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Abstract: Pathogenic microorganisms produce various virulence factors, e.g., enzymes, cytotox-
ins, effectors, which trigger development of pathologies in infectious diseases. Cholera toxin (CT)
produced by O1 and O139 serotypes of Vibrio cholerae (V. cholerae) is a major cytotoxin causing
severe diarrhea. Cholix cytotoxin (Cholix) was identified as a novel eukaryotic elongation factor
2 (eEF2) adenosine-diphosphate (ADP)-ribosyltransferase produced mainly in non-O1/non-O139
V. cholerae. The function and role of Cholix in infectious disease caused by V. cholerae remain un-
known. The crystal structure of Cholix is similar to Pseudomonas exotoxin A (PEA) which is composed
of an N-terminal receptor-recognition domain and a C-terminal ADP-ribosyltransferase domain.
The endocytosed Cholix catalyzes ADP-ribosylation of eEF2 in host cells and inhibits protein syn-
thesis, resulting in cell death. In a mouse model, Cholix caused lethality with severe liver damage.
In this review, we describe the mechanism underlying Cholix-induced cytotoxicity. Cholix-induced
apoptosis was regulated by mitogen-activated protein kinase (MAPK) and protein kinase C (PKC)
signaling pathways, which dramatically enhanced tumor necrosis factor-α (TNF-α) production in
human liver, as well as the amount of epithelial-like HepG2 cancer cells. In contrast, Cholix induced
apoptosis in hepatocytes through a mitochondrial-dependent pathway, which was not stimulated by
TNF-α. These findings suggest that sensitivity to Cholix depends on the target cell. A substantial
amount of information on PEA is provided in order to compare/contrast this well-characterized
mono-ADP-ribosyltransferase (mART) with Cholix.

Keywords: bacterial cytotoxin; ADP-ribosyltransferase; mono-ADP-ribosylation; cell death; apopto-
sis; hepatocytes

Key Contribution: This review describes how mono-ADP-ribosyltransferase activity of Cholix toxin
induces cytotoxicity of targeted cells.

1. Introduction

Vibrio cholerae (V. cholerae), a gram-negative bacterium with a curved rod shape, be-
longs to the Vibrionaceae family and colonizes shellfish [1–3] and fish [4,5] in aquatic
environments such as coastal salt waters and estuaries. V. cholerae is categorized into more
than 206 serogroups [6]. Serotypes O1 and O139 of V. cholerae strains possess two main vir-
ulence gene sets: those of cholera toxin (CT) and the toxin-coregulated pilus, which cause
an acute watery diarrheal disease. Recent reports showed that non-O1/O139 V. cholerae
(NOVC) strains also cause diarrhea [7]. The gene for CT is encoded by a filamentous
bacteriophage [8]. Some NOVC strains produce CT, which is implicated in cholera-like ill-
nesses [9–11]. Vezzuli et al. noted an increasing number of case reports showing bacteremia
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and fatalities involving sepsis and necrotizing fasciitis apart from the diarrhea associated
with NOVC strains [7,12]. Patients with liver cirrhosis were found to be susceptible to
NOVC bacteremia [13,14].

Other than CT, some V. cholerae strains possess various virulence factors, e.g., heat-
stable toxin [15], hemolysin [16], type III secretion system [17,18], multifunctional autopro-
cessing repeats-in-toxin [19], accessory toxins like zonula occludens toxin [20,21], Cholix
toxin [22,23]. Cholix toxin (Cholix) belongs to a mono-ADP-ribosyltransferase (mART)
family, as does CT. While CT ADP-ribosylates the alpha subunit of the heterotrimeric G pro-
tein Gs, Cholix specifically targets diphthamide of eukaryotic elongation factor 2 (eEF2), a
mechanism similar to that used by diphtheria toxin (DT) and Pseudomonas exotoxin A (PEA)
from, respectively, Corynebacterium diphtheriae and Pseudomonas aeruginosa [22]. In addition
to the three mARTs (i.e., DT, PEA, and Cholix), Fernández-Bravo et al. reported recently
that some Aeromonas hydrophila strains possess exotoxin A genes [24]. The four mARTs
catalyze ADP-ribosylation of the diphthamide residues using nicotinamide adenine dinu-
cleotide (NAD+) as the ADP-ribose donor [25]. Eukaryotic elongation factor 2 catalyzes
the translocation of mRNA and peptidyl-tRNA; inactivation of eEF2 by ADP-ribosylation
results in inhibition of protein synthesis, followed by host cell death [26,27].

