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The b-cell regeneration field has shown a strong knowledge boost in the last 10 years.
Pluripotent stem cell differentiation and direct reprogramming from other adult cell types
are becoming more tangible long-term diabetes therapies. Newly generated b-like-cells
consistently show hallmarks of native b-cells and can restore normoglycemia in diabetic
mice in virtually all recent studies. Nonetheless, these cells still show important
compromises in insulin secretion, cell metabolism, electrical activity, and overall survival,
perhaps due to a lack of signal integration from other islet cells. Mounting data suggest
that diabetes is not only a b-cell disease, as the other islet cell types also contribute to its
physiopathology. Here, we present an update on the most recent studies of islet cell
heterogeneity and paracrine interactions in the context of restoring an integrated islet
function to improve b-cell replacement therapies.
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INTRODUCTION

The islets of Langerhans are complex micro-organs composed of different endocrine cell types whose
principal function is the maintenance of glucose homeostasis and feeding behavior through
coordinated hormone secretion and paracrine interactions. Different studies have estimated the
human islet to be comprised mainly by insulin-secreting b-cells in the range of 52–75% (1–5).
Following in number, glucagon-secreting a-cells and somatostatin-secreting d-cells comprise some 40
and 10% of the islet. Pancreatic polypeptide (PP)-secreting g-cells and ghrelin-secreting ϵ-cells are the
minor cell types comprising about 5% and less than 1% of the islet, respectively. Islets cells are
characterized by an exquisite secretory capacity and cell mass modulation that efficiently adapts to
diverse metabolic stresses or pathologies like pregnancy and obesity. Defects in this adaptive capacity
are at the core of certain impairments in nutrient metabolism and diabetes development (6–8).

The different islet cell types are arranged in an intricate network that facilitates cell proximity
and direct contacts that fine-tune hormone secretion to robustly control glucose homeostasis. In
human islets, there is a predominance of heterologous contacts between b- and a-cells, suggesting
their direct interaction is crucial for glycaemia management (9). Indeed, paracrine a-cell signaling
establishes a set point for insulin secretion and glycemia throughout different animal species (10).
Dysregulation of islet paracrine interactions and non-b-cell function contribute substantially to
diabetes symptomatology (11–17). This could be one of the reasons why conventional diabetes
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therapies relying solely on exogenous insulin do not maintain
stable normoglycemia. It is becoming apparent that diabetes is a
disease concerning the whole islet, yet regenerative approaches
have for the most part focused mainly on restoring a functional
b-cell mass and basal insulin secretion with little regard on
achieving a balanced islet secretory output. Here, we present an
update on recent studies highlighting the importance of islet
paracrine interactions and cell heterogeneity for a highly
malleable human islet function that achieves optimal glucose
homeostasis and withstands the range of stresses present in the
ever-changing physiologic and cellular environment.
DIABETES AFFECTS ALL ISLET
ENDOCRINE CELL TYPES

Mounting data shows that the complex islet cytoarchitecture,
gene expression, and function of non-b-cells are also
significantly compromised throughout diabetes progression.
Both T1D and T2D patients present hyperglucagonemia in
postprandial conditions or upon oral glucose challenge, that
exacerbates hyperglycemia (11–15). The reasons are not fully
understood, yet i) lack of intra-islet insulin, ii) dysfunctional a-
cell glucose sensing, or iii) increases in the functional a-cell mass
may be underlying mechanisms. A convoluted combination of
these defects may also be possible, as T2D patients present
hyperglucagonemia even in the fasting state (16, 17) while T1D
patients present a defective a-cell response to hypoglycemia (18).

