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Introduction: White matter hyperintensities of presumed vascular origin (WMH) are an

important magnetic resonance imaging marker of cerebral small vessel disease and

are associated with cognitive decline, stroke, and mortality. Their relevance in healthy

individuals, however, is less clear. This is partly due to the methodological challenge of

accurately measuring rare and small WMH with automated segmentation programs. In

this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL;

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm

(BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on

individual data training sets, can be optimized for a normal aging population.

Methods: We evaluated the effect of varying training sample sizes on the accuracy

and the robustness of the predicted white matter hyperintensity volume in a population

(n = 201) with a low prevalence of confluent WMH and a substantial proportion of

participants without WMH. BIANCA was trained with seven different sample sizes

between 10 and 40 with increments of 5. For each sample size, 100 random samples

of T1w and FLAIR images were drawn and trained with manually delineated masks. For

validation, we defined an internal and external validation set and compared the mean

absolute error, resulting from the difference between manually delineated and predicted

WMH volumes for each set. For spatial overlap, we calculated the Dice similarity index

(SI) for the external validation cohort.

Results: The study population had amedianWMH volume of 0.34 ml (IQR of 1.6 ml) and

included n = 28 (18%) participants without any WMH. The mean absolute error of the

difference between BIANCA prediction and manually delineated masks was minimized

and became more robust with an increasing number of training participants. The lowest

mean absolute error of 0.05 ml (SD of 0.24 ml) was identified in the external validation

set with a training sample size of 35. Compared to the volumetric overlap, the spatial

overlap was poor with an average Dice similarity index of 0.14 (SD 0.16) in the external

cohort, driven by subjects with very low lesion volumes.
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Discussion: We found that the performance of BIANCA, particularly the robustness

of predictions, could be optimized for use in populations with a low WMH load by

enlargement of the training sample size. Further work is needed to evaluate and

potentially improve the prediction accuracy for low lesion volumes. These findings are

important for current and future population-based studies with themajority of participants

being normal aging people.

Keywords: white matter hyperintensities, fully-automated segmentation, neuroimaging marker, lesion

segmentation, population studies

1. INTRODUCTION

White matter hyperintensities of presumed vascular origin
(WMH) are a common finding in MRI using fluid attenuation
inversion recovery (FLAIR) sequences in older subjects
(Wardlaw et al., 2015). In patients with cardiovascular disease,
severe confluent WMH is an important imaging marker of
cerebral small vessel disease associated with an increased risk
of stroke, dementia, and mortality (Debette and Markus, 2010;
Wardlaw et al., 2013). Also, in a minority of individuals, a
distinct morphology or spatial distribution of WMH can hint
toward an inflammatory disease of the central nervous system
(Filippi et al., 2019). However, the clinical importance of mild to
moderate WMH in otherwise healthy or younger subjects is less
clear (Hopkins et al., 2006; Williamson et al., 2018).

Two main challenges impede the evaluation of the latter.
First, clinical endpoints, such as a decline in cognitive function
are subtle in a normal aging population and need to be
repeatedly measured in a comprehensive fashion over a long
period of time. Second, to assess the presence and analyze the
progress of low WMH volumes, highly robust measurement
methods are needed. In the beginnings, visual rating scales
have been developed and frequently used in the past (Fazekas
et al., 1987, 1993; Scheltens et al., 1993; Hopkins et al., 2006).
These rating scales face many problems such as relatively low
reliability in cohorts with low lesion loads (Wardlaw et al.,
2004; Olsson et al., 2013), as well as ground and ceiling effects
(Prins et al., 2004). Over the last years, several fully-automated
tools have been developed, e.g., Brain Intensity AbNormality
Classification Algorithm (BIANCA) (Griffanti et al., 2016), LST
(Schmidt et al., 2012), OASIS (Sweeney et al., 2013), DeepMedic
(Kamnitsas et al., 2016), nicMSlesions (Valverde et al., 2019), and
the Rotterdam Scan Study Tool (de Boer et al., 2009). These tools
have the advantage of scalability and standardization. They show
high reliability when re-assessing the same subjects, but as many
different tools and complex preprocessing pipelines are used, the
reproducibility is still limited (Frey et al., 2019). Moreover, such
tools are usually developed using data from populations with a
high white matter hyperintensity load (Weeda et al., 2019) and
are rarely tested in populations with low prevalence and the low
average volume of WMH (Williamson et al., 2018).

The aim of this study was the evaluation of the automated
WMH segmentation tool BIANCA (Griffanti et al., 2016) for the
quantification of WMH volumes in a population with sporadic
WMH and small average volumes. We particularly aimed to

improve the training of the BIANCA lesion classifier under
these circumstances. BIANCA (Griffanti et al., 2016) was chosen
in this study, because of its release in the widely distributed
FSL framework (Smith et al., 2004; Jenkinson et al., 2012)
and the transparent and precise recommendations on data
processing (Griffanti et al., 2016). A systematic review of several
fully-automated tools further showed a reliable performance of
BIANCA in an elderly cohort (Vanderbecq et al., 2020). One
specific feature of BIANCA is the study- or scanner-specific
training procedure of the algorithm on its own data. A minimum
of 10 to 20 manually delineated white matter hyperintensity
masks is recommended by the authors. However, the algorithm
was originally trained on cardiovascular and neurodegenerative
cohorts with a relatively high lesion load (Griffanti et al., 2016).
Other authors recommend a k-value of 40 and used a sample
size of 20 for training of a robust k-nearest neighbors (k-nn)
delineation (Anbeek et al., 2004; Steenwijk et al., 2013).

We, therefore, evaluated the impact of increasing sample sizes
for BIANCA on the accuracy and robustness ofWMH prediction
in a cohort with a low white matter hyperintensity load. We
defined the accuracy of WMH prediction as minimizing the
absolute error, i.e., the difference between the WMH volume
of manually delineated masks and BIANCA predicted WMH
volume on the single-observation level. Robustness was defined
as the model-wise minimal mean absolute error per sample size.
These measures were compared between seven training sample
sizes for BIANCA, each resampled with 100 random draws
without replacement from the study dataset. We used a sample of
201 images from the community-dwelling cohort of the BiDirect
Study as a model for various ongoing population studies, e.g., the
German National Cohort (Bamberg et al., 2015; Ahrens et al.,
2020) or the UK Biobank (Alfaro-Almagro et al., 2018). We
additionally calculated the Dice similarity index (SI) to evaluate
the spatial overlap of manual and predicted WMH volumes for
the external cohort.

