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Purpose: Sodium MRI shows great promise as a marker for cerebral metabolic  
dysfunction in stroke, brain tumor, and neurodegenerative pathologies. However, 
cerebral blood vessels, whose volume and function are perturbed in these patholo-
gies, have elevated sodium concentrations relative to surrounding tissue. This study 
aims to assess whether this fluid compartment could bias measurements of tissue 
sodium using MRI.
Methods: Density‐weighted and B1 corrected sodium MRI of the brain was ac-
quired in 9 healthy participants at 4.7T. Veins were identified using co‐registered 1H  
T
∗

2
‐weighted images and venous partial volume estimates were calculated by down‐

sampling the finer spatial resolution venous maps from the T∗

2
‐weighted images to 

the coarser spatial resolution of the sodium data. Linear regressions of venous partial 
volume estimates and sodium signal were performed for regions of interest including 
just gray matter, just white matter, and all brain tissue.
Results: Linear regression demonstrated a significant venous sodium contribution 
above the underlying tissue signal. The apparent venous sodium concentrations de-
rived from regression were 65.8 ± 4.5 mM (all brain tissue), 71.0 ± 7.4 mM (gray 
matter), and 55.0 ± 4.7 mM (white matter).
Conclusion: Although the partial vein linear regression did not yield the expected 
sodium concentration in blood (~87 mM), likely the result of point spread function 
smearing, this regression highlights that blood compartments may bias brain tissue 
sodium signals across neurological conditions where blood volumes may differ.

K E Y W O R D S
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1 |  INTRODUCTION

In the brain, sodium plays a key role in neuronal action poten-
tials, mediates the transport of metabolic substrates through 
cell membranes and is involved in osmoregulation and pH 
regulation.1,2 Sodium (23Na) MRI shows promise as a marker 
for cerebral metabolic dysfunction in studying stroke,3-6  

brain tumor,7-11 and neurodegenerative pathologies.12-17 
However, the 23Na MRI signal is greater in cerebrospinal fluid 
(CSF),18-21 such that measurements of tissue sodium can be  
biased by tissue atrophy. Signal contamination from CSF can 
be corrected prospectively, by suppressing CSF signal using 
an inversion recovery sequence,22 or retrospectively, using par-
tial volume correction.21 Another cerebral fluid compartment, 
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which has not been considered previously in the context of 
sodium MRI quantification, is cerebral blood vessels that 
occupy approximately 5% of the cerebral volume.23 Human 
blood sodium concentrations have been measured in vitro by 
sodium MR spectroscopy as ~87 mM,24,25 with 2 main con-
stituents of blood being ~60% plasma, an extracellular com-
partment with ~150 mM sodium concentration, and ~40% 
red blood cells, an intracellular compartment with ~15 mM  
sodium concentration.25 By using a shift reagent in the rat 
brain, a significant 16% intravascular sodium signal increase 
was observed with NMR during a hypercapnia‐induced  
increase in cerebral blood volume (CBV).26

The space occupied by cerebral blood vessels is perturbed 
in pathologies, such as brain tumor, stroke and multiple scle-
rosis. Angiogenesis is a key part of the pathophysiology in 
cancer,27 leading to a focal increase in CBV. Stroke, whether it 
is ischemic or hemorrhagic, has a significant effect on CBV.28 
Multiple sclerosis lesions appear to form around veins,29,30 so 
the sodium MRI signals in these lesions will include a sig-
nificant venous compartment. Therefore, understanding the 
scale of sodium signal in cerebral blood, relative to tissue, be-
comes important in interpreting sodium signals when investi-
gating the pathophysiology of these conditions using sodium 
MRI, where CBV is likely to be perturbed. In this study, the 
23Na MRI signal from cerebral veins, which are readily iden-
tifiable using T∗

2
‐weighted MRI31 was assessed and compared 

with the 23Na MRI signal from brain tissue.

