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Abstract: A study on the secondary metabolites of Aspergillus sp. XNM-4, which was derived from
marine algae Leathesia nana (Chordariaceae), led to the identification of one previously undescribed
(1) and seventeen known compounds (2–18). Their planar structures were established by extensive
spectroscopic analyses, while the stereochemical assignments were defined by electronic circular
dichroism (ECD) calculations. The biological activities of the compounds were assessed on five
human cancer cell lines (PANC-1, A549, MDA-MB-231, Caco-2, and SK-OV-3), and one human normal
cell line (HL-7702) using an MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide]
assay. Among them, the dimeric naphthopyrones 7, 10 and 12 exhibited potent cytotoxicity. Further
mechanism studies showed that 12 induced apoptosis, arrested the cell cycle at the G0/G1 phase in
the PANC-1 cells, caused morphological changes and generated ROS; and it induces PANC-1 cells
apoptosis via ROS-mediated PI3K/Akt signaling pathway.
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1. Introduction

Marine-derived endophytic fungi have drawn considerable attention for their surprising potential
in drug discovery [1–5]. These endophytic fungi can be distributed in every possible marine host, such
as plants, invertebrates and vertebrates [6]. In the interactional process of symbiosis and evolution, the
host provides suitable living conditions to the endophytes, while the endophytes contribute bioactive
secondary metabolites that provide protection and, ultimately, survival value to their hosts [7,8].
As one of the most prevalent sources of microorganisms, marine algae offer an abundant amount of
endophytic fungi for chemical studies. Hundreds of natural products have been identified from the
algal-derived fungi [9].

In our ongoing efforts to discover the bioactive secondary metabolites of endophytic fungi
from the marine brown algae Leathesia nana (Chordariaceae), eighteen compounds were isolated
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from an Aspergillus sp. XNM-4 strain (Figure 1). The planar structures of the metabolites were
established by HRESIMS, UV, IR, one- and two-dimensional (1D and 2D) NMR spectroscopic data,
while the stereochemistry of compounds 1 and 12 were assigned by a comparison of the calculated and
experimental electronic circular dichroism (ECD). All compounds were assessed for inhibitory effects
on five human cancer cell lines (PANC-1, A549, MDA-MB-231, Caco-2, and SK-OV-3) and one human
normal cell line (HL-7702). Notably, as the most promising candidate, the cytotoxic mechanism of
compound 12 in PANC-1 cells was studied preliminarily. These experimental results may be beneficial
for the development of naturally occurring dimeric naphthopyrones as anti-tumor agents.
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Figure 1. Compounds 1–18 isolated from Aspergillus sp. XNM-4.

2. Results and Discussion

2.1. Structural Elucidation

Compound 1 was isolated as a white amorphous powder. Its molecular formula (C12H10O3) was
determined on the HRESIMS (m/z 203.0707 [M + H]+, calcd 203.0708, Figure S3) in association with
13C NMR data. The IR spectrum (Figure S4) exhibited absorption bands for carbonyl (1653 cm−1)
and olefinic (1384, 1602 cm−1) groups. The 1H NMR data of 1 (Table 1, Figure S5) revealed an ABX
spin-system assignable to three pyrone protons [δH 8.05 (1H, d, J = 6.0 Hz), 6.21 (1H, dd, J = 2.4,
6.0 Hz), and 6.42 (1H, d, J = 2.4 Hz)]; however, their coupling constants were different from those of the
benzene ring. The 1H NMR spectrum also showed five pyrone protons [δH 7.41 (2H, overlap), 7.37 (2H,
overlap), and 7.32 (1H, m)] and an oxygenated methyne δH 5.48 (1H, s). In combination with the five
resonance peaks at δH 7.32–7.41, the pyrone resonances in the 13C NMR spectrum [δC 140.6 (1C), 128.4
(2C), 128.0 (1C), and 126.8 (2C), Figure S6] supported the existence of a mono-substituted benzene
ring [10]. The remaining five resonance peaks [δC 177.9 (1C), 170.2 (1C), 156.2 (1C), 116.2 (1C), and
112.3 (1C)] indicated a skeleton of 4H-pyran-4-one [11], except for the oxygenated carbon resonance at
δC 71.2 (1C). In the 2D NMR experiment (Figures S7 and S8), the hydrogen resonance at δH 6.21 (H-5)
has a homonuclear correlation with the resonance at δH 8.05 (H-6), and the hydrogen resonance at δH