2. V. cholerae Strains Possessing Cholix Genes

The cholix genes were found in V. cholerae strains isolated in various countries, such as
Bangladesh [4,23,28], Germany [29–32], India [28], Iran [33], Kenya [34], Mexico [23,29,35],
and the United States [23]. While the cholix gene was present in O1 serotype strains [4,23],
some researchers proposed that the gene appears to be preferentially associated with
NOVC strains, with higher prevalence in NOVC than O1/O139 V. cholerae strains [28,29].
It remains unknown how the cholix gene was transferred to some V. cholerae chromosomes.
The guanine-cytosine (GC) content of the cholix gene from a V. cholerae TP strain [36] (44%)
is significantly lower than that of toxA (66%), which encodes Pseudomonas exotoxin A
(PEA), thus strongly suggesting that the cholix gene is not the result of a recent lateral
transfer from P. aeruginosa [23]. No other indicators of lateral gene transfer, such as phage-
like sequences or insertion sequence elements, are seen near this region of the V. cholerae
genome [23]. The IslandViewer4 web tool showed that the cholix gene is not designated to
any genomic island [37]. The two genes surrounding the cholix gene were highly conserved
in the chromosomes of cholix-negative V. cholerae strains. These results suggested that the
probability of horizontal transfer is low.

3. Structural Insights

The crystal structure of Cholix was first reported by the Merrill group [22]. Their stud-
ies summarized structural insights into Cholix [38]. Based on the Cholix/NAD+ complex
structure and site-directed mutagenesis, Fieldhouse et al. proposed a new kinetic model
for NAD+ binding and mART activity by Cholix [39]. Next, Turgeon et al. tested various
chemical compounds which can inhibit cytotoxicity of Cholix by competitive binding to
the NAD+ binding site in Cholix [40]. In order to propose structure/function relationships
of the Cholix catalytic domain, the group conducted in silico simulation of molecular dy-
namics [41,42]. Their findings revealed structural and enzymatic characteristics of Cholix
as an eEF2-mART.

The crystal structure of a new exotoxin from Aeromonas hydrophila resembles those of
PEA and Cholix [43] (Figure 1). The primary amino acid sequence of Aeromonas exotoxin A
exhibited, respectively, 64% and 35% identity with PEA and Cholix, while its C-terminal
mART domain had, respectively, 72% and 46% identity with amino acid sequences of PEA
and Cholix [43]. As shown in Figure 1, charged amino acid residues on the surfaces of
the three mART toxins are different. The structures of the NAD+-binding pockets in the
C-terminal domains also vary. While Cholix possesses an EDETV sequence around the
catalytic Glu581 (underlined), PEA and Aeromonas exotoxin A have an RLETI sequence [43].
Jørgensen et al. reported that the Km(NAD

+
) of Cholix is lower than that of PEA [22].
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Figure 1. Crystal structures of three eEF2 mART cytotoxins. The overall structures (ribbon models and electrostatic
surface models) and C-terminal catalytic domains (observed from the bottom, as indicated by triangles) of Aeromonas
exotoxin (Protein Data Bank (PDB) ID 6Z5H), Pseudomonas exotoxin A (PDB ID 1IKQ), and Cholix toxin (PDB ID 3Q9O).
The electrostatic potentials of molecular surfaces were calculated using Adaptive Poisson-Boltzmann Solver (APBS) [44].
The models were drawn by CueMol: Molecular Visualization Framework (http://www.cuemol.org/).

