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Abstract

Eicosanoids, which are oxygenated derivatives of polyunsaturated fatty acids (PUFAs),

serve as signaling molecules that regulate spermatogenesis in mammals. However, their

roles in crustacean sperm development remain unknown. In this study, the testis and vas

deferens of the black tiger shrimp Penaeus monodon were analyzed using ultra-high perfor-

mance liquid chromatography coupled with Orbitrap high resolution mass spectrometry.

This led to the identification of three PUFAs and ten eicosanoids, including 15-deoxy-Δ12,14-

prostaglandin J2 (15d-PGJ2) and (±)15-hydroxyeicosapentaenoic acid ((±)15-HEPE), both

of which have not previously been reported in crustaceans. The comparison between wild-

caught and domesticated shrimp revealed that wild-caught shrimp had higher sperm counts,

higher levels of (±)8-HEPE in testes, and higher levels of prostaglandin E2 (PGE2) and pros-

taglandin F2α in vas deferens than domesticated shrimp. In contrast, domesticated shrimp

contained higher levels of (±)12-HEPE, (±)18-HEPE, and eicosapentaenoic acid (EPA) in

testes and higher levels of 15d-PGJ2, (±)12-HEPE, EPA, arachidonic acid (ARA), and doco-

sahexaenoic acid (DHA) in vas deferens than wild-caught shrimp. To improve total sperm

counts in domesticated shrimp, these broodstocks were fed with polychaetes, which con-

tained higher levels of PUFAs than commercial feed pellets. Polychaete-fed shrimp pro-

duced higher total sperm counts and higher levels of PGE2 in vas deferens than pellet-fed

shrimp. In contrast, pellet-fed shrimp contained higher levels of (±)12-HEPE, (±)18-HEPE,

and EPA in testes and higher levels of (±)12-HEPE in vas deferens than polychaete-fed

shrimp. These data suggest a positive correlation between high levels of PGE2 in vas defer-

ens and high total sperm counts as well as a negative correlation between (±)12-HEPE in

both shrimp testis and vas deferens and total sperm counts. Our analysis not only confirms

the presence of PUFAs and eicosanoids in crustacean male reproductive organs, but also
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suggests that the eicosanoid biosynthesis pathway may serve as a potential target to

improve sperm production in shrimp.

Introduction

Eicosanoids, which are derivatives of polyunsaturated fatty acids (PUFAs), serve as signaling

molecules to regulate various physiological processes, including inflammation, immunity, and

reproduction [1–3]. In mammals, eicosanoids have been shown to affect testicular develop-

ment, sperm concentration, sperm motility, and infertility [4–6]. For instance, 15-deoxy-

Δ12,14-prostaglandin J2 (15d-PGJ2) regulates the contraction of peritubular cells in the testis

and may be involved in infertility in humans, while incubation of human spermatozoa in 1 μM

prostaglandin E2 (PGE2) or 1 μM prostaglandin F2α (PGF2α) improved sperm motility [4, 6].

The eicosanoid biosynthesis pathway in marine invertebrates utilizes eicosapentaenoic acid

(EPA) and docosahexaenoic acid (DHA) as major substrates rather than arachidonic acid

(ARA), which is predominantly used as eicosanoid precursors in mammals [7]. Nevertheless,

ARA derivatives, namely PGE2 and PGF2α, have been identified in the black tiger shrimp

Penaeus monodon, the crab Oziotelphusa senex senex, the kuruma prawn Marsupenaeus japo-
nicus, and the Florida crayfish Procambarus paeninsulanus [8–12]. In the crab Carcinus mae-
nas, PGE2, thromboxane B2, and 6-keto-PGF1α along with six ARA-derived hydroxy fatty

acids, namely 5-, 8-, 9-, 11-, 12-, and 15-hydroxyeicosatetraenoic acids (HETEs), were detected

in haemocytes [13]. Similarly, 12-HETE was identified in the hemolymph of M. japonicus [14].

Five oxygenated products of EPA, namely 5-, 8-, 9-, 12-, and 18-hydroxyeicosapenaenoic acids

(HEPEs), were identified in the Pacific krill Euphausia pacifica [15]. Characterization of the

eicosanoid biosynthesis pathway in crustaceans has thus far focused mostly on its roles in

female reproductive maturation [8–12]. The eicosanoids involved in crustacean male repro-

duction have yet to be investigated in similar depth.

There has been limited information regarding the roles of eicosanoids in crustacean sperm

development. A study in wild Litopenaeus occidentalis revealed that the administration of ibu-

profen, which inhibits prostaglandin biosynthesis, increased normal spermatophore develop-

ment [16]. This suggests a negative correlation between prostaglandin biosynthesis pathway

and spermatogenesis in shrimp. On the other hand, high levels of dietary polyunsaturated fatty

acids (PUFAs) showed a positive impact on crustacean sperm production [17, 18].

To further explore the roles of eicosanoids and PUFAs in crustacean spermatogenesis, P.

monodon testes and vas deferens were subjected to liquid-liquid extraction and ultra-high per-

formance liquid chromatography coupled with Orbitrap high resolution mass spectrometry

(UHPLC-HRMS/MS) analysis. Levels of eicosanoids and PUFAs in testes and vas deferens were

then compared between those of wild-caught and domesticated shrimp, which had high and

low sperm counts, respectively. The effects of shrimp feed on eicosanoid and PUFA profiles in

testes and vas deferens of domesticated shrimp were also examined. Our findings confirm the

presence of eicosanoids in shrimp male reproductive tract and suggest that the roles of eicosa-

noids in regulating total sperm number in crustaceans are conserved relative to mammals.

Materials and methods

Ethical statement

All experiments were approved by the Institutional Animal Care and Use Committee of the

National Center for Genetic Engineering and Biotechnology, Thailand (Approval Code
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BT-Animal 13/2560). This permit covered the purchase wild-caught shrimp, shrimp transpor-

tation, shrimp rearing experiment, and shrimp dissection. No permit was required for the col-

lection site access as the wild-caught broodstock collection from the Andaman Sea was

conducted by local fishermen and purchased through a local shrimp farm. All experiments

were performed in accordance with Animal Research: Reporting of In Vivo Experiments

(ARRIVE) and conformed with international and national legal and ethical requirements,

including the U.K. Animals (Scientific Procedures) Act, 1986 and associated guidelines, EU

Directive 2010/63/EU for animal experiments, and the National Research Council’s Guide for

the Care and Use of Laboratory Animals.