5.48 (H-7) has long-range heteronuclear correlations with the carbon resonances at δC 112.3 (C-3) and
126.8 (C-9, 13), which confirmed that a benzyl group was substituted at C-2. Thus, the structure of
compound 1 was identified as (hydroxy(phenyl)methyl)-4H-pyran-4-one.
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Table 1. 1H, 13C NMR and HMBC spectroscopic data of 1 (600 MHz, ppm in DMSO-d6).

Position δH (J in Hz) δC (m) Key HMBC (H→C)

2 170.2
3 6.42, d (J = 2.4) 112.3 C-5, 7
4 177.9
5 6.21, dd (J = 2.4, 6.0) 116.2 C-3
6 8.05, d (J = 6.0) 156.2 C-4
7 5.48, s 71.2 C-3, 9, 13
8 140.6
9 7.37, overlap 126.8 C-7, 11

10 7.41, overlap 128.4 C-8
11 7.32, m 128.0 C-9, 13
12 7.41, overlap 128.4 C-8
13 7.37, overlap 126.8 C-7, 11

The configurational assignment of C-7 was defined by ECD calculations using a MMFF94 force
field and time-dependent density functional theory (TDDFT) at the B3LYP/6-311+G(d, p) level. The
overall calculated ECD curve of (7R)-1 were produced by Boltzmann weighting of their lowest energy
conformers, matching well with the corresponding experimental ECD data (Figure 2, the procedure
was detailed in Supplementary Materials, S34–S36). Thus, the structure of compound 1 was finally
established as (7R)-(hydroxy(phenyl)methyl)-4H-pyran-4-one.
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By comparing the spectroscopic data (HRESIMS, 1H and 13C NMR, Figures S9–S60) with those
reported in the literature, the remaining nineteen known compounds (2–21) were identified as
2-benzyl-4H-pyran-4-one (2) [11], asperpyrone D (3) [12], asperpyrone C (4) [13], aurosperone B (5) [14],
fonsecinone B (6) [14], asperpyrone B (7) [15], dianhydro-aurasperone C (8) [12], isoaurasperone A
(9) [15], aurasperone F (10) [16], fonsecinone D (11) [14], asperpyrone A (12) [12], fonsecinone A
(13) [15], fonsecin (14) [14], TMC 256 A1 (15) [17], flavasperone (16) [14], carbonarone A (17) [18],
pestalamide A (18) [19]. In addition, the p configuration of 12 was defined by ECD calculation at the
B3LYP/6-311+G(d, p) level (Figure 2, Supplementary Materials, S34–36).

2.2. Cytotoxic Activities of Compounds 1–18

Natural naphthopyrones have been previously reported for their anticancer potential [13,15,17].
Therefore, the present study evaluated the inhibitory effects of the isolated compounds on five human
cancer cell lines (PANC-1, A549, MDA-MB-231, Caco-2, and SK-OV-3), and one human normal cell
line (HL-7702) at a concentration of 50 µM. As a result, the dimeric naphthopyrones 7, 10, and
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especially 12, exhibited potent cytotoxicity on PANC-1, A549, MDA-MB-231, Caco-2, SK-OV-3 and
HL-7702 cells (Figure 3). The IC50 values of compound 12 on the different cells were further measured,
and it possessed the greatest inhibitory effects against PANC-1, with an IC50 value of 8.25±2.20 µM
(Figure 4A).Mar. Drugs 2019, 17, x 4 of 12 
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Figure 4. (A) The IC50 values of compound 12 on PANC-1, A549, MDA-MB-231, Caco-2, SK-OV-3, and
HL-7702 cells; (B) colony formation in PANC-1 cells was determined by staining with crystal violet;
(C) cell morphology was observed using inverted microscope. ** p < 0.01 vs. control group.