2. MATERIALS AND METHODS

2.1. Study Cohort
All data were collected as part of the BiDirect Study
(Teismann et al., 2014; Teuber et al., 2017). This longitudinal
study investigates the bidirectional association of subclinical
cardiovascular disease and depression based on more than 2,000
participants who were repeatedly examined between 2010 and
2020 in Muenster, Germany. A population cohort [n = 912, 687
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with MRI, at baseline (BL)], a depression cohort (n = 999, 732
with MRI, at BL), and a cardiovascular disease cohort (n = 347,
51 with MRI, at BL) were examined. The neuroimaging data
used in this study originates from a subsample of the population
cohort without clinical or imaging evidence ofmajor neurological
disease [n = 121 of 488 at second follow-up (FU)]. Manual
white matter hyperintensity masks were first delineated in the
MRI images of the second FU examination. Another n = 80
masks were then delineated in a random sample of these 121
participants in the corresponding BL images (BL, on average 6
years earlier), resulting in a total of n= 201 lesion masks.

2.2. Ethics
The study was approved by the Ethics Committee of the
University of Muenster and the Westphalian Chamber of
Physicians in Muenster, Germany. All participants gave their
written informed consent.

2.3. MRI Data Acquisition
The following sequences were used from the MRI protocol of
the BiDirect Study (Teuber et al., 2017): (1) 3D T1-weighted
gradient echo sequence with inversion prepulse (TFE), TR: 7.26
ms, TE: 3.56 ms, TI: 404 ms, FA: 9◦, matrix: 256 x 256, in-plane
resolution (reconstructed): 1 x 1 mm, slices: 160, thickness: 2 mm
(reconstructed to 1 mm slice thickness by zero filling in k-space),
orientation: sagittal. (2) 2D fluid-attenuated inversion recovery
sequence (FLAIR), TR: 11,000 ms, TE: 120, TI: 2,600, FA: 90◦,
matrix: 352 x 206 mm, FOV: 230 x 186, in-plane resolution
(reconstructed): 0.45 x 0.45, slices: 27, thickness: 4 mm, inter-
slice gap = 1 mm, orientation: axial; dimensions 512 x 512 x
27. All MR images were acquired using the same 3 Tesla MRI
scanner (Intera with Achieva upgrade, Philips, Best, NL) using a
transmit-receive head coil.

2.4. Manual Segmentation
Manual white matter hyperintensity masks were segmented with
FSLeyes (v0.22.1 McCarthy, 2019) using unprocessed FLAIR
images (Figure 1). Two raters (CH, LR) were instructed and
trained in manual delineation by an experienced radiologist (BS)
and neurologist (HM). HM additionally viewed the segmented
images for quality control to ensure the validity of the training
procedure. The images were segmented interchangeably by one
of the two raters, while the other one was present and took care,
that the performance was according to the standard; in case of
disagreements, those were ad hoc discussed between raters and
if necessary, images were rated by case-based expert consensus
meetings. In total, 201 images were segmented (80 from BL and
121 from FU).

2.5. Preprocessing Pipeline
The T1w images were reoriented and cropped using FSL
(v6.0.3 Smith et al., 2004; Jenkinson et al., 2012). Then all
T1w and FLAIR images were preprocessed using the fsl_anat
pipeline. The bias corrected brain extracted images were
used to register the T1w image to the FLAIR space using
FLIRT (affine, 6 degrees of freedom). The bias corrected
(non-brain extracted) FLAIR image was then masked with

the T1w brain extraction mask (transformed to FLAIR
space) to correct for minor misclassifications of the brain
extraction on FLAIR images. From here on the brain extracted
and bias corrected T1w and FLAIR images were used
for BIANCA.

2.6. Sampling Strategy
To evaluate the impact of increasing training sample sizes
on the accuracy and robustness of WMH prediction, training
sets with seven different sample sizes (n = 10, 15, 20,
25, 30, 35, 40) were built (Figure 2, Tables 1, 2). For
each training sample size, 100 random samples of T1w
and FLAIR images were drawn without replacement from
a set of 160 images (80 participants with BL and FU
images) from the study dataset resulting in 700 different
training sets.

As required by BIANCA, two types of master files were created
per random draw. The first type is the actual training master
file that contains the brain extracted and bias corrected T1w and
FLAIR images (training set), the FLAIR-to-MNI.mat file, and the
manual segmentation mask of the randomly selected (n= 10, 15,
20, 25, 30, 35, 40) observations. In each training set, an additional
random query subject was added to the training master file,
because BIANCA needs an image to predict. The option of
BIANCA to save a separate trained model per training set was
used. These models contain the hyperparameters of each training
procedure and are needed for the prediction of validation data.
The second type of master file represents the validation data
and comprises all observations that are not in the corresponding
training set (internal validation set).

To prevent data leakage, only one observation (BL or FU)
of a participant was allowed in each training set. Moreover, if
a scan (BL or FU) of a particular subject was selected for the
training data, the second scan from the same subject could not
be included in the corresponding internal validation set. This
resulted in sample sizes of “n = 160 - 2 × training sample size”
for the internal validation sets. As all internal validation sets
included BL and FU images, they were subdivided into a BL and
FU internal validation set, so that each participant was included
only once per set. The more participants are used for training,
the fewer participants are in the internal validation set. We also
added 41 images of never trained-on participants to each testing
master file to evaluate the performance on an external dataset
with a fixed number of participants (external validation set, refer
to the “validation sets” in Figure 2 and Tables 1, 2).