2 |  METHODS

Nine healthy subjects (age 30 ± 6 years, 5 female/4 male) 
participated in this study. The Health Research Ethics Board 
at the University of Alberta approved this study and subjects 
gave written informed consent. MRI data were acquired on a 
Varian Inova 4.7T whole‐body system in 2 contiguous ses-
sions with (i) 23Na MRI data with a single‐tuned birdcage 
head coil and (ii) 1H MRI data with a birdcage transmit head 
coil and 4‐element receive array. Density‐weighted whole‐
brain 23Na images (Figures 1 and 2A) were acquired using 
twisted projection imaging with 18 ms readout duration and 
voxels of 3.2 × 3.2 × 6.4 mm3 (defined by 1/(2kmax)). A total 
of 6000 projections (ρ = 0.2) fully sampled k‐space with 
sampling density designed for an approximately Hamming 
filtering shape to reduce CSF ringing.32 The parameters of 
TR = 85 ms, echo time = 0.11 ms, and flip angle = 30° 
were selected to minimize both T1 and rapid biexponential 
T2 weighting as well as signal loss from residual quadrupole 
splitting.33 The acquisition of 1 average yielded a scan time 
of 8.5 min. B1 maps were acquired from 2 low resolution im-
ages using a double flip‐angle approach and used to correct 
the density weighted signal variation as a result of flip angle 
(B+

1
) and receive sensitivity (B−

1
). Anatomical 1H MPRAGE 

(whole‐brain, 1 mm isotropic, repetition time = 1650 ms,  
inversion time = 725 ms, echo time = 4.5 ms, flip angle 10°) 
and FLASH (50 axial slices, 0.5 × 0.5 × 2 mm3, repetition 
time = 1540 ms, echo time = 15 ms) were acquired for seg-
mentation of tissue and veins, respectively.

N4 bias field correction34 was performed on the 
MPRAGE and FLASH images before segmentation. Tissue 
segmentation was performed on the MPRAGE using the 
FSL Brain Extraction Tool (BET) and FMRIB’s Automated 
Segmentation Tool (FSL 5.0.9, fMRIB, Oxford, UK). This 
resulted in gray matter (GM), white matter (WM), and CSF 
partial volume estimate (PVE) maps. Segmentation of veins 
was performed on the FLASH images, because cerebral veins 
are hypo‐intense on these T∗

2
‐weighted images. To minimize 

image contrast other than signal decrease over the small 
spatial scales associated with veins, a 3 mm full‐width‐half‐
maximum Gaussian high‐pass spatial filter was applied to 
the FLASH images. A brain mask (performed using BET) 
eroded by 3 voxels (7 × 7 kernel) was then applied to remove 
filter artifacts at the edge of the brain. The hypo‐intense veins 
on the T∗

2
 images are manifest with negative values on the 

high‐pass filtered images, while brain tissue retains an av-
erage contrast near zero apart from small positive/negative 
variation at tissue boundaries. A minimum negative threshold 
was selected to create a binary vein mask, while ensuring that 
negative high‐pass values resulting from tissue boundaries 
did not contribute to the mask (example shown in Figure 2).  
When the 0.5 × 0.5 × 2 mm3 binary vein masks are resam-
pled to the 3.2 × 3.2 × 6.4 mm3 voxel size of the 23Na images 
(see below), these masks become vein PVE maps with 131 
FLASH voxels for each 23Na voxel.

For the purposes of subsequent analysis, 23Na images 
were reconstructed onto an 88 × 88 × 44 grid (3.2 × 3.2 × 
6.4 mm3). However, solely to assist with registration from 
the MPRAGE and FLASH images to 23Na space, an addi-
tional 616 × 616 × 308 reconstruction was also performed, 
using zero filling. The finer spatial resolution of this refer-
ence provided improved registration accuracy, compared 
with co‐registering the MPRAGE and FLASH directly to the 
low‐resolution 23Na image. Rigid‐body registration was per-
formed using FMRIB's Linear Image Registration Tool (FSL, 
FMRIB, Oxford, UK) to realign MPRAGE and FLASH im-
ages to the zero‐filled 23Na image. These registrations were 
applied to the tissue segmentation maps. The zero‐filled 616 ×  
616 × 308 grid maps directly onto the low‐resolution 88 × 88 ×  
44 grid through a set of 7 × 7 × 7 sub‐voxels within each  
single voxel of the low‐resolution grid. Therefore, the tissue 
segmentation maps were down‐sampled from the 616 × 616 ×  
308 matrix to the 88 × 88 × 44 matrix by taking the mean of 
each 7 × 7 × 7 block of sub‐voxels. This form of downsam-
pling does not cause any additional spatial smoothing (over 
that arising from the image registration), as no interpolation 
is required. Note that the FLASH dataset did not cover the 
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most inferior portion of the brain (see Figure 2 for extent), 
resulting in areas where no venous information was available. 
Therefore, these regions were excluded from subsequent  
sodium analysis.

