatEf), which generates only 0.8 Pre-
cursor molecule from each Substrate;, molecule, but has a
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Figure 3 Optimal regulation of a basic self-replicator, consisting of four enzymes and a membrane. The cell (A) consists of a pool of ribosomes that catalyze protein
synthesis, including their own; a substrate transporter protein pool; a metabolic enzyme pool and a pool of enzymes that synthesize the lipid component of the
membrane. The membrane consists of transporter protein and lipid. The cell accumulates a substrate from the environment and converts it into a metabolite that is used
for protein synthesis and lipid synthesis. It can regulate the relative proportion of each of the protein pools by adjusting the amount of ribosomes that is engaged in the
synthesis of each of the four proteins. (B, C) The results of numerical optimizations are shown. The individual protein pool fractions relative to total protein and the
volume/surface ratio (cell shape parameter in the model description in the Supplementary information) were optimized (C) so as to maximize the growth rate (B) at
different extracellular substrate concentrations. The points indicate the results of numerical simulations. (D) The experimental results of glucose uptake capacity in
Klebsiella pneumoniae at different growth rates (Teixeira de Mattos and Neijssel, 1997). (E) The relative rate of synthesis of ribosomal protein to that of total protein
(Gausing, 1977) in E. coli at different growth rates. Under balanced growth these relative rates directly translate into relative amounts of protein.

much higher catalytic constant, k.., (Figure 4A). This cell
shifts from the metabolically efficient to the catalytically
efficient pathway when going from low to high substrate

concentrations. The shift is discontinuous, that is, it is a switch
and there is no substrate concentration at which a mixture of
both pathways leads to a growth rate higher than that of one of
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precursor. Also here the CatEfpathway has a higher k., than the MetEfpathway. In contrast to the configuration in panel A, a mixed strategy is optimal at a range of
substrate concentrations in this configuration (see the text for an explanation). (C, D) Experimental data of shifts in metabolism of L. lactis (Thomas et al, 1979) (C) and
S. cerevisiae (van Hoek et al, 1998) (D). L. lactis shifts from the metabolically efficient mixed-acid fermentation at low growth rates to lactic acid fermentation at high

growth rates, whereas S. cerevisiae shifts from respiratory metabolism to partial ethanol fermentation.

the pathways alone. The reason for a difference in growth rate
between the two strategies at low substrate concentrations lies
partly in the investment made to gather the substrate. At low
extracellular substrate concentrations, intracellular substrate
is ‘expensive’ since a great deal of resources (transporter +
lipid) is spent on gathering it. With decreasing substrate
concentrations there will be a point at which channelling such
a substrate through a catalytically efficient but resource-
wasting pathway does not pay off anymore in terms of growth
rate. The sensitivity analysis under ‘Description of the growth
models’ in the Supplementary information demonstrates the
large effect of transporter kinetics on metabolic shift.
Wild-type strains of E. coli, B. subtilis, L. lactis (Figure 4C)
and S. cerevisiae (Figure 4D) display a gradual shift instead of a
switch from one to other type of metabolism. Of course, this
could be a manifestation of non-optimality of the wild-type
strains with respect to regulation of metabolic strategies, but
the question is also whether there are reaction schemes
imaginable in which a mixture of two metabolic strategies is
optimal. Such a configuration is shown in Figure 4B. The main
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difference from the model of Figure 4A is that the pathways
here have multiple functions: the alternative metabolic path-
ways deliver both ATP and the intermediate for the synthesis of
precursor, and the precursor-generating pathway regenerates
ADP for the metabolic pathways and precursor for synthesis of
biomass. Optimal ATP and precursor fluxes can be obtained by
mixing both the pathways.

Although both examples of alternative metabolic pathways
are not very realistic, they serve to make one important point.
Regardless of the details of the model, a general tendency
exists to shift from metabolically to catalytically efficient
metabolism with increasing substrate concentrations, which is
the result of optimizing the cellular economy for growth rate.
This, to our knowledge (and discussed above), is the first
explanation for overflow metabolism that is truly based on first
principles. A modification of FBA was proposed, which also
predicts such a shift of metabolic efficiency, but it assumes that
all enzymes always operate at V., and does not take into
account the fact that ribosomal content changes dramatically
with growth rate (Beg et al, 2007; Vazquez et al, 2008).
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Furthermore, it uses an artificial maximal capacity constraint
on substrate uptake, hence ignoring the possibility of variable
investments made in substrate transport systems.

The three alternative models shown in Figure 1 generate
testable and mutually exclusive predictions. FBA, with the
optimality criterion based on biomass yield, predicts that in an
adaptive evolution experiment at high substrate concentra-
tions, unicellular organisms with inefficient metabolism
should be displaced by mutants that are able to relieve the
alleged limitations in efficient metabolism. This prediction
differs from the other two models. On the other hand, the
Composite hypothesis predicts that at low substrate concen-
trations in an unstructured environment, organisms with
inefficient metabolism should win over those with efficient
metabolism. The predictions by both models contrast with the
predictions from the self-replicator model, namely that the
optimal metabolic strategy of an adaptive evolution experi-
ment is not fixed, but depends on the growth rate or substrate
concentration.