4. Cholix Receptor

The low-density lipoprotein receptor-related protein 1 (LRP1) is a specific PEA re-
ceptor [45]. Jørgensen et al. reported that sensitivity to Cholix is significantly lower in
embryonic fibroblasts derived from an LRP1-deficient (LRP−/−) mouse [22]. Consis-
tent with that report, we also found in HeLa cells that Cholix-induced cell death was
partially suppressed by LRP1 knockdown (Figure 2). Therefore, LRP1 is considered to
be a receptor. However, Jørgensen et al. also reported that the LRP1-deficient cells still
showed some sensitivity to Cholix [22]. The suppression of Cholix-induced cell death by
LRP1 knockdown was only partial. We also reported that Cholix-induced apoptosis was
not suppressed at all by LRP1 knockdown in human hepatocytes [46]. Further, Cholix
induced significant cell death in human colon cell line HCT116 cells, whose LRP1 gene was
mutated by frameshifts [47,48]. These reports indicate that there may be another pathway
for intoxication independent of LRP1.
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Figure 2. Effects of LRP1 knockdown in Cholix-treated HeLa cells. HeLa cells were treated with
non-targeting control (NC) or LRP1 siRNA for 48 h and incubated with PBS (−) or Cholix (+) for
24 h. Cell viability was measured with a Cell Counting Kit (Dojindo). Asterisks indicate p < 0.05 with
the Student’s t-test.
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5. Translocation of Cholix in Host Cells

In host cells, Cholix is transported from endosomes to the endoplasmic reticulum and
then reacts with eEF2 in the cytosol. PEA follows a similar intracellular path. In the acidic,
early-endosomal environment, PEA is cleaved into two fragments by the protease furin,
which digests a furin motif (RHRQPRG) [49,50] to generate a 28 kDa N-terminal domain
and a 37 kDa C-terminal mART domain. Protein disulfide-isomerase further reduces the
disulfide bond in PEA, although the disulfide bond is likely reduced in the endoplasmic
reticulum (ER) [51]. Similar to PEA, Cholix has the furin cleavage site (RHKR) and the
disulfide bond [22]. Cholix reduction in cell viability was suppressed in the presence of a
furin inhibitor, decanoyl-Arg-Val-Lys-Arg-chloromethylketone (Figure 3). These findings
suggest that cleavage of the furin site is required for activation of Cholix as well as of PEA.
However, Morlon-Guyot et al. found that full-length PEA was also translocated into the
cytosol in a mouse fibroblast cell line (L929 cells) [50]. It remains unclear whether Cholix,
similarly to PEA, is translocated into the cytosol without processing in L929 cells.
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Figure 3. Effects of the furin inhibitor and its gene knockdown in Cholix-treated HeLa cells. (A) HeLa cells were incubated
with catalytically inactive mutant Cholix (E581A) (mt) or wild-type Cholix (wt) in the presence of the indicated concentration
of the furin inhibitor (decanoyl-RVKR-CMK). (B) HeLa cells were treated with non-targeting control (NC) or furin siRNA
for 48 h and incubated with PBS (−) or Cholix (+) for 24 h. Cell viability was measured using a Cell Counting Kit. Asterisks
indicate p < 0.05 with the Student’s t-test.