Shrimp sources

Wild-caught male shrimp were captured from the Andaman Sea, Thailand (salinity level at

approximately 31 ppm) (N = 10). Eleven-month-old domesticated male P. monodon, which

had been raised in earthen ponds and fed with commercial feed pellets, were acquired from

the Shrimp Genetic Improvement Center (SGIC), Surat Thani, Thailand (N = 10). Average

body weights of wild-caught and domesticated shrimp were 86.9 ± 9.0 and 66.8 ± 7.6 g, respec-

tively. Shrimp testes and vas deferens were dissected and flash frozen in liquid N2 for the quan-

tification of eicosanoids and PUFAs using UHPLC-HRMS/MS. Spermatophores were

collected and used for total sperm counts.

Effects of shrimp feed

To determine changes in eicosanoid and PUFA levels in shrimp fed with different diets, eleven-

month-old, domesticated males from the SGIC were fed with either polychaetes or feed pellets

for four weeks (N = 8 each). Fatty acid profiles in polychaetes and feed pellets (N = 4 per feed)

were analyzed using gas chromatography coupled with flame ionization detector (GC-FID) by

the Nutrition Service at Central Lab Co., Ltd. (Thailand) (www.centrallabthai.com). Shrimp tes-

tes and vas deferens were dissected and flash frozen in liquid N2. Spermatophores were collected

and used to determine total sperm counts and percentage of sperm abnormality.

Total sperm counts and sperm abnormality

Spermatophores were individually homogenized in a calcium-free sea water solution. After

debris sedimentation, sperms were counted using a hemocytometer under a light microscope

[19]. Abnormal sperms were defined as sperms with a misshaped head or tail as well as sperms

with no head or tail [20]. Total sperm counts and abnormal sperm counts were determined

from both spermatophores of each shrimp using average counts of four aliquots from each

spermatophore homogenate. The percentage of abnormal sperm were then calculated based

the percentage of abnormal sperm from the number of total live sperm.

Chemicals and reagents

Eicosanoid standards were purchased from Cayman Chemicals (Michigan, USA). Standard

compounds include prostaglandin D2 (PGD2), prostaglandin E1 (PGE1), PGE2, PGF2α, 15d-

PGJ2, (±)5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid ((±)5-HETE), (±)8-hydroxy-

5Z,9E,11Z,14Z-eicosatetraenoic acid ((±)8-HETE), (±)9-hydroxy-5Z,7E,11Z,14Z-eicosatetrae-

noic acid ((±)9-HETE), (±)11-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic acid ((±)11-HETE),

12(R)-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(R)-HETE), (±)5-hydroxy-

6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid ((±)5-HEPE), (±)8-hydroxy-5Z,9E,11Z,14Z,17Z-

eicosapentaenoic acid ((±)8-HEPE), (±)9-hydroxy-5Z,7E,11Z,14Z,17Z-eicosapentaenoic acid
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((±)9-HEPE), (±)12-hydroxy-5Z,8Z,10E,14Z,17Z-eicosapentaenoic acid ((±)12-HEPE), (±)

15-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid ((±)15-HEPE), (±)18-hydroxy-

5Z,8Z,11Z,14Z,16E-eicosapentaenoic acid ((±)18-HEPE), ARA, DHA, and EPA. Deuterated

compounds, namely PGE2-d4, 5(S)-HETE-d8, 12(S)-HETE-d8, and EPA-d5, were used as

internal standards to determine percent recovery during chemical extraction and during

UHPLC-HRMS/MS analysis. All solvents and chemicals used in this study were HPLC grade

or higher. Glacial acetic acid, acetonitrile, methanol, and ethanol were purchased from Merck

(Darmstadt, Germany). Formic acid and cyclohexane were purchased from Fisher Scientific

(Loughborough, UK). Hexane was purchased from J.T. Baker (New Jersey, USA). Ethyl acetate

was purchased from Mallinckrodt Baker (New Jersey, USA). Isopropanol was purchased from

RCI labscan (Bangkok, Thailand). Butylated hydroxytoluene (BHT) and Hank’s Balanced Salt

Solution (HBSS) were purchased from Sigma-Aldrich (Missouri, USA). Ethylenediaminetetra-

acetic acid (EDTA) was purchased from Fluka (Steinheim, Switzerland). Water was purified

by Barnstead GenPure Pro (Thermo Fisher Scientific, Massachusetts, USA).

Sample preparation

Shrimp testes and vas deferens were individually homogenized in liquid N2 and diluted in

HBSS to adjust tissue concentration to 0.1 g/mL (wet weight). Organ homogenates were

divided into 500 μL aliquots and adjusted to pH 4.0 using 5 μL of glacial acetic acid. Ten

microliters of 10% BHT in HPLC-grade ethanol (w/v) were added as an antioxidant. Internal

standards, including PGE2-d4, 5(S)-HETE-d8, and EPA-d5, were added to determine the per-

cent recovery in each sample. An optimal extraction method was selected for each organ based

on the recovery yields of the internal standards (S1 Table).

Ethyl acetate extraction

Five hundred microliters of testis homogenates were subjected to ethyl acetate extraction at a

1:1 ratio (v/v) of tissue homogenate to ethyl acetate. Extraction mixtures were shaken in the

dark for 15 min at 290 rpm and spun down at 8,000 rpm (8,228 ×g) for 10 min at 20˚C. The

organic phase (upper phase) was collected, and the extraction process was repeated one more

time. The extracts were evaporated to dryness and dissolved with 200 μL of 100% HPLC-grade

ethanol for UHPLC-HRMS/MS analysis.

Methanol-chloroform extraction

Five hundred microliters of vas deferens homogenates were subjected to methanol-chloroform

extraction using the procedure modified from Folch extraction method [21]. Tissue homoge-

nates were sequentially mixed with 3.75 mL of methanol, 6.25 mL of chloroform, and 3.12 mL

of water. Samples were mixed rigorously for 1 min after each solvent was added. The mixture

was shaken for 15 min at 290 rpm at room temperature and spun down at 8,000 rpm at 20˚C

for 10 min. The organic phase (lower phase) was collected in a clean tube. The extraction was

repeated by adding 3.75 mL of chloroform to the remaining aqueous phase. The mixture was

vortexed for 1 min, shaken for 15 min at 290 rpm, and then spun down at 8,000 rpm at 20˚C

for 10 min. The organic phase was collected, pooled, dried, and dissolved with 200 μL of 100%

HPLC-grade ethanol for UHPLC-HRMS/MS analysis.