No external references were acquired for calibrating  
sodium concentration, so signal from vitreous humor (VH) 
was used as a reference for sodium signals from other tis-
sues. VH volumes in the eyeballs were sufficiently large to 
provide a central sodium signal free from partial volume 
bias. A literature value of [Na]VH = 134 mM20 was assumed, 
while the density weighted acquisition parameters mitigated 
against differences in tissue relaxation values.33 A VH region 
of interest (ROI) was drawn manually on the MPRAGE, then  
realigned and downsampled to the 23Na image. This VH ROI 
was eroded using a 3 × 3 × 3 cubic voxel structure element 
and VH sodium signal was measured as the mean across this 
eroded ROI.

A brain tissue mask was created by excluding any voxels 
with CSF PVE ≥ 0.01. This was necessary to minimize con-
tamination from the relatively high sodium concentration in 
CSF (~150 mM). Note that larger veins are typically found 
at the cortical surface and so generally lay adjacent to CSF 
spaces. The conservative CSF masking procedure eliminates 
these voxels from analysis. The result of CSF exclusion can 
be observed by comparing the vein PVE map (Figure 3B) 
with the CSF excluded vein PVE map (Figure 3D). Within 
the brain tissue mask, brain tissue was segmented into GM 
and WM ROIs using a 0.5 PVE threshold. However, the seg-
mentation of the 4.7T MPRAGE images did not perform well 
in regions of the thalamus and putamen, erroneously classify-
ing parts as WM. These regions were identified manually and 
excluded from the WM ROIs to ensure proper tissue classi-
fication. As a result, these regions were not part of either the 
WM or GM ROIs; however, they remain within the full brain 

F I G U R E  1  Twenty axial slices of 23Na, showing the central portion of the data, from a healthy 30‐year‐old male volunteer
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tissue mask. Representative GM and WM ROIs are shown in 
Figure 3E.

To determine the effect of elevated sodium concentra-
tion within blood on tissue sodium concentration mea-
surements, a linear regression was performed between 
vein PVE and 23Na signal (relative to VH signal) over 
every voxel within the brain tissue mask. This regression 
was then redone for voxels only within the WM ROIs 
and only in the GM ROIs. For each volunteer, this spatial  
regression yielded 23Na blood values (relative to VH) cal-
culated at vein PVE = 1. Note that the superior sagittal 
sinus (SSS) was not included in the vein PVE map, as it 
was too large to be resolved by the high‐pass spatial filter 
during vein segmentation. Alternatively, an ROI including 
the SSS was drawn manually on the 1H FLASH image, 
and resampled into 23Na space creating a SSS PVE map. 
Average signal was calculated across SSS PVE ≥ 0.5 vox-
els. These values (converted to concentration according 
to [Na]VH = 134 mM)20 were then compared with tissue  
sodium values (similarly converted to concentration) directly 
measured from the WM and GM ROIs, and with blood con-
centration from the literature. All values were reported as  

mean ± SEM across 9 subjects. Venous signals were com-
pared with mean tissue signal over the ROI they were cal-
culated from using a Bonferroni‐corrected paired 2‐tailed 
t‐test. SSS signal was compared with GM tissue signal.

3 |  RESULTS

An example of density‐weighted 23Na images is shown for 
the whole brain in Figure 1. Higher sodium signals in veins 
is most noticeable in the major draining vein of the brain, the 
SSS (Figure 2A), which is visible in 23Na images from all 
subjects. Veins mapped on the 1H FLASH T∗

2
‐weighted im-

ages occupied 3.1 ± 0.2% of the whole brain volume (mean ± 
SEM across 9 subjects). The maximum vein PVE within the 
brain tissue mask ranged from 20‐57% of the voxel (median 
36%).