After transportation through late endosomes into the trans-Golgi network [52], the
C-terminal mART domain of PEA is translocated to the ER, mainly via the KDEL receptor-
mediated pathway [53]. The C-terminal motif REDLK of the mART domain was cleaved at
the lysine residue (REDLK) by a carboxypeptidase of the host cell surface [54]. Then, the
exposed REDL motif is able to bind to a KDEL receptor, which participates in an important
step of the intracellular trafficking pathway, followed by translocation to the ER in a retro-
grade process [55,56]. Finally, the mART domain of PEA utilizes the cellular ER-associated
protein degradation (ERAD) pathway to move from the ER into the cytosol [57–59]. Toxins
that follow the ERAD pathway to the cytosol have an arginine over lysine amino acid bias
to avoid ubiquitination and degradation by the proteasome [60]. While the bias was also
observed in the mART domain of Cholix (26 arginines and 12 lysines), it was lower than
that of PEA (30 arginines and 3 lysines). Cholix also possesses the C-terminal KEDL motif
(RKDELK). These data suggested that translocation of Cholix follows a similar pathway to
that of PEA. Awasthi et al. found that a Cholix variant with HDELK in place of RKDELK
did not show cytotoxicity in mice [28]. However, KDEL receptors recognize both KDEL
and HDEL sequences [61–65]. It remains unclear why the Cholix HDELK variant lacked
cytotoxicity.
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In addition, by immunoblotting using an anti-Cholix antibody, we found that Cholix
was detected in the mitochondrial fraction rather than in the cytosolic compartment, sug-
gesting that Cholix can be translocated into mitochondria; however, there is no information
on the translocation mechanism [46].

6. ADP-Ribosylation of eEF2 by Cholix

Activated Cholix specifically ADP-ribosylates the diphthamide synthesized from a
histidine residue (His715 in mammalian cells) in eukaryotic elongation factor 2 (eEF2) by
the diphthamide biosynthesis pathway [66,67] (Figure 4). During protein synthesis, eEF2
translocates mRNA from the ribosomal A-site to the P-site and mediates the elongation
step of protein synthesis [66,68]. Cholix-induced eEF2-ADP-ribosylation inhibits ribosomal
protein synthesis, resulting in the death of host cells.
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Figure 4. Diphthamide synthesis and ADP-ribosylation. His715 in mammalian (His699 in Saccharomyces cerevisiae) eEF2 is
modified to diphthine by Dph family proteins (Dph1–5) followed by an amidation step using ATP and ammonia, presumably
by Dph6 (in Saccharomyces cerevisiae) [69]. Diphtheria toxin, Pseudomonas exotoxin, Aeromonas exotoxin, and Cholix toxin
ADP-ribosylate the diphthamide using NAD+ as an ADP-ribose donor. Marvin ChemAxon was used for drawing the
formulas (https://www.chemaxon.com).

7. Liver Damage Induced by Cholix

Previous studies demonstrated the effects of Cholix in vivo. Cholix did not cause fluid
accumulation in the rabbit ileal loop assay [28]. Intraperitoneal administration to mice
of Cholix, but not the catalytically inactivated mutant Cholix (E581A), resulted in death
with severe hepatotoxicity [28,70]. Histological analysis of Cholix-injected mice showed
hemorrhagic lesions with necrotic, apoptotic, and inflammatory cells, especially in the liver
zone between the Glisson’s sheath and the central vein, by periodic acid-Schiff (PAS) and
hematoxylin-eosin (HE) staining. Further, liver damage marker alanine transaminase (ALT)
was significantly increased in Cholix-injected mice [70], consistent with the conclusion that
liver is a target organ of Cholix. PEA also caused liver damage [71], which involved liver
macrophage-like Kupffer cells that produced tumor necrosis factor-α (TNF-α) [72,73]. IL-18
and perforin also participated in the liver damage seen in PEA-injected mice [74]. Further,
following PEA intoxication of mice, Kupffer cell-dependent, early TNF-α production
required T cells [72].