In T1D, a-cell mass is maintained in the early stages of the
disease (19) while it clearly decreases in advanced stages (20). For
T2D, most published studies do not specify the stage of the
disease, and report conflicting results depending on the
analytical method, with a higher a- to b-cell ratio in long-
standing T2D pancreas (9, 21, 22) or a decrease of the total
glucagon+ area in all regions of the pancreas (23), but no
differences in a-cell mass (22). This suggests that a-cell defects
may not be due to an increased cell mass. In concordance, recent
studies with islets from T2D donors show no inhibition of
glucagon secretion in vitro at high glucose concentrations (24).
Moreover, transplantation of islets from T2D donors into a novel
Glucagon knockout-NSG mouse model showed increased
glucagon secretion during fasting and upon insulin-induced
hypoglycemia, suggesting that hyperglucagonemia in T2D is
caused by local islet defects that are not resolved when
transplanted into a non-diabetic environment (25).
Nonetheless, the effect of induced hyperglycemia was not
tested in this study. In addition, single cell RNA sequencing
(scRNA-seq) of a- and d-cells from T2D donors showed a
downregulation of energy metabolism and protein synthesis
genes (26, 27). In contrast, islets from T1D donors show
decreased glucagon secretion at low glucose concentrations in
vitro (28), underlying the high risk of severe hypoglycemia after
insulin administration in T1D patients (18, 28). a-cells from
T1D donors also show differential gene expression, including in
electrical activity and exocytosis, as well as master regulators of
a-cell identity, ARX and MAFB (28).
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Only few studies tested the effect of diabetes on the minor islet
cell types, yet it is likely they are also significantly affected. ϵ-cells
show a reduction in their number that could be linked to lower
plasma ghrelin levels in T2D (29). Yet, this is unlikely since most
ghrelin-secreting cells are extrapancreatic (gastric fundus). In d-
cells, islets from T2D donors showed blunted in vitro
somatostatin secretion in response to glucose while some
donors show hypersecretion at low glucose (30). While there
are no reports on d-cells from T1D donors, recent findings in
diabetic mice indicate that increased somatostatin signaling may
be reducing counter-regulatory glucagon secretion during
insulin-induced hypoglycemia (31). Finally, T2D patients
present high plasma levels of PP after an oral glucose challenge
(32). As PP inhibits somatostatin secretion in human islets (33),
is possible that increased levels of PP contribute to diabetic
hyperglucagonemia by decreasing the somatostatin inhibitory
effect on a-cells.

Collectively, these studies suggest that diabetes eventually
becomes an islet disease affecting all islet cells or that the
degree of initial non-b-cell dysfunction is a contributing factor
accelerating the progression or the severity of diabetes. Whether
non-b-cell defects are intrinsic or solely the result of the decrease
in b-cells and local insulin, is still the focus of intense research.
Little is known about the role of non-b-cell function in glucose
intolerance, prediabetes or the initial stages of diabetes. d-Cell
electrical oscillatory activity in response to glucose stimulation is
impaired in insulin resistant mice treated with high fat diet (34)
and non-human primates show decreased proportion of d-cells
per islet that progresses with mounting hyperglycemia, possibly
caused by d-cell apoptosis (35). Alterations in d-cell secretory
function during the progression of type 2 diabetes may
exacerbate b-cell exhaustion due to a lack of inhibitory signals
exerted by somatostatin or could be an adaptation to the higher
insulin demand during prediabetes. In the case of a-cells, insulin
resistant and glucose intolerant mice under high fat diet present
a-cell hypertrophy and lack of suppression of glucagon release
upon intraperitoneal glucose injection (36). Studies with obese
subjects also observed hyperglucagonemia upon postprandial
conditions (37) and in non-human primates a-cell mass tends
to increase with the duration and severity of obesity (38). It has
been postulated that a-cell insulin resistance (39), intrinsic
defects in a-cell glucose sensing or a reduced somatostatin
signaling may lead to a-cell functional alterations at this stage
(40). Nonetheless, these observations also highlight that defects
in non-b-cells may appear in the eventual progression to T2D.