UHPLC-HRMS/MS analysis

Chromatographic separation was performed on a Dionex UltiMate 3000RS UHPLC system

(Thermo Fisher Scientific) with an AcclaimTM RSLC 120 C18 column (2.1×150 mm, 2.2 μm;
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Thermo Fisher Scientific) under gradient conditions using mobile phase A (0.01% (v/v) acetic

acid in water) and B (0.01% (v/v) acetic acid in acetonitrile) as previously described [22]. The

linear gradient went from 30% B to 100% B within 17 min, followed by holding 100% B for 2

min. The elution gradient was returned to the starting condition of 30% B within 0.5 min and

kept constant for 3.5 min before starting the next injection. UHPLC conditions included set-

ting auto-sampler temperature at 10˚C, column temperature at 40˚C, injection volume at 5 μL,

and flow rate at 300 μL/min for a total run time of 23 min.

Mass spectrometry analyses were performed on an Orbitrap Fusion™ Tribrid™ Mass Spec-

trometer (Thermo Scientific), equipped with electrospray ionization (ESI) source, and oper-

ated in negative ion mode. The mass spectrometer was controlled by the Xcalibur software

(version 4.4.16.14) and calibrated using the ESI negative ion calibration solution (Pierce1

LTQ velos ESI negative ion calibration) according to the manufacturer’s protocol. Conditions

for the mass spectrometer were set with the ESI voltage at 2,500 V in negative mode. Nitrogen

was used as the sheath gas at 40 psi and as the auxiliary gas at 12 psi. Ultra-pure helium was

used as the collision gas with the ion transfer tube temperature at 333˚C. The vaporizer tem-

perature was 317˚C. Fragment ions of PUFA and eicosanoid standards were detected by the

Orbitrap analyzer operated under target mass resolution of 120,000 with an automatic gain

control (AGC) setting of 5×104 and a maximum ion injection time of 250 ms. The time-sched-

uled parallel reaction monitoring (PRM) method was used for data acquisition. Analytical

characteristics of PUFA and eicosanoid standards used to identify and quantify the com-

pounds in P. monodon tissues are provided in S2 Table. Both limit of detection (LOD) and

limit of quantification (LOQ) were calculated based on the standard deviation (SD) of the

response as well as the slope [23, 24].

LOD ¼ 3:3�
SD

ðslope of the regression lineÞ

LOQ ¼ 10�
SD

ðslope of the regression lineÞ

SD represents standard deviation of a blank sample with very low concentration (0.24–7.81

nM) of the measurand.

Data processing and data analysis

Extracted-ion chromatograms (XIC) and mass spectra of eicosanoids and PUFAs obtained

from the UHPLC-HRMS/MS analysis were processed and interpreted using Quan Browser

(4.3.73.11), Xcalibur software (version 4.3.16.14). The area-under-the-curve (AUC) ratio of

each metabolite was calculated by dividing the AUC of chromatographic peak of each respec-

tive metabolite with the AUC of the internal standard (12(S)-HETE-d8). A pivot table of

metabolite AUC ratios was constructed using Pandas (version 1.1.3, http://pandas.pydata.org),

Python package [25, 26]. A heat map illustrating the AUC ratios of the metabolites was gener-

ated using Matplotlib (version 3.3.2, https://matplotlib.org/) and Seaborn (version 0.11.0,

https://seaborn.pydata.org/), Python package [27, 28]. AUC ratios were converted to amounts

of metabolites (ng/g tissue) using standard equations shown in S2 Table.

Statistical analysis

Significant differences between the means of independent samples from the two sets of sam-

ples were assessed using the t-test with the threshold for significance set at P< 0.05 (�, † and

#) or P< 0.01 (��, †† and ##).
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Results

Comparison between wild-caught and domesticated males

Wild-caught male P. monodon broodstocks were captured from the Andaman Sea, Thailand

(Fig 1A). Shrimp body weight and body length were recorded prior to dissection to obtain tes-

tes, vas deferens, and spermatophores (Fig 1B–1D). Similarly, domesticated males were

obtained from SGIC, a biosecure facility located in Surat Thani Province, Thailand (Fig 1E).

Their testes, vas deferens, and spermatophores were also collected (Fig 1F–1H). It should be

noted that all shrimp spermatophores were intact without melanization. Data analysis revealed

that wild-caught shrimp had larger body weight (Fig 1I), longer body length (Fig 1J), and

higher spermatophore weight (Fig 1K) than those of domesticated shrimp. Additionally, the

total sperm counts of wild-caught shrimp were also higher than those of domesticated shrimp

(Fig 1L).

Identification of eicosanoids and PUFAs in testes and vas deferens of wild-

caught and domesticated P. monodon
To determine eicosanoid and PUFA profiles in P. monodon male reproductive organs, shrimp

testes and vas deferens were subjected to ethyl acetate extraction and methanol-chloroform

extraction, respectively. The organ extracts were then analyzed using UHPLC-HRMS/MS as

depicted in Fig 2. The identity of each metabolite was verified based on retention time, precur-

sor ion, proposed fragment ion, and m/z distribution (S3 Table). Testes and vas deferens of

Fig 1. Wild-caught shrimp had higher body weight, body length, spermatophore weight, and total sperm count than domesticated

shrimp. (A) Wild-caught shrimp (N = 10) were dissected to obtain (B) testes, (C) vas deferens, and (D) spermatophores. Dissection of (E)

eleven-month-old, domesticated shrimp (N = 10) were also performed to collect (F) testes, (G) vas deferens, and (H) spermatophores for the

analysis. Comparative analysis of (I) shrimp body weight, (J) body length, (K) spermatophore weight, and (L) total sperm count was

performed between wild-caught (Wild; black bars) and domesticated shrimp (Dom; white bars). Error bars represent standard deviations.