Previously, we analyzed Cholix-induced cell death of human epithelial hepatoblastoma-
derived (HepG2) liver cells and immortalized human hepatocytes [70]. HepG2 cells showed
slightly decreased cell viability in the presence of Cholix. Addition of TNF-α with Cholix
to HepG2 cells significantly enhanced activation of caspases, resulting in poly (ADP-
ribose) polymerase (PARP) cleavage followed by increased cytotoxicity. Inhibition of
TNF-α/Cholix-activated JNK or ERK by a specific inhibitor (SB20350 or U0126) suppressed
PARP cleavage. Cholix-induced PARP cleavage was enhanced in the presence of PKC
activator phorbol 12-myristate 13-acetate (PMA) as well as by TNF-α and suppressed by the
PKC inhibitor even in the presence of TNF-α. Further, ROS inhibitor N-acetyl cysteine sup-
pressed JNK activation, which partially inhibited the TNF-α/Cholix apoptosis-signaling
pathway. These findings suggest that TNF-α is an enhancer of Cholix-induced apoptosis,

https://www.chemaxon.com


Toxins 2021, 13, 12 6 of 12

which was involved in ROS generation, PKC activation, and MAPK activation. On the
other hand, immortalized human hepatocytes were more sensitive to Cholix compared
to HepG2 cells. In hepatocytes, Cholix-induced apoptosis was mediated through severe
mitochondrial damage that was not promoted by addition of TNF-α. Neither the JNK nor
the ERK inhibitor (SB20350 or U0126) suppressed Cholix-induced apoptosis.

There are a few reports regarding NOVC-related liver disease [75,76]. However, it
is not clear if these NOVC strains have Cholix. In addition, the pathway used by Cholix
to translocate from the gastrointestinal tract to the liver remains unknown. Interestingly,
Taverner et al. recently reported that catalytically inactive mutant Cholix (E581A) and its
N-terminal domain can be transported across human intestinal epithelia in vitro (confluent
monolayers of human small intestinal tissues) and rat jejunum in vivo by apical to basal
transcytosis [77]. This apical-to-basal transcytosis pathway utilizes a vesicular trafficking
mechanism, independent of intoxication by mART.

8. Other Cell Death Mechanisms

In addition to hepatocytes, cytotoxicity of Cholix was also tested with other cells,
such as mouse fibroblasts [22], intestinal cell lines (i.e., Caco-2, HCT116, and RKO) [47],
and HeLa cells [28,47]. Although Cholix did not cause fluid accumulation in rabbit ileal
loop assays [28], this toxin exhibited significant cytotoxicity to the intestinal cell lines [47].
Intestinal cell death by Cholix was not affected by the presence of a general caspase inhibitor
(Z-VAD-FMK), indicating that intestinal cell death was not a result of apoptosis.

HeLa cells are a commonly used epithelial cell line derived from human cervical cancer.
Cholix-treated HeLa cells showed decreased viability, which was significantly repressed
by Z-VAD-FMK [47]. In HeLa cells, Cholix stimulated an apoptotic pathway dependent
on activation of inflammatory caspases (caspase-1, -4, and -5), followed by mitochondrial
outer membrane permeabilization that occurred through rapid degradation of the anti-
apoptotic Bcl-2 family protein Mcl-1 and conformational changes of pro-apoptotic Bcl-2
family members, Bak and Bax.

Mcl-1 is a protein with a short half-life, which is rapidly lost in the presence of the
protein synthesis inhibitor, cycloheximide [78]. In addition, the loss of Mcl-1 induced by
Cholix was suppressed in the presence of proteasome inhibitor MG132. Thus, Cholix de-
creased Mcl-1 content by inhibition of protein synthesis combined with rapid proteasomal
degradation and promoted conformational changes of pro-apoptotic Bcl-2 family members,
Bak and Bax [47].