All vein sodium signal calculations were significantly 
greater than the mean tissue signal of the ROI they were 
calculated from, as follows: Vein PVE regression over all 
voxels within the brain tissue mask yielded a venous so-
dium signal 49 ± 3% of VH signal, or a VH normalized 

F I G U R E  2  Sodium signal in the 
superior sagittal sinus (SSS), a major vein, 
and demonstration of vein masking. A, 
Two axial slices and 1 sagittal slice of an 
example density‐weighted 23Na dataset, 
demonstrating higher sodium signal in the 
SSS (blue arrowhead) than the surrounding 
tissue. B, 1H FLASH image with veins 
appearing hypointense. Blue arrowheads 
mark the same point on the SSS as shown in 
(A). C, Demonstrating the binary vein mask 
(green) overlaid on the 1H FLASH image 
from which the mask is calculated. Note 
that the SSS is not included in the mask as 
its diameter is larger than the 3 mm spatial 
filter. The images are from a healthy 
30‐year‐old male volunteer

(A)

(B)

(C)
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apparent concentration value of 65.8 ± 4.5 mM (t(8) = 6.3;  
P = 9 × 10−4). Regression in GM ROIs yielded appar-
ent venous concentration of 71.0 ± 7.4 mM (t(8) = 4.3;  
P = 0.01), while regression in WM ROIs yielded appar-
ent venous concentration of 55.0 ± 4.7 mM (t(8) = 3.5;  
P = 0.03). SSS venous concentration was measured as  
58.2 ± 2.4 (t(8) = 10.6; P = 2 × 10−5). The apparent tissue 
sodium concentration values measured in the WM and GM 
ROIs were 39.1 ± 0.8 mM and 41.9 ± 0.9 mM, respectively. 
Figure 4 presents individual subject data for all measurements.

4 |  DISCUSSION

The regression between vein PVEs and density‐weighted  
sodium signal yielded average (over all volunteers) apparent 
sodium concentration in veins of 55 mM‐71 mM (depend-
ing on which brain tissue voxels were included in the regres-
sion). This is considerably less than the ~87 mM previously 

F I G U R E  3  Illustration of partial 
volume estimate (PVE) maps shown in  
5 axial slices from a healthy 30‐year‐old  
male volunteer. A, 23Na image, for 
reference. B, Vein PVE map. C, CSF PVE 
map, showing some spatial overlap with 
vein PVE (N.B. scale not matching  
(B), optimized for data range). D, Vein PVE 
map masked by CSF PVE < 0.01, showing 
the full brain tissue mask used to calculate 
venous sodium signal (N.B. scale not 
matching (B, C), optimized for data range). 
E, Example GM and WM ROIs
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in gray. The right‐hand axis shows estimated sodium concentrations, 
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*P < 0.05 compared with tissue signal for each region and to GM for 
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measured in vitro for human blood.24,25 However, the result 
that regression produced significantly greater vein concentra-
tion values for all brain tissue (69 ± 11%), GM (69 ± 16%), 
and WM (42 ± 13%) demonstrates that vein partial volume 
does contribute to the sodium signal within brain voxels. 
Although this contribution may not be directly visible on a 
23Na MRI image, it is sufficient to produce the positive cor-
relations measured in this study.

The apparent sodium concentrations reported were cal-
culated by comparing (B1 corrected and density‐weighted)  
sodium signal measurements and regression values with that 
in VH. Using VH = 134 mM,20 apparent sodium concentra-
tion values of 39.1 ± 0.8 and 41.9 ± 0.9 mM were measured 
in WM and GM, respectively. These are at the midpoint 
of existing literature values.13,15-17,19-21,35-37 Although the  
apparent sodium concentration values reported in this study 
are sensitive to inter‐subject sodium VH concentration vari-
ability, the variance in WM and GM measurements is small 
across subjects. This can be seen in the standard deviation 
values reported above and in Figure 4. Although this method 
of apparent sodium concentration measurement is also sen-
sitive to the accuracy of the VH concentration value from 
the literature, absolute concentration values are not necessary 
to demonstrate through regression that sodium signal from 
veins contributes to brain tissue voxels.

The density‐weighted 23Na MRI images have insufficient 
spatial resolution to directly measure blood sodium signal in 
any of the intracranial veins, including the SSS. The twisted 
projection acquisition scheme used for the 23Na sequences 
has a point spread function (PSF) full‐width‐half‐maximum 
of 7.1 mm in‐plane (and double that out‐of‐plane). This is cal-
culated for the T2fast = 2 ms and T2slow = 17 ms of blood38,39 
and includes the Hamming‐like filter for Gibbs ringing re-
moval. As a result, the elevated 23Na signal originating from 

veins will be smeared according to the PSF of the sodium 
images.40 Signal originating from a vein will contribute only 
part of its signal to the voxel in which it resides, the rest will 
contribute to the surrounding voxels. This PSF smearing (at 
least partially) explains why the apparent blood sodium con-
centrations measured from all regression experiments are 
lower than that expected from previous in vitro study.24,25 In 
addition, the spatial extent of veins will be overestimated due 
to intra‐voxel dephasing of adjacent tissue signal, a result of 
the vein’s fringe field. Thus, the vein PVE maps will overes-
timate the relative contribution of a small vein to the sodium 
dataset, resulting in the regression of smaller blood sodium 
concentration values.