Asterisks indicate a significant difference between samples using the t-test (�� for P< 0.01).

https://doi.org/10.1371/journal.pone.0275134.g001
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wild-caught and domesticated shrimp contained a combined number of 10 eicosanoids,

including three prostaglandins (PGE2, PGF2α, and 15d-PGJ2), three HETEs ((±)8-, (±)11-, and

12(R)-HETEs), and four HEPEs ((±)8-, (±)12-, (±)15-, and (±)18-HEPEs) (Fig 3A–3J). Addi-

tionally, all three PUFAs, namely ARA, DHA, and EPA, were detected in all organ samples

(Fig 3K–3M).

Heat map visualization of eicosanoids and PUFAs in testes and vas

deferens of wild-caught and domesticated shrimp

Heat map analysis was used to compare relative levels of eicosanoids and PUFAs based on the

AUC ratio obtained from the UHPLC-HRMS/MS analysis (Fig 4). Testes of wild-caught

shrimp contained seven eicosanoids, including PGE2, PGF2α, 15d-PGJ2, (±)8-HETE, 12(R)-

Fig 2. Overview of liquid-liquid extraction and UHPLC-HRMS/MS analysis of eicosanoids and PUFAs in the P. monodon male reproductive tract.

(A) Male P. monodon broodstocks were dissected to obtain testes (TT) and vas deferens (VD). (B) Sample preparation included tissue homogenization,

pH adjustment, addition of antioxidant (10% BHT), and addition of internal standards. (C) Testis homogenates were subjected to ethyl acetate extraction

(upper panel) whereas vas deferens homogenates were subjected to methanol-chloroform extraction (lower panel). (D) Tissue extracts were analyzed

using the UHPLC system. Eicosanoids and PUFAs were then identified using HRMS/MS. (E) Metabolite quantification and data analysis were performed

to determine levels of eicosanoids and PUFAs in each organ. LN2 and ACN were abbreviated for liquid nitrogen and acetonitrile, respectively.

https://doi.org/10.1371/journal.pone.0275134.g002
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HETE, (±)8-HEPE, and (±)12-HEPE (Fig 4A, upper panel). Among these, PGF2α, (±)8-HETE,

and (±)8-HEPE were present with high intensities in the heat map, suggesting that these eicos-

anoids may play crucial roles in spermatogenesis. Additionally, all three PUFAs were present

in shrimp testes, in which ARA, DHA, and EPA were detected at low, medium, and high

intensities relative to one another, respectively.

UHPLC-HRMS/MS analysis revealed that eight eicosanoids and three PUFAs were

detected in vas deferens of wild-caught shrimp. In addition to the seven eicosanoids previously

identified in testes, (±)18-HEPE was present in vas deferens with low intensities in the heat

map (Fig 4A, lower panel). In contrast, (±)8-HETE and (±)8-HEPE were present with high

intensities in vas deferens. Relative levels of ARA, EPA, and DHA in vas deferens were also

similar to those in testes of wild-caught shrimp.

Heat map analysis of eicosanoids and PUFAs in testes and vas deferens of domesticated

shrimp revealed different patterns from those in wild-caught shrimp. Three PUFAs and ten

eicosanoids were detected in both testes and vas deferens of domesticated shrimp. The two

additional eicosanoids identified only in domesticated shrimp were (±)11-HETE and (±)

15-HEPE, which were detected at low intensities in both testes and vas deferens. When relative

levels of eicosanoids were examined in testes of domesticated shrimp, it was observed that all

ten eicosanoids were present at relatively low intensities in the heat map, which was different

from the pattern observed in testes of wild-caught shrimp. On the other hand, the heat map of

vas deferens of domesticated shrimp displayed similar metabolic profiles to those of wild-

caught shrimp, in which (±)8-HETE and (±)8-HEPE were major products of this pathway.

Fig 3. Extracted-ion chromatogram (XIC) of eicosanoids and PUFAs identified in testes and vas deferens of wild-caught and domesticated P.

monodon. XIC of (A) PGE2, (B) PGF2α, (C) 15d-PGJ2, (D) (±)8-HETE, (E) (±)11-HETE, (F) 12(R)-HETE, (G) (±)8-HEPE, (H) (±)12-HEPE, (I) (±)

15-HEPE, (J) (±)18-HEPE, (K) ARA, (L) DHA, and (M) EPA were used to confirm the identities of the metabolites.

https://doi.org/10.1371/journal.pone.0275134.g003

Fig 4. Heat maps illustrating the presence and distribution of eicosanoids and PUFAs in testes and vas deferens of wild-

caught and domesticated shrimp. AUC ratio of each metabolite in (A) wild-caught and (B) domesticated shrimp was calculated

using the AUC of the respective chromatographic peak divided by the AUC of the internal standard (12(S)-HETE-d8).

Metabolite intensities are displayed as colors ranging from yellow to black as shown in the color bar. White indicates that the

metabolite was not detected.

https://doi.org/10.1371/journal.pone.0275134.g004
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Moreover, EPA was consistently the most abundant metabolite in testes and vas deferens of

both wild-caught and domesticated shrimp, which illustrates the importance of EPA in the P.

monodon sperm maturation process.

Changes of eicosanoid and PUFA levels in the male reproductive tract

To follow metabolic changes that occurred during the sperm maturation process, levels of

eicosanoids and PUFAs in shrimp testes were compared with those in vas deferens. In both

wild-caught and domesticated shrimp, testes contained higher levels of PGE2 (Fig 5A), but

lower levels of 15d-PGJ2 (Fig 5C), (±)8-HETE (Fig 5D), and (±)12-HEPE (Fig 5H) than vas

deferens. On the other hand, levels of the remaining eicosanoids and PUFAs varied, depending

on the shrimp source. In wild-caught shrimp, (±)18-HEPE (Fig 5I) was below the detection

limit in testes but was detected at 4.18 ± 1.76 ng/g tissue in vas deferens. On the other hand,

levels of PGF2α (Fig 5B), (±)11-HETE (Fig 5E), 12(R)-HETE (Fig 5F), (±)8-HEPE (Fig 5G),

ARA (Fig 5J), DHA (Fig 5K), and EPA (Fig 5L) were comparable between testes and vas defer-

ens of wild-caught shrimp.