9. Prohibitin Binding and Mitochondrial Dysfunction

Recently, we found by immunoprecipitation that Cholix interacts with prohibitin
(PHB) 1 and 2 on the cell surface [46]. PHBs are ubiquitously expressed in various cells and
mainly localized in mitochondria, but also expressed in nuclei and cell membranes [79].
PHBs contribute to mitochondrial biology [79] and homeostasis [80,81] by regulating ROS
formation, protein degradation, mitochondrial morphology, and the oxidative phospho-
rylation (OXPHOS) complex [82]. The expression of PHB1 was decreased by Cholix in
hepatocytes. PHB deficiency impairs respiratory supercomplex formation [83] and causes
overproduction of reactive oxygen species (ROS) [84]. In agreement with previous studies,
Cholix-induced PARP cleavage, ROS generation, and apoptotic chromatin assembly were
significantly increased in PHB knockdown cells compared with control cells. In PHB-
overexpressing cells, Cholix-induced apoptotic signaling was inhibited [46]. These find-
ings suggest that PHB is a Cholix interaction protein, not its receptor. Cholix-dependent
reduction in PHB1 expression triggers PHB dysfunction, which might lead to altered
mitochondrial respiratory supercomplexes, followed by promotion of ROS production.

Rho-associated, coiled coil-containing protein kinase protein 1 (ROCK1) is a crucial
factor in mitochondrial fission and ROS generation [85] and is a direct cleavage substrate
of activated caspase-3, which is involved in apoptosis [86]. ROCK1 knockdown and ROCK
inhibitor Y27632 suppressed Cholix-induced cleavage of PARP and ROCK1 and ROS
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generation [46]. In PHB knockdown cells, Cholix increased ROCK1 cleavage, followed by
enhanced apoptosis, plasma membrane blebbing, and ROS generation, suggesting that
ROCK1 participates in a Cholix-induced apoptotic pathway [46].

10. Conclusions

Common and different characteristics between PEA and Cholix are summarized in
Table 1. Although PEA utilizes LRP1 as a receptor, Cholix binds to LRP1 and/or unknown
receptor(s). Translocation of PEA and Cholix is commonly mediated by furin cleavage and
KDEL pathways. Intraperitoneal administration of PEA and Cholix to mice results in liver
damage. In human hepatocytes, Cholix, but not PEA, induces a decrease in PHB1 followed
by PHB dysfunction.

Table 1. Common and different characteristics between Pseudomonas exotoxin A and Cholix toxin
[22,28,45,46,49,50,53].

Characteristics Pseudomonas Exotoxin A Cholix Toxin

Target Diphthamide on eEF2 Diphthamide on eEF2
Enzymatic activity

Km(NAD+) (µm)/kcat (s−1)
Mono-ADP-ribosylation

121 ± 21/13 ± 2
Mono-ADP-ribosylation

45 ± 3/10 ± 3

Host receptor LRP1
LRP1 and/or

unknown cell surface
receptor(s)

Translocation
Furin protease-dependent

KDEL motif
(REDLK)-dependent

Furin protease-dependent
KDEL motif

(RKDELK)-dependent
Administration into mice Liver damage Liver damage

PHB1 expression No change Decrease

The proposed cell death mechanism is shown in Figure 5. Cholix produced by NOVC
binds to host cell receptor LRP1 and/or unknown cell surface receptor(s) and then its
catalytic domain is translocated to the cytosol through furin cleavage and KDEL pathways.
Cholix-induced cell death pathways varied among cell types. In HepG2 cells, TNF-α
promoted Cholix-induced cell death, which includes PKC/MAPK activation, followed by
induction of caspase-dependent apoptosis and a caspase-independent, yet to be defined,
cell death signaling pathway. Human hepatocytes showed more sensitivity to Cholix
than HepG2 cells. In Cholix-treated hepatocytes, mitochondrial dysfunction stimulates a
caspase-dependent apoptotic signal pathway, which involves ROCK-1 cleavage and ROS
generation. In HeLa cells, Cholix induced mitochondrial-dependent and -independent
caspase activation. It remains unknown why ADP-ribosylation of eEF2 by Cholix resulted
in activation of different signaling pathways among the various cell types. Further studies
are required to define the mechanisms underlying Cholix cytotoxicity in different cell types.
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