2.7. Model Training and Prediction
The recommended default settings of BIANCA (Griffanti et al.,
2016) were applied. The algorithm was trained with the T1w (in
FLAIR space) and FLAIR images as well as the brain mask and
MNI152 transformation matrix. The trained models contained
the hyperparameters from the training and were saved separately.
Each of the 700 saved models (100 random draws per 7 different
sample sizes) was used to predict the white matter hyperintensity
probability masks on every subject in the validation subsets.
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FIGURE 1 | An example image of a participant with 5 ml WMH volume The top section shows the underlying FLAIR image, the middle section the manual

segmentation mask, and the bottom section the BIANCA predicted mask (threshold: 0.8), from a model trained with a sample size of n = 40.
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FIGURE 2 | Overview of the resampling procedure for training the Brain Intensity AbNormality Classification Algorithm (BIANCA) models with varying sample sizes and

evaluation of white matter hyperintensities (WMH) segmentation performance. The initial dataset consisted of the same 80 participants at baseline (BL) and follow-up

(FU), as well as a separate external validation set with 41 participants. To prevent data leakage, all observations of a participant used in the training procedure were not

allowed into the corresponding validation set. The resampling parameters are shown in the middle (7 sample sizes ranging from 10 to 40 with increments of 5; per

sample size 100 random draws without replacement, only one observation per participant allowed). The corresponding validation sets (internal and external) are

shown at the bottom.

2.8. Metric Extraction and Performance
Evaluation
From the predicted mask, we extracted white matter
hyperintensity volumes at 11 different thresholds (thresholds: 0
to 1 by 0.1) resulting in a total amount of 105,700 predicted 3D
images at 11 thresholds = 1,355,200 computations needed for
comparison (Table 2).

White matter hyperintensity volumes were calculated in ml.
The absolute error between the BIANCA predicted volume
and the manual (gold standard) volume was calculated, i.e.,
the deviation (+/-) in ml per model (n = 700; 100 random
draws of training sets per 7 sample sizes) and participant

(Figures 1, 3). Per validation set (internal validation sets at
BL and FU and the external validation set), threshold, and
model, the mean absolute error was used to calculate mean,
median, SD and interquartile range per model and sample size
(Figure 4).

The ideal threshold was determined by choosing the minimal
mean absolute error in the validation sets. At the determined
threshold, the mean of means of the models were compared
for the three validation sets (internal validation sets at BL and
FU, external validation set) using raincloud plots (Figure 5;
Allen et al., 2019). These indicate the robustness with increasing
sample size. The association of manual segmented volume
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TABLE 1 | Description of datasets.

Nomenclature Resampled Description Used in training

Study dataset Static (n = 201) Contains all data used for this publication Only the resampling dataset

Resampling dataset Static (n = 160) Contains the subset of the study dataset, from

which the participants are resampled for the

training sets

Only the resampled ones

Training set Random (n = 10 – n = 40) Drawn from the resampling dataset, n = 100

per sample size

Everytime

Internal validation set Depending on training set (n

= 160 – 2 × sample size)

All images of participants, that are not in the

corresponding training set

Never in the same draw to prevent data leakage

External validation set Static (n = 41) Contains the subset (n = 41) of the study

dataset, that was never used for training

Never

TABLE 2 | Number of observations in training and validation sets.

Validation sets

Sampling Internal validation External validation Predicted masks

Training set (n) BL (n) FU (n) FU (n) Per model (n) Overall (n)

10 70 70 41 181 18,100

15 65 65 41 171 17,100

20 60 60 41 161 16,100

25 55 55 41 151 15,100

30 50 50 41 141 14,100

35 45 45 41 131 13,100

40 40 40 41 121 12,100

Seven effective training sample sizes were used for resampling. For each sample size 100 random draws without replacement were conducted. To prevent data leakage, observations

of the same subject were only used once per training and internal validation set, respectively. The resulting 700 prediction models (100 draws per training sample size (n = 7)) were

applied to two types of validation data: The internal validation set comprises all participants that were not used for the corresponding training set. These comprise observations at BL

and FU of each participant. The external validation set comprises 41 participants from FU that were never used for any training. In total (sum of the last column), n = 105,700 masks

were predicted per threshold.

FIGURE 3 | Overlap of WMH lesion masks The manual lesion mask is shown in dark blue, the BIANCA lesion mask is in green (threshold: 0.8). The light blue color

indicates the overlap of both. The image and mask are identical to Figure 1.
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FIGURE 4 | Boxplots of absolute errors (BIANCA predicted volume - manually delineated volume) per trained BIANCA model ordered by median values. Overall, there

are 700 models (100 per sample size) at a threshold of 0.8; each dot represents a single observation. The plots are stratified in a grid, horizontally by sample size (n =

7) and vertically by validation set (n = 3). The higher the sample size, the higher the chance to train a model with a low deviation from the gold standard (smaller range,

less outliers, and smaller IQR). This shows a convergence of the accuracy of the models with increased sample size resulting in a more robust performance. The black

line indicates the ideal absolute error (BIANCA - manual volume) of 0. Absolute errors greater than 0 show an overestimation of BIANCA, while absolute errors smaller

than 0 show an underestimation.

and algorithm predicted volume per model, sample size,
and validation set was visualized with line plots (Figure 6).
The underlying dot pattern is visualized with a scatter plot
(Supplementary Figure 1). Both of these show the accuracy
of each model with increasing sample size. Furthermore, each
model is visualized with a separate boxplot (n = 700) of absolute
errors (BIANCA-manual volume) over these sets shown in

Figure 4. We focus on the mean absolute error per model (n =
700; 100 random draws of training sets per 7 sample sizes) across
the validation sets. The boxplots give insights into the accuracy
per model, while all boxplots together indicate robustness. We
also visualized the performance with two Bland-Altman like plots
(Supplementary Figures 6, 7). Supplementary Figure 6 shows
the mean and SD of each model separately by sample size and
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FIGURE 5 | Comparison of the mean BIANCA predicted volume (A) and mean absolute errors (B) of the two validation set types (internal validation set at BL and FU

and external validation set) at increasing sample sizes at a threshold of 0.8. Shown are raincloud plots (Allen et al., 2019) of the mean BIANCA predicted volume (A)

and the mean absolute error (B) by the model (n = 100), sample size (n = 7), and validation set (n = 3). Both figures: The trend shows, that if more subjects were

randomly chosen for the training of a BIANCA model, the performance (less outliers, closer IQR) in all sets becomes better. This shows a convergence of performance

resulting in a more robust performance. (A): Mean absolute lesion volumes increase from BL to FU. (B): Mean absolute errors are on average larger (more positive) at