In domesticated shrimp, testes contained higher levels of PGF2α (Fig 5B), but lower levels of

12(R)-HETE (Fig 5F), (±)8-HEPE (Fig 5G), ARA (Fig 5J), DHA (Fig 5K), and EPA (Fig 5L)

than vas deferens. Interestingly, (±)11-HETE was detected only in vas deferens of domesti-

cated shrimp (Fig 5E). As (±)11-HETE was below the limit of detection in vas deferens of

wild-caught shrimp, it is likely that this metabolite is not essential for the sperm maturation

process in P. monodon.

As wild-caught shrimp produced higher total sperm counts than domesticated shrimp, lev-

els of eicosanoids and PUFAs in testes of wild-caught shrimp were compared to those in

domesticated shrimp to determine correlations between these metabolites and total sperm

counts. Testes of wild-caught shrimp contained higher levels of (±)8-HEPE (Fig 5G), but

lower levels of (±)12-HEPE (Fig 5H), (±)18-HEPE (Fig 5I), and EPA (Fig 5L) than domesti-

cated shrimp. On the other hand, levels of PGE2 (Fig 5A), PGF2α (Fig 5B), 15d-PGJ2 (Fig 5C),

(±)8-HETE (Fig 5D), 12(R)-HETE (Fig 5F), ARA (Fig 5J), and DHA (Fig 5K) in the testes of

wild-caught and domesticated shrimp were comparable. Lastly, (±)11-HETE (Fig 5E) was not

detected in testes in both wild-caught and domesticated shrimp, suggesting that this metabolite

was not involved in shrimp spermatogenesis.

In vas deferens, wild-caught shrimp contained higher levels of PGE2 (Fig 5A) and PGF2α

(Fig 5B), but lower levels of 15d-PGJ2 (Fig 5C), (±)8-HETE (Fig 5D), (±)11-HETE (Fig 5E), 12

(R)-HETE (Fig 5F), (±)12-HEPE (Fig 5H), ARA (Fig 5J), DHA (Fig 5K), and EPA (Fig 5L)

than domesticated shrimp. Based on these data, it was deduced that high levels of (±)8-HEPE

in testes and high levels of PGE2 and PGF2α in vas deferens are associated with high sperm

counts. On the other hand, high levels of (±)12-HEPE, (±)18-HEPE, and EPA in testes and

high levels of 15d-PGJ2, (±)8-HETE, (±)11-HETE, 12(R)-HETE, (±)12-HEPE, and PUFAs in

vas deferens are correlated with low sperm counts in P. monodon. Although (±)15-HEPE was

identified in both the testes and vas deferens of domesticated shrimp as shown in the XIC (Fig

3I) and the heat map (Fig 4B), this metabolite was detected at the level above the limit of detec-

tion in only 2 out of 10 shrimp samples (S4 File). Therefore, (±)15-HEPE was excluded from

the quantitative analysis.

Effects of shrimp feed on eicosanoids and PUFAs in the male reproductive

tract

In hatcheries, domesticated males are typically fed with live Perinereis nuntia polychaetes

instead of commercial feed pellets to increase total sperm counts. To test the effects of shrimp
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feed on PUFA and eicosanoid profiles in male reproductive tract, eleven-month-old, domesti-

cated males from the same genetic background were fed with either polychaetes or feed pellets

for four weeks. Polychaetes and feed pellets were analyzed using GC-FID, revealing that poly-

chaetes contained higher levels of total saturated fatty acids, monounsaturated fatty acids, and

Fig 5. Quantitative analysis of eicosanoids and PUFAs in testes and vas deferens of wild-caught and domesticated P. monodon.

Levels of (A) PGE2, (B) PGF2α, (C) 15d-PGJ2, (D) (±)8-HETE, (E) (±)11-HETE, (F) 12(R)-HETE, (G) (±)8-HEPE, (H) (±)12-HEPE, (I)

(±)18-HEPE, (J) ARA, (K) DHA, and (L) EPA in testes (TT) and vas deferens (VD) were compared between wild-caught (gray bar,

N = 6) and domesticated shrimp (white bar, N = 10). Data are shown as means ± SD. Asterisks indicate statistically significant differences

in metabolic levels between wild-caught and domesticated shrimp using the t-test (� for P< 0.05 and �� for P< 0.01). Daggers indicate

statistically significant differences in metabolic levels between testes and vas deferens of wild-caught shrimp using the t-test († for

P< 0.05 and †† for P< 0.01). Hashes indicate statistically significant differences in metabolic levels between testes and vas deferens of

domesticated shrimp using the t-test (# for P< 0.05 and ## for P< 0.01). ND indicates that the designated metabolite was not detected

in this analysis.

https://doi.org/10.1371/journal.pone.0275134.g005
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polyunsaturated fatty acids, including ARA, EPA, and DHA, than feed pellets (Table 1).

Shrimp fed with polychaetes also had higher sperm counts (Fig 6A), but comparable percent-

age of sperm abnormality to those of pellet-fed shrimp (Fig 6B).

Quantitative analysis of eicosanoids and PUFAs in the testes and vas

deferens of polychaete- and pellet-fed shrimp

To determine whether eicosanoid and PUFA profiles in the male reproductive tract were

affected by shrimp diet, testes and vas deferens of polychaete- and pellet-fed shrimp were ana-

lyzed using UHPLC-HRMS/MS. First, levels of eicosanoids and PUFAs were compared

between testes and vas deferens of shrimp in each feed group to determine metabolic changes

during spermatogenesis and sperm maturation process, respectively. Data analysis revealed

that the majority of the metabolites, including 15d-PGJ2 (Fig 7C), (±)8-HETE (Fig 7D), 12(R)-

Table 1. Fatty acid compositions in mg per g dry weight of polychaetes and feed pellets.