2.3. Pharmacological Mechanism of Compound 12 on PANC-1 Cells

2.3.1. Morphological Changes

It is well known that cytotoxic agents often cause changes in cell morphology, such as irregular cell
morphology, increased cell debris, and reduced cell numbers. As shown in Figure 4, after treatment with
compound 12, the PANC-1 cells showed morphological changes such as cell shrinkage, deformation
and a reduced number of viable cells.

2.3.2. Colony Formation

A 10-day colony formation experiment was performed to explore the long-term impact of
compound 12 on the PANC-1 cells growth. PANC-1 cells were seeded in 6-well plates (1000 cells/well)
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and were treated with various concentrations of compound 12 (0, 5, 10, 20 µM) for 10 days to allow
colony formation. As shown in Figure 4B, 852 ± 43 colonies were present in the control group, whereas
the colony numbers decreased to 574 ± 65, 421 ± 30 and 105 ± 21 after treatment with compound 12
(5, 10, and 20 µM, respectively). These results showed that compound 12 could inhibit the colony
formation of PANC-1 cells.

2.3.3. Cell Apoptosis

To explore whether the abovementioned reduction in cell viability was caused by the induction of
apoptosis, PANC-1 cells were treated with compound 12 (5, 10, and 20 µM) for 72 h. The cells were
then stained with fluorescein isothiocyanate (Annexin-V FITC) and propidium iodide (PI) and were
analyzed by flow cytometry. The results indicated that compound 12 could induce cell apoptosis in
a concentration-dependent manner. As shown in Figure 5A,B, 11.07 ± 2.43% of the apoptotic cells
were present in the control, whereas the apoptotic population increased to 19.93 ± 65, 26.43 ± 3.81 and
40.43 ± 3.27 after treatment with 12 (5, 10, and 20 µM, respectively).
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Figure 5. (A,B) PANC-1 cells were stained with Annexin-V FITC and propidium iodide (PI), and then
analyzed using flow cytometry, both early and late apoptotic cells were analyzed; (C) PANC-1 cells
were stained with Hoechst 33258 and photographed using a fluorescence microscopy (bar = 50 µm).
** p < 0.01 vs. control group.

Apoptosis often causes morphological changes, which can be observed by Hoechst 33258 staining
the apoptotic cells. Thus, the PANC-1 cells were treated with compound 12 (5, 10, and 20 µM) for
72 h, stained with Hoechst 33258 and analyzed by fluorescence microscopy; significant morphological
changes were observed. As shown in Figure 5C, nuclear pyknosis and chromosome condensation were
observed in PANC-1 treated with compound 12, and no apoptosis was found in the control group.

2.3.4. Cell Cycle

To explore the influence of this compound on the cell cycle distribution, PANC-1 cells were
treated with compound 12 (5, 10, and 20 µM) for 72 h. Next, the cell cycle distribution was analyzed
by flow cytometry after staining with PI. As shown in Figure 6A,B, the G0/G1 phase was increased
in a concentration-dependent manner in the PANC-1 cells. Compared with the control group, the
population in the G1 phase increased from 45.97% to 70.94% at a concentration of 20 µM. Moreover,
the sub-G1 group significantly increased after the cells were cultured with compound 12 (Figure 6C).
These results indicated that compound 12 could induce apoptosis and arrested the cell cycle at the
G0/G1 phase in PANC-1 cells in a concentration-dependent manner.
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2.3.5. ROS Generation

ROS (reactive oxygen species) plays an important role in cell proliferation or apoptosis [20,21],
and it can induce cell death in a variety of ways. When intracellular ROS accumulates in cells, it causes
the mitochondrial membrane potential damage and eventually leads to apoptosis [22,23]. To explore
whether this compound triggers ROS generation, PANC-1 cells were stained with a fluorescent probe,
2′,7′-dichlorodihydrofluorescein in diacetate (DCFH-DA), which can detect intracellular ROS. The
result showed that a rapid production of ROS could be detected in the PANC-1 cells after the treatment
of compound 12. As shown in Figure 7A,B, compared with that of the control, the ROS content in the
experimental group increased to 120.09%, 336.99% and 449.09%. The ROS-mediated effects may be
modulated by antioxidants such as N-acetylcysteine (NAC). Next, PANC-1 cells were treated with
10 µM compound 12 combined with/without 5 mM NAC (Beyotime, Nanjing, China), a ROS scavenger,
for 72 h, cells were harvested and analyzed after staining with DCFH-DA. The results showed that
compound 12-induced ROS generation was blocked by NAC in PANC-1 cells (Figure 7C). These data
indicated that compound 12 could induce ROS generation, and this might be a mechanism of apoptosis.Mar. Drugs 2019, 17, x 7 of 12 
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2.3.6. Mechanism Study of Compound 12