BL compared to FU. Mean absolute errors greater than 0 point toward an overestimation of white matter hyperintensity volume by the automated segmentation with

BIANCA, while mean absolute errors smaller than 0 hint toward an underestimation by BIANCA in comparison with the manual delineation performance (reference

standard).
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FIGURE 6 | Linear fits of each model show the association of manually segmented total WMH volume to automatically predicted volume (BIANCA) stratified by

validation set and sample size. Shown are the linear fits of the manual volume on the x-axis to BIANCA predicted volume on the y-axis of each model (n = 100) in a

grid stratified by sample size (n = 7) horizontally and validation set (n = 3) vertically. Only data at a white matter hyperintensity probability threshold of 0.8 is shown. The

mean linear fit of all models is indicated by the blue line. The red line indicates the ideal fit, with an intercept of 0 and a slope of 1. The higher the sample size, i.e., the

more subjects are drawn from the population, the closer the model performances draw to the mean linear fit of all models. This shows a convergence of the accuracy

of each model resulting in a more robust performance. The mean linear fits of all models show an increasing underestimation of white matter hyperintensity volumes

by BIANCA with increasing lesion volumes in all sample sizes and sets. Please refer to Supplementary Figure 5 for the same plot showing each participant in a

density plot instead of the fit per model.

validation set. Supplementary Figure 7 visualizes the underlying
scatter plot. In an additional post-hoc analysis, we extracted
the proportion of low volume training samples from each
training set (< 0.1 ml Supplementary Figure 8, < 0.5 ml
Supplementary Figure 9) to investigate, whether there is some
systematic effect of the test sample composition on prediction
performance. We also evaluated the prediction performance
according to lesion volume per observation and sample size
(Supplementary Figures 10, 11).

We focused on volume extraction, but additionally
calculated the Dice SI to measure the spatial overlap
between manually delineated and BIANCA predicted masks
(Supplementary Figures 12, 13). The Dice SI is calculated as two
times the fraction of voxels in the intersection of the manually
delineated and the BIANCA predicted masks divided by the
sum of manual mask lesion voxels and BIANCA lesion voxels.
Values can be in a range between 0 and 1. High values indicate a
good performance, while low values indicate poor performance.
The SI was derived from the BIANCA overlap measures tool
(Griffanti et al., 2016).

2.9. Processing and Hardware
The programming of the processing and analysis was developed
in R (version 3.6.2, 2019-12-12, R Core Team, 2019) using

RMarkdown (Allaire et al., 2019), Tidyverse (Wickham et al.,
2019), and parallelization (Microsoft Corporation and Weston,
2019a,b). All neuroimaging data were converted using dcm2niix
(Linux; v1.0.20190902 Li et al., 2016) and saved to brain imaging
data structure (BIDS) specification (Gorgolewski et al., 2016)
with an in-house built tool (Wulms and Eppe, 2019). The random
draws were conducted using the dplyr (Wickham et al., 2019)
function sample_n() and setting a random seed. All processings
were conducted on aDell ThinkStation-P500 (12 cores x 3.5 GHz,
16 GB Ram) and Ubuntu 18.04 LTS.

3. RESULTS

3.1. Study Cohort
The sample used in (Table 3) had a mean age of 57
years (SD of 5.7 years) at BL. The right-skewed (manually
delineated) white matter hyperintensity volumes (refer to
Supplementary Figures 1, 2) at BL had amedian of 0.23 ml (IQR
of 0.92 ml). At FU the cohort had a mean age of 63 years (SD
of 5.7 years) and a median white matter hyperintensity volume
of 0.55 ml (IQR of 2.36 ml). When both are pooled together the
mean age was 60 years (SD of 6.4 years) and the median white
matter hyperintensity volume was 0.34 ml (IQR of 1.6 ml). The
external validation subset had a mean age of 60 years (SD of
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TABLE 3 | Descriptive statistics of the study cohort used for resampling and of the external validation set.

Study cohort Baseline Follow-up Total (BL+FU) External validation set

observations (n) 80 80 160 41

Age (years) 57.5 (5.7); 58.8 (7.3) 63.3 (5.7); 64.6 (7.3) 60.4 (6.4); 60.9 (8.0) 59.5 (7.7); 61.0 (13.9)

Sex (n)

Women 47 (59%) 47 (59%) 94 (59%) 20 (49%)

Men 33 (41%) 33 (41%) 66 (41%) 21 (51%)

WMH volumea (ml) 0.86 (1.35); 0.23 (0.92) 1.78 (2.57); 0.55 (2.36) 1.32 (2.10); 0.34 (1.60) 1.27 (2.21); 0.27 (1.34)

WMH low volumea observations (n)

0 ml 12 (15%) 9 (11%) 21 (13%) 7 (17%)

(0 ml, 0.1 ml) 8 (10%) 11 (14%) 18 (11%) 4 (9.8%)

(0.1 ml, 0.5 ml) 10 (12%) 7 (8.8%) 18 (11%) 3 (7.3%)

The study dataset comprises the resampling dataset that consists of the same 80 participants at BL and FU and the external validation set that consists of additional 41 participants

from the FU examination. Statistics presented: continuous variable: mean (SD); median (IQR); categorical variable: n (%). abased on manual segmentation.

7.72 years) and a median white matter hyperintensity volume
of 0.27 ml (IQR of 1.34 ml). Longitudinal comparisons showed
a general intra-individual increase in (manually segmented)
WMH volumes over time (Supplementary Figure 1). BIANCA
predicted WMH volumes were also greater at FU than at BL
(Figure 5).