Common Name Abbrev. Fatty acid composition

(mg/g dry weight)

Polychaetes Pellets

Myristic acid C14:0 1.03 ± 0.18 1.43 ± 0.21

Pentadecanoic acid C15:0 0.49 ± 0.02 0.28 ± 0.04��

cis-10-Pentadecenoic acid C15:1 2.10 ± 0.22 ND

Palmitic acid C16:0 34.48 ± 0.63 15.22 ± 1.95��

Palmitoleic acid C16:1 3.57 ± 0.29 2.17 ± 0.21��

Heptadecanoic acid C17:0 2.08 ± 0.10 0.55 ± 0.07��

cis-10-Heptadecenoic acid C17:1 0.33 ± 0.03 0.11 ± 0.10�

Stearic acid C18:0 11.21 ± 0.48 4.02 ± 0.51��

Elaidic acid C18:1n9t 4.68 ± 0.28 ND

Oleic acid C18:1n9c 15.08 ± 0.12 14.66 ± 1.46

Linoleic acid C18:2n6c 17.05 ± 1.32 10.04 ± 0.47��

Linolenic acid C18:3n3 1.42 ± 0.14 0.59 ± 0.09��

Arachidic acid C20:0 0.26 ± 0.22 0.47 ± 0.08

cis-11-Eicosenoic acid C20:1n9 3.16 ± 0.33 0.67 ± 0.08��

cis-11,14-Eicosadienoic acid C20:2n6 7.17 ± 0.40 ND

cis-8,11,14-Eicosatrienoic acid C20:3n6 1.05 ± 0.03 ND

Arachidonic acid (ARA) C20:4n6 6.27 ± 0.32 0.05 ± 0.08��

cis-5,8,11,14.17-Eicosapentaenoic acid (EPA) C20:5n3 6.33 ± 0.46 0.23 ± 0.20��

Heneicosanoic acid C21:0 0.82 ± 0.05 ND

Behenic acid C22:0 ND 0.18 ± 0.31

cis-4,7,10,13,16,19-Docosahexaenoic acid (DHA) C22:6n3 2.66 ± 0.38 0.12 ± 0.20��

Tricosanoic acid C23:0 1.03 ± 0.14 ND

Lignoceric acid C24:0 ND 0.08 ± 0.14

n-3 highly unsaturated fatty acids (HUFA) 2.91 ± 0.16 0.30 ± 0.51��

Total saturated fatty acid (SFA) 51.79 ± 0.77 22.23 ± 2.42��

Total monounsaturated fatty acid (MUFA) 28.92 ± 0.42 17.61 ± 1.73��

Total polyunsaturated fatty acid (PUFA) 42.00 ± 1.72 11.02 ± 0.93��

Total trans fatty acid 4.68 ± 0.28 ND

Total fatty acid 122.71 ± 0.96 50.86 ± 3.34��

Fatty acid profiles in polychaetes and feed pellets were analyzed using GC-FID. ND is abbreviated for not detected. Asterisks indicate significant differences between the

average values of fatty acids found in polychaetes and feed pellets with the threshold for significance set at P< 0.05 (�) or P < 0.01 (��).

https://doi.org/10.1371/journal.pone.0275134.t001
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HETE (Fig 7F), (±)12-HEPE (Fig 7G), (±)18-HEPE (Fig 7H), ARA (Fig 7I), DHA (Fig 7J), and

EPA (Fig 7K), were detected at higher levels in vas deferens than testes of shrimp in both feed

groups, suggesting that these metabolites were more essential in the sperm maturation process

than spermatogenesis. Meanwhile, levels of PGF2α were comparable between testes and vas

deferens of shrimp in both feed groups (Fig 7B). The two eicosanoids with distinct metabolic

patterns according to feed types were PGE2 and (±)11-HETE (Fig 7A and 7E). More specifi-

cally, levels of PGE2 were comparable between testes and vas deferens of polychaete-fed

shrimp (Fig 7A). In pellet-fed shrimp, however, PGE2 was detected at similar levels in testes

but became undetectable in vas deferens, suggesting that the use of feed pellets reduced the lev-

els of PGE2 in this organ. In contrast, (±)11-HETE was absent in most tested samples except in

vas deferens of polychaete-fed shrimp (Fig 7E). These data suggest that although changes in

shrimp diet did not alter relative levels of most PUFAs and eicosanoids in shrimp testes and

vas deferens, the distribution of certain ARA-derived eicosanoids, namely PGE2 and (±)

11-HETE, in vas deferens was affected by shrimp feed. Lastly, (±)8-HEPE and (±)15-HEPE

were excluded from the analysis as they were quantifiable in less than 50% of samples.

Results from other studies as well as data from our own analysis (Fig 6) revealed that poly-

chaete-fed shrimp had higher total sperm counts than pellet-fed shrimp [18, 20] However, the

effects of shrimp diets on levels of PUFAs and eicosanoids in shrimp testes and vas deferens

have yet to be investigated. In this study, levels of eicosanoids and PUFAs in testes were com-

pared between polychaete- and pellet-fed shrimp to assess the impact of shrimp feed. Testes of

polychaete-fed shrimp contained higher levels of (±)8-HETE (Fig 7D), but lower levels of 15d-

PGJ2 (Fig 7C), (±)12-HEPE (Fig 7G), (±)18-HEPE (Fig 7H), ARA (Fig 7I), DHA (Fig 7J), and

EPA (Fig 7K) than those in pellet-fed shrimp. On the other hand, levels of PGE2 (Fig 7A),

PGF2α (Fig 7B), and 12(R)-HETE (Fig 7F) were comparable in testes of polychaete- and pellet-

fed shrimp. Lastly, (±)11-HETE (Fig 7E) was not detected in testes of shrimp from both feed

groups, indicating that this compound was not involved in shrimp spermatogenesis.

A similar analysis was performed to compare levels of eicosanoids and PUFAs in vas defer-

ens between polychaete- and pellet-fed shrimp. The UHPLC-HRMS/MS analysis revealed that

PGE2 (Fig 7A) and (±)11-HETE (Fig 7E) were present only in vas deferens of polychaete-fed

shrimp. As levels of these metabolites were below the limit of detection in vas deferens of pel-

let-fed shrimp, it is possible that the lack of these eicosanoids might be correlated with low

Fig 6. Total sperm counts and percentage of sperm abnormality in domesticated shrimp fed with polychaetes and feed pellets.