Apoptosis serves a key role in the regulation of cells. It mainly comprised two apoptotic
pathways: The death receptor-mediated apoptosis pathway and the mitochondria-mediated apoptosis
pathway [24]. In the mitochondria-mediated apoptosis pathway, proteins from the Bcl-2 family, such
as Bax and Bcl-2, are the main components that regulate mitochondrial permeability [25]. In this
study, it was demonstrated that compound 12 treatment could increase the ratio of Bax/Bcl-2 as well as
activate Caspase-3 and PARP (Figure 8A).
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PI3K/Akt signaling pathway plays an important role in the process of apoptosis especially in
the ROS-mediated apoptotic pathway [26,27]. In this study, the phosphorylation of PI3K and Akt
were decreased after treatment with compound 12 (Figure 8B). Based on the above studies, our results
indicated that compound 12-induced PANC-1 apoptosis may be through ROS-mediated PI3K/Akt
signaling pathway.

3. Materials and Methods

3.1. General Experimental Procedures

The HRESIMS analyses were performed on a Waters Xevo G2-XS QTof mass spectrometer
(Waters Corp., Milford Massachusetts, America). NMR spectra were recorded on an Ascend 600 MHz
instrument (Bruker-Biospin, Billerica, MA, America). The analytical experiments were performed
on a Shimadzu LC-20AT HPLC system (Shimadzu Corp., Kyoto, Japan) equipped with a Shimadzu
InertSustain C18 column (4.6 I.D. × 250 mm, 5 µm, S/N 6LR98081). A Hanbon NP700 semipreparative
HPLC (Hanbon Sci. & Tech., Jiangsu, China) equipped with a Shimadzu InertSustain C18 column
(10 I.D. × 250 mm, 5 µm, S/N 7ER43006) was used for purifying compounds. Biological assays were
monitored on a BioTek ELx808 microplate spectrophotometer (BioTek Instruments, Inc., Winooski,
America), a BD FACSCalibur flow cytometry (BD Biosciences, Franklin Lakes, America) and an
Olympus BX-51 Fluorescence Microscopy (Olympus Corporation, Tokyo, Japan).

3.2. Fungal Material and Fermentation

The fungus strain Aspergillus sp. XNM-4 was isolated from Leathesia nana, which was collected in
April 2017 in Weihai, Shandong Province, China (Latitude: 37◦31′57.58′′N; Longitude: 122◦02′52.85′′E).
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The strain was identified according to 18S rDNA gene sequence analysis by the Beijing Genomics
Institute (Shenzhen, China).

The fungus Aspergillus sp. XNM-4 was fermented on Malt Extract Medium (130.0 g/L malt extract,
0.1 g/L chloramphenicol, 15.0 g/L agar, pH 5.6 ± 0.2) under static conditions at 25 ◦C for 10 days. A total
of 300 culture dishes (90 * 15 mm) were used in the experiment.

