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Citrobacter freundii is an opportunistic pathogen responsible for many urinary tract infections acquired in hospitals and is thus
a concern for public health. C. freundii phage Stevie might prove beneficial as a treatment against these infections. The complete
genome of Stevie and its key features are described here.
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Citrobacter, a Gram-negative bacteria, includes many opportu-
nistic pathogens. C. freundii causes urinary and respiratory

tract infections, many of which have been found to be resistant to
a number of antibiotics (1, 2). This makes bacteriophages infect-
ing C. freundii, such as siphophage Stevie, described here, of par-
ticular interest for combating multi-drug resistance (3).

Bacteriophage Stevie was isolated from a dirt sample collected
in College Station, TX. Phage DNA was sequenced in an Illumina
MiSeq 250-bp paired-end run with a 550-bp insert library at the
Genomic Sequencing and Analysis Facility at the University of
Texas (Austin, TX). Quality-controlled trimmed reads were as-
sembled to a single contig at 20.9 fold coverage using Velvet ver-
sion 1.2.10. Genes were predicted using GeneMarkS (4) and cor-
rected using software tools available on the Center for Phage
Technology (CPT) Galaxy instance (https://cpt.tamu.edu/galaxy
-public/) (5–7). Morphology was determined using transmission
electron microscopy performed at the Texas A&M University Mi-
croscopy and Imaging Center.

Stevie is a T1-like phage with a 49,759-bp partially permuted
genome, G�C content of 43.7%, 91.5% coding density, and 91
predicted coding sequences. Stevie shares 47.7, 62.8, and 44.2
percent nucleotide sequence identity to siphophages T1
(NC_005833), TLS (NC_009540), and FSL SP-030 (NC_021779),
respectively, as determined by Emboss Stretcher (8). It has an
abundance of rho-independent terminators, a distinguishing fea-
ture of T1-like phages, with 21 predicted in its genome compared
to the 17 found in phage T1 (9). Sixteen occurrences of a 22-bp
repeat sequence (consensus-VWATAGCAYKWWTTGYTAA
AAV) were identified in the sequence of Stevie. A comparable
repeat with 20 occurrences was identified in the T1 genome (9).
The repeat sequence is asymmetric, predominantly intergenic,
and oriented in one direction with respect to the direction of tran-
scription. A 13-bp repeat with similar features was described in
mycobacteriophage L5 as a stoperator involved in the mainte-
nance of transcriptional silence of the integrated prophage (10).
The role these repeats play in the lytic lifestyle of T1 and Stevie is
unknown.

Genes encoding T1-like morphogenesis proteins include the

prohead protease, major capsid protein, tail fibers, tail assembly
proteins, tape measure protein, and tape measure chaperones
(complete with a conserved translational frameshift) (11). Few
DNA replication/recombination proteins were identified (single-
strand annealing protein, single-strand binding protein, primase,
helicase, and an endonuclease). Stevie encodes a DNA (N6-
adenine)-methyltransferase and presumably methylates its DNA-
like phage T1 (12, 13). Stevie uses a headful DNA-packaging
mechanism as determined by homology of TerL to large terminase
proteins of phages with known pac-type strategies (14).

Similar to T1-like phage TLS, Stevie encodes a T4 Stp-like pep-
tide that protects the phage from specific host restriction enzymes
(15). In T4, the Stp-mediated restriction enzyme protection acti-
vates a host tRNALys-specific anticodon nuclease (ACNase), the
action of which is mitigated by phage encoded polynucleotide
kinase, also present in the Stevie genome. The lysis cassette con-
sists of a predicted (class-II) pinholin (6), a R21-like signal anchor
release (SAR) lysozyme (16, 17), and a unimolecular spanin (18).

Nucleotide sequence accession number. The genome se-
quence of phage Stevie was deposited in GenBank under the ac-
cession no. KM236241.
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