Spermatophores of domesticated shrimp fed with either polychaetes (black bar, N = 8) or commercial feed pellets (gray bar, N = 8) were used in

the analysis to determine (A) total sperm counts and (B) percentage of sperm abnormality. Error bars represent standard deviations. Asterisks

indicate a significant difference between samples using the t-test (�� for P< 0.01).

https://doi.org/10.1371/journal.pone.0275134.g006
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sperm counts. On the other hand, levels of (±)12-HEPE (Fig 7G) were higher in vas deferens

of pellet-fed shrimp than in those of polychaete-fed shrimp, suggesting a negative correlation

between high levels of (±)12-HEPE and total sperm counts. Meanwhile, levels of PGF2α (Fig

7B), 15d-PGJ2 (Fig 7C), (±)8-HETE (Fig 7D), 12(R)-HETE (Fig 7F), (±)18-HEPE (Fig 7H),

ARA (Fig 7I), DHA (Fig 7J), and EPA (Fig 7K) were comparable in vas deferens of polychaete-

Fig 7. Comparative analysis of eicosanoid and PUFA levels in testes and vas deferens of eleven-month-old, domesticated

shrimp fed with polychaetes or feed pellets. Levels of (A) PGE2, (B) PGF2α, (C) 15d-PGJ2, (D) (±)8-HETE, (E) (±)11-HETE, (F) 12

(R)-HETE, (G) (±)12-HEPE, (H) (±)18-HEPE, (I) ARA, (J) DHA, and (K) EPA were compared between polychaete- (black bar,

N = 5) and pellet-fed shrimp (gray bar, N = 5). Error bars represent standard deviations. Asterisks indicate statistically significant

differences in metabolic levels between polychaete- and pellet-fed shrimp using the t-test (� for P< 0.05 and �� for P< 0.01).

Daggers indicate statistically significant differences in metabolic levels between testes and vas deferens of polychaete-fed shrimp

using the t-test († for P< 0.05 and †† for P< 0.01). Hashes indicate statistically significant differences in metabolic levels between

testes and vas deferens of pellet-fed shrimp using the t-test (# for P< 0.05 and ## for P< 0.01). ND means that the designated

metabolite was not detected.

https://doi.org/10.1371/journal.pone.0275134.g007

PLOS ONE Analysis of polyunsaturated fatty acids and eicosanoids in the shrimp testis and vas deferens

PLOS ONE | https://doi.org/10.1371/journal.pone.0275134 September 22, 2022 14 / 22

https://doi.org/10.1371/journal.pone.0275134.g007
https://doi.org/10.1371/journal.pone.0275134


and pellet-fed shrimp, indicating that the difference in shrimp feed did not affect the produc-

tion of these eicosanoids in vas deferens.

Discussion

Poor reproductive performance in domesticated males is one of the contributing factors that

delay the progress of shrimp aquaculture industry [29, 30]. Although tremendous research

efforts have been made to improve shrimp breeding, total sperm counts in domesticated males

remain lower than those in wild-caught males [31, 32]. In fact, studies have shown that the

reproductive success of penaeid shrimp depends on various factors, including shrimp age,

shrimp size, genetic background, rearing environment, hormones, and nutrients [20, 33–36].

As dietary PUFAs have been shown to improve sperm quality in crustaceans [17, 37], it is likely

that increasing PUFA consumption would affect levels of PUFAs and their downstream

metabolites in the crustacean male reproductive tract. In this study, P. monodon testes and vas

deferens were subjected to ethyl acetate and methanol-chloroform extraction, respectively.

The organ extracts were then analyzed using UHPLC-HRMS/MS, revealing that a total of ten

eicosanoids and three PUFAs were detected in shrimp testes and vas deferens. Correlations

between metabolic profiles, organ types, and total sperm counts were then examined to assess

the roles of PUFAs and eicosanoids in crustacean male reproduction.

Spermatophore quality between wild-caught and domesticated crustaceans

Spermatophore quality of decapod crustaceans can be evaluated using several parameters,

including melanization, spermatophore weight, sperm number, sperm viability, sperm abnor-

mality, and spermatophore absence rates [35, 38]. The loss of spermatophore quality can be

attributed to stress, poor nutrient, and the length of time spent in captivity for wild-caught

shrimp [19, 39]. In this study, all spermatophores were present and no melanization was

observed in all collected samples. Wild-caught shrimp had higher spermatophore weights and

higher total sperm counts than domesticated shrimp, suggesting that the spermatophore qual-

ity of wild-caught shrimp was higher than those of domesticated shrimp in this study. Our

data were supported by Rodrı́guez et al. (2007), in which the wild-caught Pacific white shrimp

Litopenaeus vannamei produced higher total sperm counts than the domesticated counterparts

[32]. However, other studies reported that spermatophore weights and total sperm counts of

wild-caught and domesticated shrimp were comparable [18, 31]. The discrepancy between

these studies may stem from the difference in shrimp size. A positive correlation between

shrimp size and total sperm count has previously been reported in a different study in L. van-
namei [40]. Upon closer examination of our data and the data from Rodrı́guez et al. (2007), it

was confirmed that wild-caught males with higher body weights also had higher total sperm

counts than domesticated males in both studies [32], whereas wild-caught and domesticated

males with similar body weights also contained comparable total sperm counts [18, 31]. As a

result, shrimp body weight should also be taken into consideration during the comparison of

total sperm counts between shrimp from different sources.

Correlations between levels of PUFAs in shrimp diets, shrimp male

reproductive organs, and spermatogenesis

One of the contributing factors that affect sperm quality is the amounts of PUFAs in crusta-

cean diets [41]. Supplementation of fish oil enriched in n-3 and n-6 PUFAs has been shown to

increase levels of ARA, EPA, and DHA in P. monodon testis and enhance the number of sper-

matozoa in male broodstocks [41]. In fact, spermatophore quality can be used to determine

the efficiency of crustacean maturation diets [18, 42, 43]. In this study, the consumption of
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polychaetes, which contained higher levels of n-3 and n-6 PUFAs than feed pellets, did not

result in higher levels of ARA, EPA, and DHA in shrimp testis and vas deferens than those of

pellet-fed shrimp. Moreover, a negative correlation between levels of dietary PUFAs and levels

of PUFAs in testis and vas deferens was observed, suggesting that aside from the dietary intake,

other factors also influenced levels of PUFAs in crustacean male reproductive organs.