3.3. Extraction and Isolation

The agar blocks with mycelium were collected in a 2 L beaker, and ultrasonically extracted with
1.5 L of ethyl acetate (three times and for 30 min each). The crude extract (10.3 g) was chromatographed
on a silica gel column (4*40 cm, 200–300 mesh) and successively eluted with petroleum ether (0.5 L),
petroleum-EtOAc (4:1, 2.5 L), petroleum-EtOAc (1:2, 2 L), EtOAc (1 L), and EtOAc-MeOH (1:2, 2 L).
The eluents were concentrated by reduced pressure at 40 ◦C, and then merged in nine fractions under
HPLC analysis, including Fractions A (985.5 mg), B (364.6 mg), C (41.7 mg), D (90.4 mg), E (220.2 mg),
F (344.6 mg), G (384.7 mg), H (8.3 mg), and I (1611.4 mg). These subfractions were further purified
by semipreparative HPLC using a continuous gradient of MeOH-H2O (60–100%, 20 min, 3 mL/min).
The obtained eluents were extracted by ethyl acetate (v/v, 1:2) twice. After being dried by anhydrous
Na2SO4, the organic phase was concentrated under a reduced pressure at 40 ◦C and then freeze-dried
to yield compounds 1–18. As a result, compounds 2 (3.1 mg,), 15 (5.2 mg), and 16 (4.4 mg) were from
Fr. D, compounds 3 (3.0 mg), 4 (3.8 mg), 5 (9.2 mg), 6 (7.0 mg), 7 (5.3 mg), 9 (13.4 mg), 11 (4.2 mg),
13 (8.9 mg), and 14 (11.6 mg) were from Fr. E, compounds 8 (7.4 mg), 10 (8.2 mg), 12 (8.8 mg),
17 (29.2 mg), 18 (5.4 mg) were from Fr. F, compound 1 (5.0 mg) was from Fr. G. The purities of all
isolated compounds was determined to be >95% under two solvent conditions by analytical HPLC
recorded on a Shimadzu LC-20A system. Solvent conditions A: CH3OH/H2O with 0.1% trifluoroacetic
acid 60–100% (20 min); Solvent conditions B: CH3CN/H2O with 0.1% trifluoroacetic acid 30–100%
(20 min); UV detection, 254 nm; flow rate, 1.0 mL/min; temperature, 40 ◦C; injection volume, 30 µL.
The analytical HPLC spectra were listed on page S37–S54 in the Supplementary Materials.

(7R)-(hydroxy(phenyl)methyl)-4H-pyran-4-one (1): white amorphous powder; [α]20
D +78.1◦ (c 0.10,

MeOH); UV (MeOH) λmax (log ε) 248 (4.14) nm; ECD (MeOH) λmax (∆ε) 201 (+12.65), 228 (−6.13), 250
(+3.01) nm; IR (KBr) νmax 3447, 1653, 1602, 1384 cm−1; 1H; for 13C NMR data see Table 1; HRESIMS
(m/z): 203.0707 [M + H]+ (calcd for C12H11O3, 203.0708).

3.4. Biological Activity Test

3.4.1. Cell Culture

PANC-1, A549, MDA-MB-231, Caco-2, SK-OV-3 and HL-7702 were supplied by Cell Bank, Chinese
Academy of Sciences (Shanghai, China). These cells were separately maintained in DMEM medium,
F-12K medium, L15 medium, MEM medium, McCoy′s 5A (Modified) medium, and RPMI-1640 medium.
All media were supplemented with 10% FBS, 100 U/mL penicillin and 100 µg/mL streptomycin. Cells
were cultured at 37 ◦C in a humidified CO2 (5%).

3.4.2. Determination of Cell Viability

Cell viability was evaluated by a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide
(MTT) assay [28]. For the preliminary anti-tumor activity screening, the cells were plated in 96-well
plates (3 × 103 cells/well for A549 and PANC-1, A549, MDA-MB-231 and Caco-2, 5 × 103 cells/well for
SK-OV-3 and GL-7702) and incubated with the tested compounds at a concentration of 50 µM for 72 h.
For detection of the IC50, cells were treated with varying concentrations of 12 (0, 6.25, 12.5, 25, 50 µM)
for 72 h. After incubation, MTT (5 mg/mL) was added and incubated at 37 ◦C for 4 h. The formazan
was dissolved by DMSO and measured using a microplate reader at 490 nm.
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3.4.3. Colony Forming Assay

The PANC-1 cells were seeded in 6-well plates (1000 cells/well) and treated with varying
concentrations of 12 (0, 5, 10, 20 µM). These cells were further incubated for 10 days to allow colony
formation; then, the cells were fixed with 4% paraformaldehyde for 10 min. After three washes, the
cells were finally stained with crystal violet for 10 min. Cells > 50 were scored as colonies [29].