3.2. Threshold Determination
With a mean absolute error of 0.11 ml (SD of 0.26 ml) for BL
and 0.01 ml (SD of 0.35 ml) for FU, the threshold of 0.8 to
extract white matter hyperintensity volume from the predicted
white matter hyperintensity maps showed the minimal deviation
from the manual gold standard (Supplementary Figures 3, 4

and Supplementary Tables 1–3). Thus, the threshold of 0.8 was
chosen for the following analyses. All mean absolute errors
per model, threshold, and sample size are summarized in the
Supplementary Figures 3, 4 and Supplementary Tables 1–3.

3.3. Comparison of Prediction on Validation
Sets
The validation sets were analyzed separately for model
performance and visualized using raincloud plots (Allen et al.,
2019). The external validation set showed a mean absolute error
of 0.31 ml and a standard deviation of 1.2 ml when trained
with a random model of 10 images (Figure 5 and Table 4). With
increasing training sample size, the SD and interquartile range
decreased, while the mean absolute error got closer to 0. For
example, amean absolute error of 0.05ml (SD of 0.24ml) resulted
from a sample size of 35 images and of 0.06 ml (SD of 0.23 ml)
with 40 training samples. The internal validation set at BL had
a mean absolute error of 0.11 ml (SD of 0.26 ml) and at FU a
mean of 0.01 ml (SD of 0.35 ml). The models trained with 35 or
40 subjects showed less outliers than all othermodels and indicate
a more robust performance of BIANCA.

3.4. Association of Manual Segmentation
Volume and Predicted Volume
Linear fits of each model (n = 700, 100 per sample-size)
comparing absolute manual volume vs. BIANCA predicted
volume at a threshold of 0.8 are visualized in Figure 6. A

TABLE 4 | Descriptive statistics of the mean absolute errors of lesion volume

[Brain Intensity AbNormality Classification Algorithm (BIANCA) predicted white

matter hyperintensities (WMH)-manual mask lesion, in ml] per model and

validation set at a white matter hyperintensity probability threshold of 0.8.

Training sets Internal validation sets External validation

Sample size Baseline Follow-up Follow-up

10 0.55 (1.22) 0.28 (1.46) 0.31 (1.20)

15 0.46 (0.93) 0.24 (1.14) 0.26 (0.94)

20 0.40 (0.71) 0.23 (0.83) 0.23 (0.67)

25 0.34 (0.69) 0.24 (0.88) 0.24 (0.72)

30 0.24 (0.40) 0.13 (0.52) 0.13 (0.36)

35 0.13 (0.26) 0.00 (0.36) 0.05 (0.24)

40 0.11 (0.26) 0.01 (0.35) 0.06 (0.23)

Statistics presented: Mean (SD). For each sample size, 100 random training sets were

drawn from the study dataset.

scatterplot showing the density of the underlying data is
visualized in Supplementary Figure 5. With increasing training
sample size, themodel performance converges to themeanmodel
performance (blue) indicating more robust predictions. With a
lower sample size, the chance to gain an over- or underestimating
model, which indicates lower accuracy per model, is increased.
Overall, the mean model performance shows that BIANCA
generally underestimates white matter hyperintensity volumes.

3.5. Mean Absolute Errors per Model,
Stratified by Sample-Size and Validation
Set
For each model (n = 100) a boxplot was created, visualizing
the absolute error per observation in the set. These boxplots
were then sorted by the median. The higher the sample size,
the lower the range of data, and the fewer models are over or
underestimating themanual standard (Figure 4). This indicates a
higher accuracy per model with an increasing sample size, which
results in a more robust performance when randomly choosing
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training subjects. This can also be observed in the modified
Bland-Altman plots (Supplementary Figures 6, 7).

3.6. Quality Control
In different intra-subject analyses, we explored whether there
are random deviations or systematic effects of lesion volume on
the prediction performance (Supplementary Figures 10, 11).
Again, in general, the performance converges with increasing
sample size. Supplementary Figures 10, 11 also show,
that BIANCA seems to underestimate participants with
higher lesion volume, whereas participants with lower
lesion volumes are more likely to be overestimated. Some
random appearing outliers can be observed, regardless of
sample size.

The Dice SI shows a poor performance across all sample
sizes (Supplementary Figure 12) with a mean SI of 0.14 (SD
0.16) for n = 40 training size. The low average spatial overlap
is driven by participants with very low lesion volumes (median<

0.2 ml) (Supplementary Figure 13). It can also be observed that
the robustness of the prediction increases with higher training
sample sizes, which is shown by a smaller range of SI across
the models.

3.7. Analysis of Training Set Composition
Each training set was post-hoc analyzed for the proportion of
low volume training samples (< 0.1 ml Supplementary Figure 8,
< 0.5 ml Supplementary Figure 9). We could observe for both
thresholds (over-all sample sizes and validation sets) that the
lower the proportion of low volume training samples, the higher
the mean absolute error of the trained model, reflecting an
overestimation by BIANCA. Vice versa, in training samples with
a high proportion of low volume training samples, BIANCA
was more likely to underestimate the WMH volumes. The
most accurate performance could be observed for training
sets with a 30–40% proportion of low-volume subjects. In
general, the performance gets more robust with increasing
sample size, which is shown by a smaller range of MAE and
smaller IQR.

4. DISCUSSION

Seven different effective training sample sizes ranging from 10
to 40 subjects for the training of automated WMH segmentation
models with BIANCA were evaluated. Internal and external
validation sets were used to compare the automatically estimated
lesion volumes with a manual reference standard. The external
validation set, with images never used for the training of
any model, shows the highest accuracy, defined as the lowest
mean absolute error, SD, median, and IQR when trained
with 35 and 40 randomly drawn subjects (Figures 4, 5 and
Table 4, Supplementary Figures 5, 9). With increasing sample
size, the mean absolute error across all models converges
to zero, indicating a more robust performance of BIANCA
in this population with a very low average lesion load
(Supplementary Figures 6, 7). Figure 5B shows differences in
the prediction accuracy across study time points. The mean
absolute error is on average slightly higher for BL than for

FU lesions (Figure 5B). This is most probably due to the
combination of a higher proportion of participants with no or
low lesion volumes at BL compared to the FU examination, and
a general overestimation of small WMH (refer to discussion
next paragraph). This should not be confused with the
increasing absolute mean lesion volume over time (Figure 5A).
This increase in lesion volume is reasonable, regarding the
aging cohort. It is also observable, that the predicted mean
absolute volumes of the external cohort are on average in
between the internal BL and FU data. This also supports a
reliable prediction of BIANCA, as the means of the manually
delineated volumes of the external cohort (1.27 ml, SD 2.21
ml) were also in between the internal BL (0.86 ml, SD 1.35
ml) and FU volumes (0.86 ml, SD 1.35 ml) (Figure 5 and
Table 3).