Analysis of non-b-cell numbers and circulating levels of their
corresponding hormones in prediabetes or the initial stages of
diabetes is needed to understand when these defects start and
their contribution to diabetes before b-cell function is impaired.
Likewise, whether defective a-cell function in diabetes is
completely restored by the regeneration of a functional b-cell
mass is still not clear. T1D recipients of islet transplants showed
an absence or only partial restoration of glucagon secretion upon
insulin-induced hypoglycemia (41–43). The combination of
mouse diabetic models showing dysregulated glucagon
secretion (44, 45) that allow the measurement of human
February 2021 | Volume 11 | Article 619150
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plasmatic glucagon (25) and transplantation of purified human
a-cells alone or in combination with other islets cells will be
needed to address this issue.
HUMAN ISLET ARCHITECTURE FAVORS
HETEROLOGOUS CONTACTS BETWEEN
ENDOCRINE CELLS: IMPLICATIONS IN
THE COUNTER-REGULATORY ISLET
RESPONSE TO HYPOGLYCEMIA

In 1982, pioneering studies described a poor responsiveness of
isolated single rat b-cells to glucose, an effect that was linked to
the lack of a-cell contacts and glucagon, revealing the crucial role
of the islet architecture in the optimal functional cooperation
between islet cells (46). Since then, most studies have focused on
the core-mantle arrangement of rodent islets that clusters b-cells
in the center surrounded by peripheral non-b-cells (4). This
favors homologous b-to-b cell contacts shown to be critical in
mice for regulating in vivo insulin secretory dynamics and
glucose homeostasis through gap-junction coupling (47), which
drives b-cell synchronization in terms of electrical activity and
intracellular calcium concentration. However, it is broadly
accepted that human islet cell types are distributed more
randomly (3, 4). Recent studies show that the human islet
involves a more intricate structure that depends on islet size.
Small human islets (40-60 µm in diameter), which are more
frequent during childhood, display the core-mantle structure of
rodent islets, while large islets are formed by multiple subunits of
b-cell clusters surrounded by non-b cells, containing a lower
proportion of b-cells than the smaller ones (48). A similar trend
is observed between juvenile and aged mice. This unique
arrangement presents a higher rate of heterologous contacts,
while maintaining homologous contacts between b-cells (9). In
the case of humans, b-cells seem to be less synchronized than in
mice in response to stimulatory glucose concentrations (4),
possibly due to their organization within the islet, which can
prime them to have a weaker b-cell electrical coupling. Indeed,
synchronous intracellular calcium oscillations in response to
stimulatory glucose concentrations have been recorded only in
b-cells within the same islet region (49). The higher rate of
heterologous contacts within the human islet suggests that
counter-regulatory paracrine interactions might play a more
important role in human than in mouse islets for the fine
tuning of insulin secretion and glycemia maintenance.
Figure 1 summarizes paracrine interactions between human
islet cell types.

In humans, a-cell signaling potentiates insulin secretion
throughout a wide range of glucose concentrations (50),
establishes the glycemic set point for insulin secretion (10) and
enhances insulin secretion when b-cells are in contact with a-
cells (51). This is classically known to be mediated by glucagon
signaling (10), which activates human b-cell G protein-coupled
receptors (GPCR) of class B, including glucagon receptor
(GCGR), and glucagon-like peptide 1 receptor (GLP-1R),
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promoting insulin secretion by an increase in cyclic AMP and
the recruitment of insulin granules (50). However, GLP-1 is also
secreted by human a-cells (52–54) and necessary for insulin
secretion in human islets, as GLP-1R antagonism blunted
glucose stimulated insulin secretion (GSIS) in vitro (54).
Moreover, GLP-1 can elicit synchronous intracellular calcium
oscillations in human whole islets (55), suggesting an important
role of this hormone and the location of a-cells within the islet to
obtain pulsatile and synchronized insulin secretion. Human a-
cells also amplify GSIS through the parasympathetic
neurotransmitter acetylcholine, which is co-secreted with
glucagon (56, 57) and acts through the activation of the
muscarinic receptor M3 in b-cells (57). It has been postulated
that this mechanism aids in maintaining b-cell responsiveness to
the subsequent rise in glucose produced by glucagon action (56).
Subsequently, excessive insulin release and hypoglycemia are
avoided by a paracrine negative feedback loop between b- and d-
cells (58), mediated by urocortin-3 (UCN3), which is released by
b-cells along with insulin. UCN3 activates type 2 corticotropin-
releasing hormone receptors specifically borne by d-cells within
the human islet and stimulates somatostatin secretion (58),
which directly inhibits insulin secretion through somatostatin
receptor 2 (SSTR2) activation (59). Recent data shows that
human d-cells have long filopodia containing secretory
granules that allow for direct contact with multiple b- and a-
cells (34), and suggests that human b- and d-cells are coupled by
gap junctions (60), as somatostatin secretion follows the same
pulsatile and coordinated response of insulin secretion in
isolated islets (61).