3.4.4. Analysis of Apoptosis

The PANC-1 cells were seeded in 6-well plates (2 × 105/well). After 24 h of incubation, the cells
were treated with compound 12 (0, 5, 10, 20 µM) for 72 h. After being harvested and washed with PBS,
PANC-1 cells were stained with Annexin V/PI for 15 min. Finally, the cells were detected and analyzed
by flow cytometry.

3.4.5. Hoechst 33258 Staining

The PANC-1 cells were seeded in 6-well plates (2 × 105/well). After 24 h of incubation, the cells
were treated with compound 12 (0, 5, 10, 20 µM) for 72 h. Next, the cells were stained with Hoechst
dye 33258 for five min at room temperature and assessed by a fluorescence microscopy.

3.4.6. Analysis of Cell Cycle

The PANC-1 cells were seeded in 6-well plates (2 × 105/well). After 24 h of incubation, the cells
were treated with varying concentrations of compound 12 (0, 5, 10, 20 µM) for 72 h. After fixed in cold
75% ethanol at −20 ◦C overnight, the cells were washed twice with PBS and stained with a PI solution
containing 20 µg/mL of RNaseA and 50 µg/mL of PI for 30 min. Finally, the cells were detected and
analyzed by flow cytometry.

3.4.7. Measurement of Intracellular ROS

The PANC-1 cells were seeded in 6-well plates (2 × 105/well). After 24 h of incubation, the cells
were treated with varying concentrations of compound 12 (0, 5, 10, 20 µM) for 72 h. After being stained
with 10 µM of DCFH-DA at 37 ◦C for 30 min, the cells were washed with media and were detected and
analyzed by flow cytometry.

3.4.8. Western Blot Analysis

PANC-1 cells were harvested and seeded in 6-cell plates and allowed to settle overnight. Cells
were treated with compound 12 (0, 5, 10 and 20 µM) for 72 h. Proteins were harvested and separated by
SDS-PAGE and transferred onto PVDF membranes. Membranes were blocked in a blocking solution
(containing 5% non-fat milk) and subsequently probed with primary antibodies at 4 ◦C overnight.
After 15 min washes in TBST, the membranes were incubated with a secondary antibody for 1 h at room
temperature. Antibodies against Bcl-2, Bax, PARP, Cleaved-Caspase-3, phosphorylation-Akt, Akt and
GAPDH were purchased from Cell Signaling Technology (Beverly, MA, USA). Phosphorylation-PI3K
and PI3K were purchased from Abcam (Cambridge, UK). The anti-mouse IgG and anti-rabbit secondary
antibodies raised from goat were obtained from Abcam (Cambridge, UK). The bands were detected
using an enhanced chemiluminescence system BeyoECL Plus (Beyotime, Nanjing, China).

4. Conclusions

In the present study, eighteen metabolites, including one new pyrone derivative (1), were
identified from the culture of an algae-derived endophytic fungus Aspergillus sp. XNM-4. Among
them, compounds 1, 17, and 18 were first reported from the genus Aspergillus. The pharmacological
experiments showed that dimeric naphthopyrones 7, 10, and especially 12, possessed potent cytotoxicity
on five human cancer cell lines (PANC-1, A549, MDA-MB-231, Caco-2, and SK-OV-3), and one human
normal cell line (HL-7702). Further studies indicated that compound 12 induced apoptosis, arrested
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the cell cycle at the G0/G1 phase in PANC-1 cells, caused morphological changes and generated
ROS. Mechanism studies found that compound 12 induced PANC-1 apoptosis was via ROS-mediated
PI3K/Akt signaling pathway. These experimental results may be beneficial for the development of
naturally occurring dimeric naphthopyrones as anti-tumor agents.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/17/4/207/s1,
including the HPLC, UV, IR, HRESIMS, 1D NMR, HSQC, and HMBC spectra for compound 1, the HPLC, HRESIMS
and 1D NMR spectra for compounds 2–18, and the ECD calculation for compounds 1 and 12.
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