In the additional intrasubject analyses, we found a strong
association between prediction accuracy and lesion volume: the
higher the manually delineated lesion volume, the higher the
chance for BIANCA to underestimate the lesion volume, while
with lower or no manual lesion volumes, BIANCA is more likely
to overestimate (Supplementary Figures 10, 11). Moreover, the
Dice SI (Supplementary Figures 12, 13) evaluating the spatial
overlap between manual and predicted masks was very low,
particularly for participants with low or no lesion volume.
This inaccurate prediction of small lesion volumes, particularly
regarding spatial overlap, has been shown before for other
segmentation algorithms (Admiraal-Behloul et al., 2005; Dadar
et al., 2017; Heinen et al., 2019; Carass et al., 2020). It
might have methodological reasons as well as reasons for true
measurement error. The latter concerns the major difficulty
of raters and algorithms to correctly identify and delineate
single small lesions and contrast them to artifacts or small
infarcts (Carass et al., 2020). From a methodological point of
view, the Dice SI is particularly dependent on the absolute
lesion load and the size of the individual lesions, as a
disagreement of only few voxels could lead to a very small
SI. Moreover, regarding the direction of measurement error:
a volume of zero from a manually delineated mask cannot
be underestimated, therefore, any spatial incongruities between
manual and predicted mask in subjects with no manually
marked lesion lead to an overestimation of the prediction, and
a SI of zero, respectively. Furthermore, regarding our own
data and analyzes, we neither apply any white matter masks
to mask out artifact-prone regions, nor did we use volume
thresholds to define a minimal cluster of voxels to be labeled
as WMH. This might also support an overestimation of the
predicted lesion volumes. It should also be acknowledged that
our cohort has a very low proportion of subjects with large
WMH, and even these lesions are comparably small to the
extensive confluent lesions found in pronounced small vessel
disease. Thus, we cannot exclude, that different compositions
of training sets, that include subjects with far bigger lesion
volumes are generally inferior in the prediction of study samples
that comprise small WMH. Nevertheless, we might deduce
from Supplementary Figures 8, 9, that a balanced training set,
containing low as well as higher lesion subjects, yields the most
accurate prediction results, at least regarding volumetric overlap.
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Therefore, we speculate, that a representative training sample
including all the range of possible WMH volumes (also zero)
might be optimal. However, as these analyses are post-hoc, this
hypothesis remains highly speculative.

The limiting factors of our analysis were the availability
of training data and computation time. While 201 manually
delineated white matter hyperintensity masks, derived from MR
sequences acquired with the same scanner, represent a high
number in the field of population studies, it is at the lower
end of the scale in machine-learning. A higher number of
random training sets (e.g., 1,000) would enhance the reliability
of our findings, but would take a very long time to delineate
manually, and also increase computational time to about a
year or longer. Furthermore, with the limited number of 80
subjects to draw from, chances are increased to get duplicate
training sets. However, we checked for that, and we were not
able to identify an identical set. An associated limitation is the
maximum number of 40 training subjects in our analyses. While
the accuracy (mean absolute error of the difference between
BIANCA prediction and manually delineated masks) of the
models does not significantly improve from a training size of
about 20–25 onward, we do observe increasing robustness, i.e.,
a decreasing chance of drawing a deviating model with an
increasing number of training participants. Thus, we cannot
exclude the possibility, that with a further increase in training
sample size the performance, particularly the robustness, would
still profit. Nevertheless, in our cohort, a training sample size
of (only) 35–40 manually labeled images, which from a cost-
benefit view should be realizable in most studies, was adequately
robust, i.e., none of the models showed an extreme deviation
from the mean fit. Finally, we do not have inter or intrarater
agreement measures for our manual delineations. The intention
of our manual masks was to gain the most possible validity of
WMH masks. While reproducibility will surely be important
for the BIANCA algorithm to reliably work in a large cohort,
our primary quality goal for the manuals mask was validity.
Our way to yield the most valid masks was by consensus
decisions, i.e., the harmonization of ratings by constantly having
two raters to evaluate each image as well as conducting case-
based expert consensus meetings. By design, this maximization
of validity was at the cost of potential intra or interrater
agreement comparisons.

Brain Intensity AbNormality Classification Algorithm, like
other tools, only gives recommendations but does not offer
a fully standardized pipeline for image preprocessing. The
construction and validation of a pipeline for brain-extraction
and bias-correction can be time-consuming. Nevertheless, the
impact of preprocessing is important for a valid and reproducible
outcome. Accessible, open solutions, beginning with the input
of data in a standardized specification format such as BIDS
and a containerized environment for preprocessing and analysis
(refer to BIDS-Apps Gorgolewski et al., 2017) might help to
standardize these approaches (Gorgolewski et al., 2016) in the
future. We tested only the recommended default settings for
BIANCA and evaluated the influence of the training sample
size. Recently, the authors of BIANCA also developed a
locally adaptive thresholding method (Sundaresan et al., 2019)

to determine the ideal local threshold for the white matter
hyperintensity probability maps instead of applying a global
threshold. However, this method showed the best improvements
in the prediction of WMH when applied to cohorts with higher
lesion load.