Recent data is also starting to shed light on how paracrine
interactions control a- and d-cell secretory outputs. The
activation of somatostatin secretion by b-cells, directly inhibits
glucagon secretion through SSTR2 in a-cells (31) and in vitro
chemical inhibition of insulin or somatostatin signaling in whole
human islets induces glucagon secretion at non-stimulatory
glucose concentrations (24). Isolated human a-cells also
activate glucagon secretion at non-stimulatory glucose
concentrations, which was corrected by reaggregation with
purified b-cells but not by incubation with b-cell secreted
factors (62). Lastly, ghrelin has been recently shown to
suppress insulin secretion in human islets (29) and potentiate
somatostatin release (63), thus suggesting a novel role for ϵ-cells
in the control of hypoglycemia. Conversely, g-cells seem to
enhance human insulin secretion through an inhibition in
somatostatin secretion caused by the PP activation of NPYR4
receptor in d-cells (33). PP also activates the PPYR1 receptor
(which is present in human a-cells) in mouse a-cells and inhibits
glucagon secretion (64).

Knowledge about how human islet structure and the
integrated input of paracrine signaling control synchronization
of b-cells and islet hormone secretion is scarce and fragmented in
comparison with the mouse islet. While mouse islets present
tightly synchronized b-cell function and less heterologous cell
contacts, non-b-cells might play a more important role in human
islets. New techniques employing high yields of purified primary
human islet cells will be necessary to study the contribution of
February 2021 | Volume 11 | Article 619150
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each cell type to integrated islet function. Systematic and high-
resolution secretory profiling under various metabolic stresses,
using isolated as well as reaggregated human islet cells in
different combinations, will help dissect the bewildering
interplay of interactions that coordinate optimal islet secretion.
A recent study employing reaggregated human islets and a
microfluidic system that measures secretion concurrently with
intracellular signaling dynamics highlights the importance of
developing new tools to study human islet cells, as it revealed Gi

GPCR signaling decreases insulin and glucagon secretion while
Gq GPCRs stimulate glucagon secretion but have dual effects on
insulin secretion (65).
HUMAN ISLETS ARE COMPRISED OF
HETEROGENEOUS CELL POPULATIONS:
RELEVANCE IN b-CELL FUNCTION AND
STRESS ADAPTATION

A higher level of complexity stems from recently identified b-
and a-cell subpopulations based on physiological (66–68),
transcriptomic (27, 67, 69–72), and proteomic differences (73–
75). Upon stimulatory conditions, human b-cells located in
Frontiers in Endocrinology | www.frontiersin.org 4
discrete is let regions synchronize calcium flux and
electrophysiology (4, 49, 76). Shedding light on whether this is
due to their location in the islet, their specific b-b physical
interactions or to intrinsic features, employing functional cell
mapping with optogenetics, “hub” b-cells (10% of the human
islet) were identified as first-responders that engage other b-cells
into insulin secretion (66). These cells are considered immature
based on low Pdx1 and Nkx6.1 expression and low insulin
content (66). In mouse islets, “hub” b-cell function is not
affected by the inhibition of glucagon signaling or by their
location within the islet (66). However, these features have not
been explored in human cells, neither whether “hub” cells have a
higher number of contacts with a-cells or d-cells, which could
hint at which cell type has a bigger functional influence on this b-
cell subpopulation.