The vein PVE–sodium regression including voxels in just 
WM ROIs yielded smaller apparent blood sodium concentra-
tion values than the regressions including voxels in GM. This 
is likely because the WM ROIs contain primarily small veins. 
The additional signal contribution to a voxel from small 
veins will in turn be small, yielding an effect more sensitive 
to noise. GM contains a greater number of larger veins with 
greater signal increase.

To assess the contribution of blood to tissue sodium sig-
nals, literature values for CBV of 2.7% for WM41-43 and 5% 
for GM23,42,43 were assumed, and the sodium signal from all 
blood vessels was assumed equal to that directly measured 
in the literature (~87 mM). Correcting for the blood signal 
using these values reduced the tissue sodium concentration 
values by 3.4% and 5.7% for WM and GM, respectively. Total  
sodium concentrations were simulated for a range of CBV 
values from 0 to 30% (approximate intra‐subject range of 
vein PVE) in Figure 5. Although the values measured in this 
study were smeared by the PSF, the full blood vessel sig-
nal contribution is still contained within the measured tissue  
sodium signal, spread across a greater number of pixels.

F I G U R E  5  Simulation of the signal contribution from blood to WM (A) and GM (B) tissue sodium concentration measurements. [Na]vox is 
the sodium concentration that would be measured for [Na]WM/GM containing a CBV with sodium concentration [Na]blood = 87 mM.24,25 [Na]WM = 
37.8 mM is the WM sodium concentration with the blood contribution removed, calculated based on the measured [Na]WM = 39.1 mM corrected 
for CBV = 2.7%.41-43 [Na]GM = 39.5 mM is the GM sodium concentration with the blood contribution removed, calculated based on the measured 
[Na]GM = 41.9 mM corrected for CBV = 5%.23,42,43 The right‐hand axes show the contribution of blood to the total sodium signal. The CBV range 
of 0 to 30% reflects the typical intra‐subject range of values across voxels in the vein PVE map within the region used to calculate venous sodium 
signal
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While this study focuses on cerebral veins (which are visible  
on the T

∗

2
‐weighted 1H images), the partial volume contri-

bution of arteries is also expected to increase tissue sodium 
concentration (and likely affected the regression performed 
in this study). Because the plasma volume fraction is simi-
lar in arteries and veins,44 these blood vessels should contain 
similar sodium concentrations. However, the plasma volume 
fraction is ~25% higher in microvasculature.23,45 With plasma 
sodium concentration on the order of 150 mM,25 microvas-
culature is likely to have a greater sodium concentration than 
veins and arteries.

The distinct sodium MRI characteristics of blood have 
significance for studies where the pathophysiology includes 
cerebral blood vessels, such as brain tumor,7-11 stroke,3-6 
and multiple sclerosis.13,15-17 There can be significant focal 
increases in the size of the blood volume compartment in 
these pathologies. These results are also of significance for 
recent studies demonstrating sodium fMRI contrast,46,47 
where functional responses of interest will be accompanied 
by focal vasodilation. For example, focal arterial blood vol-
ume can increase in the range of 30‐60% in response to a 
functional stimulus.48-52 The apparent tissue sodium signal 
increase due to an increase in volume of blood vessels could 
be misattributed to a neuronal mechanism, if not accounted 
for. Studies of tissue sodium concentration in conditions such 
as above, where cerebral blood vessels have a significant role, 
could also assess CBV41-43,53 to control for the blood volume 
contribution to the sodium signal.

5 |  CONCLUSIONS

It was demonstrated that tissue sodium concentration in-
creases in proportion to the partial vein contribution to a 
voxel. Thus, tissue sodium concentrations may be overesti-
mated in the presence of large blood vessels, and may vary as 
a result of blood vessel and blood flow perturbation.
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