5. CONCLUSION

Brain Intensity AbNormality Classification Algorithm is
a frequently used algorithm for automated white matter
hyperintensity segmentation. Our study highlights the
importance of choosing a representative training sample of
sufficient size for cohorts with low average lesion volumes. This
increases the chance of training a model that is close to the
ground truth and reflects the lesion properties in the population.
However, further work is needed to evaluate the transfer on
other cohorts, particularly cohorts comprising very low as well
as very high lesion volumes. Further study is also needed to
elucidate and ideally improve the inaccurate lesion prediction
for small WMH.
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Chakravarty, M. M., et al. (2017). BIDS apps: improving ease of use,
accessibility, and reproducibility of neuroimaging data analysis methods. PLoS
Comput. Biol. 13:e1005209. doi: 10.1371/journal.pcbi.1005209

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff,
E. P., et al. (2016). The brain imaging data structure, a format for organizing
and describing outputs of neuroimaging experiments. Sci. Data 3, 1–9.
doi: 10.1038/sdata.2016.44

Griffanti, L., Zamboni, G., Khan, A., Li, L., Bonifacio, G., Sundaresan, V., et al.
(2016). BIANCA (brain intensity abnormality classification algorithm): a new
tool for automated segmentation of white matter hyperintensities. Neuroimage

141, 191–205. doi: 10.1016/j.neuroimage.2016.07.018
Heinen, R., Steenwijk, M. D., Barkhof, F., Biesbroek, J. M., van der Flier,

W. M., Kuijf, H. J., et al. (2019). Performance of five automated white matter
hyperintensity segmentation methods in a multicenter dataset. Sci. Rep. 9,
16742. doi: 10.1038/s41598-019-52966-0

Hopkins, R. O., Beck, C. J., Burnett, D. L., Weaver, L. K., Victoroff, J., and Bigler,
E. D. (2006). Prevalence of white matter hyperintensities in a young healthy
population. J. Neuroimag. 16, 243–251. doi: 10.1111/j.1552-6569.2006.00047.x

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W.,
and Smith, S. M. (2012). Review FSL. Neuroimage 62, 782–790.
doi: 10.1016/j.neuroimage.2011.09.015

Kamnitsas, K., Ledig, C., Newcombe, V. F. J., Simpson, J. P., Kane, A. D.,
Menon, D. K., et al. (2016). Efficient multi-scale 3D CNN with fully connected
CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78.
doi: 10.1016/j.media.2016.10.004

Li, X., Morgan, P. S., Ashburner, J., Smith, J., and Rorden, C. (2016). The first
step for neuroimaging data analysis: DICOM to NIfTI conversion. J. Neurosci.
Methods 264, 47–56. doi: 10.1016/j.jneumeth.2016.03.001

McCarthy, P. (2019). Fsleyes. Available online at: https://zenodo.org/record/
5576035

Microsoft Corporation and Weston, S. (2019a). doParallel: Foreach Parallel

Adaptor for the ’parallel’ Package. R package version 1.0.15.
Microsoft Corporation and Weston, S. (2019b). foreach: Provides Foreach Looping

Construct. R package version 1.4.7.
Olsson, E., Klasson, N., Berge, J., Eckerström, C., Edman, Å., Malmgren, H., et al.

(2013). White matter lesion assessment in patients with cognitive impairment
and healthy controls: reliability comparisons between visual rating, a manual,
and an automatic volumetrical MRI method—the gothenburg MCI study. J.
Aging Res. 2013, 198471. doi: 10.1155/2013/198471

Prins, N. D., Van Straaten, E. C., Van Dijk, E. J., Simoni, M., Van Schijndel,
R. A., Vrooman, H. A., et al. (2004). Measuring progression of cerebral white
matter lesions onMRI: Visual rating and volumetrics.Neurology 62, 1533–1539.
doi: 10.1212/01.wnl.0000123264.40498.b6

R Core Team (2019). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Scheltens, P., Barkhof, F., Leys, D., Pruvo, J. P., Nauta, J. J., Vermersch, P.,
et al. (1993). A semiquantative rating scale for the assessment of signal
hyperintensities on magnetic resonance imaging. J. Neurol. Sci. 114, 7–12.
doi: 10.1016/0022-510x(93)90041-v

Schmidt, P., Gaser, C., Arsic, M., Buck, D., Förschler, A., Berthele, A., et al. (2012).
An automated tool for detection of FLAIR-hyperintense white-matter lesions in
multiple sclerosis. Neuroimage 59, 3774–3783. doi: 10.1016/j.nicl.2019.101849

Frontiers in Aging Neuroscience | www.frontiersin.org 13 January 2022 | Volume 13 | Article 720636

https://www.frontiersin.org/articles/10.3389/fnagi.2021.720636/full#supplementary-material
https://doi.org/10.1016/j.neuroimage.2005.06.061
https://doi.org/10.1007/s00103-020-03111-0
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.12688/wellcomeopenres.15191.1
https://doi.org/10.1016/j.neuroimage.2003.10.012
https://doi.org/10.1148/radiol.2015142272
https://doi.org/10.1038/s41598-020-64803-w
https://doi.org/10.1109/TMI.2017.2693978
https://doi.org/10.1016/j.neuroimage.2009.01.011
https://doi.org/10.1136/bmj.c3666
https://doi.org/10.2214/ajr.149.2.351
https://doi.org/10.1212/wnl.43.9.1683
https://doi.org/10.1093/brain/awz144
https://doi.org/10.3389/fneur.2019.00238
https://doi.org/10.1371/journal.pcbi.1005209
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1016/j.neuroimage.2016.07.018
https://doi.org/10.1038/s41598-019-52966-0
https://doi.org/10.1111/j.1552-6569.2006.00047.x
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1016/j.media.2016.10.004
https://doi.org/10.1016/j.jneumeth.2016.03.001
https://zenodo.org/record/5576035
https://zenodo.org/record/5576035
https://doi.org/10.1155/2013/198471
https://doi.org/10.1212/01.wnl.0000123264.40498.b6
https://doi.org/10.1016/0022-510x(93)90041-v
https://doi.org/10.1016/j.nicl.2019.101849
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Wulms et al. Resampling WMH Prediction in BIANCA

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens,
T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural
MR image analysis and implementation as FSL. Neuroimage 23, S208–S219.
doi: 10.1016/j.neuroimage.2004.07.051