Interestingly, “hub” b-cells are more susceptible to
glucolipotoxicity, resulting in reduced numbers and high
glucokinase protein levels (66). The genes involved in responses
to different metabolic insults [including unfolded protein response
(UPR), endoplasmic reticulum (ER) stress, and oxidative stress]
efficiently cluster b-cells into subpopulations (69–71). This is one
of the most relevant features across different scRNA-seq analyses
of b-cell heterogeneity, although there is no consensus on the
transcriptomic identity of b-cell subpopulations (27, 69–71).
FIGURE 1 | Human islet architecture favors heterologous contacts and holds a tightly regulated cellular inter-communication network. In the human islet, b-and non-
b-cells present frequent contacts favoring paracrine signaling between the cells. Human a-cells secrete mainly glucagon (GCG), acetylcholine (Ach), and GLP-I, which
activates insulin secretion by b-cells. It has been postulated that an a-cell subpopulation holds the intra-islet secretion of GLP-I. Human pancreatic b-cells comprise a
heterogeneous population and may hold differences in the amount of insulin (INS) secreted depending on the subpopulation. UCN3 is secreted along with INS and
activates somatostatin (SST) release by d-cells. SST inactivates GLC and INS secretion, closing the loop of paracrine signaling between the main islet cell types.
Although less studied, the minor islet cell types also contribute to the regulation of the islet hormone secretion. Pancreatic polypeptide (PP) secreted by g-cells
suppresses both GCG and SST release, and ghrelin (GHRL), produced by ϵ-cells, seems to activate SST and inhibit INS release.
February 2021 | Volume 11 | Article 619150
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In one instance, three b-cell sub clusters where observed matching
low UPR with low insulin expression, low UPR with high insulin,
and high UPR with low insulin (69). These groups might be
transiently moving between a state high insulin production and
secretion to fulfill the requirements that maintain normoglycemia,
and a state of UPR-mediated recovery from ER stress due to high
insulin production, taking the role of hub cells that orchestrate
secretion from neighboring cells (69). Importantly, the
heterogeneity in UPR responses may have a significant impact
on the survival of b-cells to metabolic insults as chronic UPR
activation is present in islets from T2D donors and those at risk to
suffer the disease (77). However, other studies have not observed
differences in UPR-related genes or correlation of any of these b-
cell subpopulations with obesity or T2D (27, 72).

In the case of human a-cells, several scRNA-seq analyses
identified human a-cell subpopulations with a proliferative
profile (27, 69, 72), which have also been reported in
pancreatic sections of adolescents (78) and can be correlated
with a lower expression of UPR genes (69). At the functional
level, GLP-1 secretion has been linked to specific a-cell
subgroups that are more prevalent in T2D, indicating a
possible a-cell adaptation to higher insulin demand (68). At
the structural level, a-cells can be divided into subsets containing
different ranges of glucagon granules (75), which suggest distinct
secretory properties, yet no heterogeneity in glucagon secretion
has been reported (68). However, studies in mice have shown
that a-cell subsets vary in calcium flux and membrane
capacitance upon stimulatory conditions (45, 79), which may
correlate with granule density.

Studies that connect transcriptionally distinct subpopulations
with b- and a-cell function are scarce due to technical limitations.
Initial reports linked the lack of cell surface markers CD9 and
ST8SIA1 with a b-cell subpopulation showing decreased insulin
secretion (73). More recently, a study combining scRNA-seq with
patch-clamp electrophysiological measurements of vesicle
exocytosis and ion-channel activity, found improved excitability
properties in a subpopulation of low-expressing RBP4 b-cells in
non-diabetic donors, as well as a-cell electrophysiological
heterogeneity correlated with differential expression of ER stress
markers in non-diabetic and T2D samples (67). Novel methods to
inactivate specific subpopulations will unravel the role of
heterogeneity in islet function.
CONCLUDING REMARKS: TARGETING
ISLET PARACRINE INTERACTIONS AND
HETEROGENEITY FOR OPTIMAL AND
ROBUST ISLET FUNCTION IN b-CELL
REGENERATION STRATEGIES