The principles explained above apply not only to micro-
organisms, but also offer a teleological explanation for the
Warburg effect observed in tumour cells, cell lines and other
fast growing cells of higher eukaryotes. Warburg (1956)
observed that tumour cells often display what is called aerobic
glycolysis, that is, they ferment glucose to lactate, even in the
presence of oxygen. Healthy cells generally use metabolically
efficient oxidative metabolism, even at the relatively high
glucose concentrations maintained in a body, because fitness
of the whole body is the objective. However, a correlation
between fast cellular growth and glycolytic capacity has been
observed repeatedly, both in healthy and tumour cells (Wang
et al, 1976; Fantin et al, 2006). We speculate that fermentative
metabolism may be a mechanism to promote fast growth of
healthy cells of higher eukaryotes, and that mutation and
selection pressure on growth rate causes the preferential
appearance of tumour cells and cell lines that display this type
of metabolism. The other clear sign of selection on high growth
rate in tumour cells is the fact that they often possess
mutations that lead to increased synthesis of ribosomes and
other components of the protein biosynthesis machinery
(Ruggero and Pandolfi, 2003).

Effect of other limiting substrates
or recombinant protein expression
on overflow metabolism

It has been noticed that growth at fixed growth rates in the
chemostat overflow metabolism is induced by limitations on
substrates other than the carbon substrate (Neijssel and
Tempest, 1975; Emmerling et al, 2002), as well as by
recombinant protein expression (Sandén et al, 2003). Kleb-
siella aerogenes growing at a specific rate of 0.17 h ™' on excess
glucose, but limited by sulphate or ammonia, excretes
considerable amounts of pyruvate, a-ketoglutarate and acetate
(Neijssel and Tempest, 1975). Similarly, E. coli growing at a
specific rate of 0.09h™" on excess glucose, but limited by
ammonia, excretes acetate and pyruvate (Emmerling et al,
2002). At the same growth rates these organisms use glucose
efficiently when growing under glucose limitation and
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ammonia excess. The effect of the concentration of a second
substrate on metabolic shift was investigated using self-
replicator models. Figure 5B shows that the growth rate at
which the model organism switches from the metabolically
efficient strategy to the inefficient strategy shifts to lower
values under limitations of a second substrate. The extra-
cellular substrate concentration at which this happens is
almost the same in both cases, but since maximal growth rate
decreases, an apparent shift in strategy results when looking at
a fixed growth rate. For example, at a growth rate of 0.2 the
model organism uses efficient metabolism under excess N, but
inefficient metabolism under limiting N (Figure 5).

An apparent shift to inefficient metabolism is also observed
when expressing recombinant protein in E. coli (Sandén et al,
2003). This effect could also be simulated when introducing in
the model a fixed level of expression of a ‘dummy’ protein, that
is, a protein that has no other function than occupying a
volume and a fraction of the ribosome’s capacity (not shown).
Again, when looking at fixed growth rate and at low substrate
concentration where usually efficient metabolism is used, the
expression of dummy protein leads to an apparent shift to
inefficient metabolism. The consequence for recombinant
protein production processes is that although from a viewpoint
of cost-efficiency it may be desirable to have a culture using a
metabolically efficient metabolism, the stability of such a
process may be undermined by the occurrence of fast growing
mutants that use an inefficient metabolism.

Conclusion and outlook

We have studied the consequences of the general idea that
unicellular organisms are self-replicating systems designed to
grow as fast as possible. The rigorous application of this idea
leads to the conclusion that not a single subsystem, but the cell
in its entirety as a self-replicating system, is optimized. Hence,
a more complete understanding of the effect of natural
selection on the emergent behaviour of cells should come
from models, which include all the cellular components
necessary to describe a self-replicating system. As was shown
here, even basic self-replicators demonstrate rich behaviour,
originating from the tradeoffs between alternative growth
strategies. The effects of these tradeoffs are deduced here from
first principles, that is, physical and (bio)chemical laws, and
limitations. Hence, these models provide a general explanation
for growth strategies commonly observed in unicellular
organisms or even tumour cells and cell lines. They also show
that the feasibility and stability of biotechnological processes
that make use of cell cultures may be limited by these basic
regulation patterns, and the occurrence of fast growing
mutants.

Can explanations for the behaviour of growing cells be this
simple? Yes and no. The examples we have shown here are just
illustrations of a principle and by no means represent
simulations of real organisms. To quote (Neidhardt, 1999),
we believe these initial models to be ‘crude, inaccurate and a
complete failure at some tasks’. Nevertheless, they are capable
of explaining trends and yield a new perspective on cellular
behaviour as being the result of economic principles.
Furthermore, the modelling framework allows easy extension
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Figure 5 The effect of limitation by a second substrate on metabolic switching. (A) A second substrate, N, is introduced in the model that has to be taken up by a
separate transporter and combined by the ribosome in a bimolecular reaction with the Precursor during the synthesis of protein. (B) The result from numerical
simulations at low and high availability of N is shown. The switch from metabolically efficient to catalytically efficient C-metabolism takes place at lower growth rates under

N-limitation.

with additional cellular components and knowledge of
physical and biochemical limitations, to obtain models that
more realistically simulate and predict aspects of cellular
growth.

Supplementary information

Supplementary information is available at the Molecular
Systems Biology website (www.nature.com/msb).
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