Steenwijk, M. D., Pouwels, P. J., Daams, M., Van Dalen, J. W., Caan, M. W.,
Richard, E., et al. (2013). Accurate white matter lesion segmentation by k
nearest neighbor classification with tissue type priors (kNN-TTPs).Neuroimage

Clin. 3, 462–469. doi: 10.1016/j.nicl.2013.10.003
Sundaresan, V., Zamboni, G., Le Heron, C., Rothwell, P.M., Husain,M., Battaglini,

M., et al. (2019). Automated lesion segmentation with BIANCA: impact
of population-level features, classification algorithm and locally adaptive
thresholding. Neuroimage 202:116056. doi: 10.1016/j.neuroimage.2019.116056

Sweeney, E. M., Shinohara, R. T., Shiee, N., Mateen, F. J., Chudgar, A. A.,
Cuzzocreo, J. L., et al. (2013). OASIS is automated statistical inference for
segmentation, with applications to multiple sclerosis lesion segmentation in
MRI. Neuroimage Clin. 2, 402–413. doi: 10.1016/j.nicl.2013.03.002

Teismann, H., Wersching, H., Nagel, M., Arolt, V., Heindel, W., Baune, B. T.,
et al. (2014). Establishing the bidirectional relationship between depression
and subclinical arteriosclerosis—rationale, design, and characteristics of the
BiDirect Study. BMC Psychiatry 14:174. doi: 10.1186/1471-244X-14-174

Teuber, A., Sundermann, B., Kugel, H., Schwindt, W., Heindel, W., Minnerup, J.,
et al. (2017). MR imaging of the brain in large cohort studies: feasibility report
of the population- and patient-based BiDirect study. Eur. Radiol. 27, 231–238.
doi: 10.1007/s00330-016-4303-9

Valverde, S., Salem, M., Cabezas, M., Pareto, D., Vilanova, J. C., Ramió-Torrentà,
L., et al. (2019). One-shot domain adaptation in multiple sclerosis lesion
segmentation using convolutional neural networks. Neuroimage Clin. 21,
101638. doi: 10.1016%2Fj.nicl.2018.101638

Vanderbecq, Q., Xu, E., Ströer, S., Couvy-Duchesne, B., Diaz Melo,
M., Dormont, D., et al. (2020). Comparison and validation of
seven white matter hyperintensities segmentation software in elderly
patients. Neuroimage Clin. 27:102357. doi: 10.1016/j.nicl.2020.1
02357

Wardlaw, J. M., Ferguson, K. J., and Graham, C. (2004). White matter
hyperintensities and rating scales—observer reliability varies with lesion load.
J. Neurol. 251, 584–590. doi: 10.1007/s00415-004-0371-x

Wardlaw, J. M., Smith, E. E., Biessels, G. J., Cordonnier, C., Fazekas, F., Frayne, R.,
et al. (2013). Neuroimaging standards for research into small vessel disease and

its contribution to ageing and neurodegeneration. Lancet Neurol. 12, 822–838.
doi: 10.1016/S1474-4422(13)70124-8

Wardlaw, J. M., Valdés Hernández, M. C., and Muñoz-Maniega, S. (2015). What
are White Matter Hyperintensities Made of? J. Amer. Heart Assoc. Cardiovasc.

Dis. 4:e001140. doi: 10.1161/JAHA.114.001140
Weeda,M.M., Brouwer, I., de Vos,M. L., de Vries, M. S., Barkhof, F., Pouwels, P. J.,

et al. (2019). Comparing lesion segmentation methods in multiple sclerosis:
Input from one manually delineated subject is sufficient for accurate lesion
segmentation. Neuroimage Clin. 24, 102074. doi: 10.1016/j.nicl.2019.102074

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François,
R., et al. (2019). Welcome to the tidyverse. J. Open Source Softw. 4:1686.
doi: 10.21105/joss.01686

Williamson, W., Lewandowski, A. J., Forkert, N. D., Griffanti, L., Okell,
T. W., Betts, J., et al. (2018). Association of cardiovascular risk factors
with MRI indices of cerebrovascular structure and function and
white matter hyperintensities in young adults. JAMA 320, 665–673.
doi: 10.1001/jama.2018.11498

Wulms, N., and Eppe, S. (2019). wulms/bidirect_bids_converter: Runable script.
Available online at: https://zenodo.org/record/5031574

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Wulms, Redmann, Herpertz, Bonberg, Berger, Sundermann and

Minnerup. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 14 January 2022 | Volume 13 | Article 720636

https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1016/j.nicl.2013.10.003
https://doi.org/10.1016/j.neuroimage.2019.116056
https://doi.org/10.1016/j.nicl.2013.03.002
https://doi.org/10.1186/1471-244X-14-174
https://doi.org/10.1007/s00330-016-4303-9
https://doi.org/10.1016%2Fj.nicl.2018.101638
https://doi.org/10.1016/j.nicl.2020.102357
https://doi.org/10.1007/s00415-004-0371-x
https://doi.org/10.1016/S1474-4422(13)70124-8
https://doi.org/10.1161/JAHA.114.001140
https://doi.org/10.1016/j.nicl.2019.102074
https://doi.org/10.21105/joss.01686
https://doi.org/10.1001/jama.2018.11498
https://zenodo.org/record/5031574
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles

	The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA
	1. Introduction
	2. Materials and Methods
	2.1. Study Cohort
	2.2. Ethics
	2.3. MRI Data Acquisition
	2.4. Manual Segmentation
	2.5. Preprocessing Pipeline
	2.6. Sampling Strategy
	2.7. Model Training and Prediction
	2.8. Metric Extraction and Performance Evaluation
	2.9. Processing and Hardware

	3. Results
	3.1. Study Cohort
	3.2. Threshold Determination
	3.3. Comparison of Prediction on Validation Sets
	3.4. Association of Manual Segmentation Volume and Predicted Volume
	3.5. Mean Absolute Errors per Model, Stratified by Sample-Size and Validation Set
	3.6. Quality Control
	3.7. Analysis of Training Set Composition

	4. Discussion
	5. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