In the oriental river prawn Macrobrachium nipponense, a positive correlation between high

levels of n-6 PUFAs in the testis and crustacean spermatogenesis has been reported [44]. Levels

of EPA and DHA in the testis increased as shrimp progressed from early to mid and late stages

of gonad development [44]. Nevertheless, this observation might be species-specific as there

was no correlation between levels of EPA and DHA in the testis and spermatogenesis or mat-

ing activities in M. rosenbergii [45]. On the other hand, high levels of ARA have typically been

correlated with low sperm counts and poor sperm motility in mammals [46]. However, the

effects of high levels of ARA in male reproductive organ have never been reported in crusta-

ceans. In this study, the analysis of wild-caught and domesticated shrimp revealed a negative

correlation between total sperm counts and high levels of EPA in testes as well as high levels of

ARA, EPA, and DHA in vas deferens. These data were supported by the analysis of polychaete-

and pellet-fed shrimp, in which higher levels of EPA were observed in testes of pellet-fed

shrimp than those of polychaete-fed shrimp.

The identification of eicosanoids in the P. monodon male reproductive tract

As PUFAs are known precursors of eicosanoids, the increased levels of PUFAs in shrimp testis

and vas deferens could potentially result in higher production of eicosanoids in these organs. In

this study, the UHPLC-HRMS/MS analysis revealed that ten eicosanoids and three PUFAs were

found in P. monodon testes and vas deferens. These included PGE2, PGF2α, (±)8-HETE, (±)

11-HETE, 12(R)-HETE, (±)8-HEPE, (±)12-HEPE, and (±)18-HEPE, all of which had previously

been identified in crustaceans [8, 9, 11–13, 15, 47–49]. Additionally, to the best of our knowledge,

this is also the first identification of 15d-PGJ2 and (±)15-HEPE in crustaceans. The roles of 15d-

PGJ2 in male reproductive maturation has been firmly established in mammals [4, 50]. High levels

of 15d-PGJ2 in the testis and vas deferens were associated with impaired spermatogenesis in pigs

and male infertility in humans, respectively [4, 50]. In the testis, 15d-PGJ2 acted through the reac-

tive oxygen species (ROS) pathway, which prevented the differentiation of human testicular peri-

tubular cells [4]. This resulted in the loss of contractility of the peritubular cells of the testis, which

led to impaired spermatogenesis. On the other hand, high levels of 15d-PGJ2 in vas deferens acti-

vated the PPARγ pathway, which regulated luminal electrolytes in the reproductive ducts that

affected sperm functions and viability [50]. As high levels of 15d-PGJ2 were detected in vas defer-

ens of P. monodon, we propose that excess levels of 15d-PGJ2 might impair sperm function and

viability in shrimp vas deferens, which subsequently result in low sperm counts in penaeid shrimp.

Although the roles of 15d-PGJ2 in spermatogenesis are well-established in mammals, the

function of 15-HEPE in testis and vas deferens has not been reported in any organism. Never-

theless, the inhibition of 15-lipoxygenase, which converts EPA to 15-HEPE, can improve

sperm motility and acrosome reaction rates as well as reduce the oxidative stress via ROS path-

way [51]. Therefore, the identification of 15-HEPE in testis and vas deferens of domesticated

shrimp might also indicate that the ROS pathway may be activated in domesticated shrimp.

Effects of eicosanoids in crustacean total sperm counts

In this study, the heat map analysis of relative abundance of PUFAs and eicosanoids in shrimp

reproductive tract revealed that (±)8-HEPE and (±)8-HETE were the two most abundant

eicosanoids in shrimp testes and vas deferens. In fact, high levels of (±)8-HETE and (±)
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8-HEPE were reported in E. pacifica [52] and high levels of (±)8-HEPE were also detected in

the hepatopancreas of P. monodon [49], suggesting that these hydroxy fatty acids were major

metabolites and ubiquitously expressed in crustaceans.

To assess the roles of eicosanoids in shrimp male reproductive organs, two sets of shrimp

samples were selected for analysis. Shrimp from different sources, namely wild-caught and

domesticated shrimp, were used as representatives of shrimp with high and low total sperm

counts, respectively. The effects of shrimp diets on total sperm counts were also examined as

the use of polychaetes as live feed for male brooders has been shown to produce higher sper-

matophore weights and higher total sperm counts than the use of feed pellets [18, 20]. The

results from this study are summarized in Fig 8. The comparative analysis of levels of eicosa-

noids and PUFAs in testes and vas deferens revealed that levels of 15d-PGJ2, (±)8-HETE, and

(±)12-HEPE in shrimp testes were lower than those in vas deferens in all shrimp samples (Fig

8A), suggesting that these eicosanoids may be essential for the sperm maturation process.

Eicosanoid and PUFA profiles were also compared for shrimp from different sources (wild-

caught vs. domesticated shrimp; Fig 8B) and for shrimp fed with different diets (polychaete-

and pellet-fed shrimp; Fig 8C). In both sets of samples, high levels of (±)12-HEPE, (±)

18-HEPE, and EPA in testes as well as high levels of (±)12-HEPE in vas deferens were nega-

tively correlated with total sperm counts (Fig 8B and 8C). In contrast, high levels of PGE2 in

vas deferens were positively correlated with high sperm counts in shrimp from both sets of

samples. In humans, addition of PGE2 and PGF2α at low physiological levels to spermatozoa

has been shown to improve sperm function [6]. Furthermore, transcriptomic analyses in crab

gonads also provided supporting evidence regarding the positive effects of eicosanoid biosyn-

thesis pathway in crustacean male reproductive maturation. This led to the identification of

prostaglandin E synthase 2 and prostaglandin F synthase as candidates for the regulators of

growth, sexual differentiation, and reproduction in the testis of the orange mud crab Scylla oli-
vacea [53]. Similarly, prostaglandin E synthase and prostaglandin E2 receptor were also identi-

fied as potential regulators of gonadal development in P. trituberculatus [54]. These data were

also supported by a study in mammals, in which cyclooxygenase-2 and prostaglandin synthase

enzymes that regulate the conversion of ARA to PGE2 could serve as a local modulator of tes-

ticular activity in Leydig and Sertoli cells [55]. Therefore, we propose that eicosanoids also

serve as modulators for testicular development and sperm maturation process in P. monodon.

Our results not only expand the coverage of eicosanoid biosynthesis pathway in crustaceans,

but also suggest that the roles of eicosanoids in spermatogenesis are conserved between crusta-

ceans and mammals. Furthermore, the correlations between total sperm counts and high levels

of eicosanoids in shrimp testis and vas deferens also suggest an alternative approach to

improve total sperm counts by increasing the prostaglandin biosynthesis while suppressing the

production of HEPEs in the male reproductive tract of penaeid shrimp.
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