Available data suggests that diabetes affects all islet cell types.
Islet paracrine interactions and heterogeneity are key features
that allow adaptation to a wide spectrum of physiological
challenges. Consequently, b-cell regeneration strategies must
consider these factors to restore optimal islet secretory
Frontiers in Endocrinology | www.frontiersin.org 5
capacity. Indeed, islet transplantation, which would partially
replenish a functional islet mass, restores circulating insulin to
comparable levels of healthy individuals (80, 81), although
efficient glucagon secretion upon hypoglycemia is only partially
restored (41, 42). It is unclear if transplanting only b-cells to
diabetic patients would give similar results, but analogous
experiments could be performed in diabetic mice using
different combinations of purified human islet populations. De
novo generation of surrogate or replacement b-cells from stem
cells (SC-b), or other cell sources, has focused in achieving
insulin production and secretion comparable to native b-cells
under stable conditions. Recent protocols yield SC-b cells that
reverse hyperglycemia in mice for up to 45 days, with detectable
human C-peptide within 3–14 days after transplantation (82–
86). Despite this amazing progress, SC-b cells do not achieve the
biphasic insulin release nor the magnitude of insulin secretion of
cadaveric islets in vitro, possibly because of a disconnection in
glucose sensing (87). Moreover, long-term analysis or the whole
range of metabolic stresses including pregnancy, obesity,
pathogenic infection, or extreme fasting [where b-cells undergo
major modifications which must be quickly reversed after
refeeding (88)] have not been explored. Besides, the impact of
cell heterogeneity in SC-b strategies remains elusive, with only
one report indicating that b-cell subpopulations were not
detected after SC-b transplantation in mice (89). Although
there are not such studies in human, heterogeneity is crucial in
mice for b-cell adaptation to pathological stressors like
obesogenic diets (90).

The signals coming from a diverse non-b-cell population might
be pivotal to maintain robust insulin content and secretion
throughout all these conditions. As described above, while mouse
islets seem to rely on homologous b-cell contacts to achieve a
synchronized function, in humans, non-b-cells may play a
fundamental role as heterologous contacts are more prevalent and
GLP-I signaling elicits a coordinated b-cell activation (55).
Moreover, functional non-b-cells could also be required for the
maturation, as glucagon receptor KOmice show lower expression of
Pdx1, Glut2, and MafA in b-cells (91). Additionally, decreased
insulin content occurs in glucagon-GFP knock-in mice that lack
proglucagon derived peptides (92) and human insulin promoter
activity is stimulated by GLP-1 (93). The implications of the cellular
architecture and cell diversity in the generation of functional SC-b-
cells has been studied recently by the generation of human islet-like
organoids (94), containing some 60% of cells co-expressing insulin
and other key b-cell markers, along with glucagon, somatostatin,
and PP-positive cells (94). This improved functional maturation of
SC-b-cells in terms of GSIS and, after the transplantation in mice,
allowed for controlled insulin secretion upon a cycle of feeding,
fasting, and refeeding (94). Although controls with only SC-b cells is
needed to prove if this tuned insulin secretion is driven by adjacent
non-b cells, the presence of UCN3 at protein level in b-cells,
suggests that paracrine signaling may be restored (94).

Overall, non-b-cell paracrine signaling is key for optimal islet
hormone secretion and any disruption to this balanced cell
system may exacerbate diabetes symptomatology and
compromise b-cell function. In diabetes, non-b-cells present
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defects that may be not rectified by the sole reestablishment of
insulin signaling via b-cell regeneration approaches. This data
supports the idea that non-b-cells should be included in the
regenerative strategies to treat diabetes. Likewise, the capacity of
adaptation of newly generated b-cells and the role cell
heterogeneity may play in coping mechanisms that respond to
different physiological and pathological metabolic challenges in
vivo is also an open question. Experiments that resolve these
matters would highlight pivotal pitfalls in b-cell regeneration
approaches aimed at restoring integrated islet function.
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