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ABSTRACT Understanding ecosystem response to disturbances and identifying the
most critical traits for the maintenance of ecosystem functioning are important goals
for microbial community ecology. In this study, we used 16S rRNA amplicon se-
quencing and metagenomics to investigate the assembly of bacterial populations in
a full-scale municipal activated sludge wastewater treatment plant over a period of
3 years, including a 9-month period of disturbance characterized by short-term plant
shutdowns. Following the reconstruction of 173 metagenome-assembled genomes,
we assessed the functional potential, the number of rRNA gene operons, and the in
situ growth rate of microorganisms present throughout the time series. Operational
disturbances caused a significant decrease in bacteria with a single copy of the rRNA
(rrn) operon. Despite moderate differences in resource availability, replication rates
were distributed uniformly throughout time, with no differences between disturbed
and stable periods. We suggest that the length of the growth lag phase, rather than
the growth rate, is the primary driver of selection under disturbed conditions. Thus,
the system could maintain its function in the face of disturbance by recruiting bac-
teria with the capacity to rapidly resume growth under unsteady operating condi-
tions.

IMPORTANCE Disturbance is a key determinant of community assembly and dy-
namics in natural and engineered ecosystems. Microbiome response to disturbance
is thought to be influenced by bacterial growth traits and life history strategies. In
this time series observational study, the response to disturbance of microbial com-
munities in a full-scale activated sludge wastewater treatment plant was assessed by
computing specific cellular traits of genomes retrieved from metagenomes. It was
found that the genomes observed in disturbed periods have more copies of the
rRNA operon than genomes observed in stable periods, whereas the in situ mean
relative growth rates of bacteria present during stable and disturbed periods were
indistinguishable. From these intriguing observations, we infer that the length of the
lag phase might be a growth trait that affects the microbial response to disturbance.
Further exploration of this hypothesis could contribute to better understanding of
the adaptive response of microbiomes to unsteady environmental conditions.

KEYWORDS genome-centric metagenomics, activated sludge, metagenomics,
replication index, rrn operon copy number, time series, wastewater treatment

Understanding the drivers of community structure is important for developing
predictive models and for guiding engineering and management practices of

microbial community ecosystems (1–4). By contributing to environmental heterogene-
ity, disturbance is a particularly important driver in shaping species composition in
many ecosystems (5). Yet, although it has been the focus of ecological research for a
very long time, community response to disturbance remains difficult to predict (6),
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especially for microbial communities (7). After surveying a few hundreds of studies of
soil, marine and freshwater, engineered, and host-associated systems, Shade and
colleagues concluded that the majority of microbial communities were sensitive to
pulse disturbances in either composition, function, or both (8). In most cases, altered
communities recovered function more frequently than composition (8). The mainte-
nance of ecosystem function despite changes in community composition can be largely
attributed to the high metabolic flexibility and functional redundancy of microbial
systems (9, 10). The ability to recover and return to the original function and compo-
sition (i.e., the resilience) is also a feature of many microbiomes (11, 12), due in part to
the potential of high growth rates of microorganisms, (7). In addition, species-specific
trade-offs between growth and disturbance tolerance may influence the response of
microbial communities to disturbance (13, 14). It is then important to understand which
traits are the most critical to the maintenance of functioning under disturbed condi-
tions for incorporation into predictive ecosystem models (15–17). Currently, however,
there is a gap in the knowledge of microbial traits associated with the response to
disturbances. Identification of traits that explain the ability of species to respond to
disturbance may also allow for greater insight into the microbial ecology of processes
beyond the description of community composition and diversity (18).

Microbial communities in wastewater treatment plants (WWTP) can serve as good
model systems to investigate this question, as they are typically able to perform reliably
under fluctuating conditions. Although full-scale systems are often subjected to per-
turbations that may not be well defined, an advantage of field studies is that informa-
tion can be obtained about the ability of microbial communities to cope with a
fluctuating environment in a real scenario. A great deal of knowledge has been
achieved during the last 2 decades from research exploring how bacterial community
composition is affected by process configuration, solid retention time (SRT), tempera-
ture, redox conditions, wastewater composition, pH, and other environmental and
operational pressures (19–27). Recent progress in high-throughput sequencing tech-
nology has facilitated a detailed characterization of the composition of microbial
communities in a large number of wastewater treatment systems worldwide (23,
28–30). However, few studies have addressed the response of microbial communities to
disturbance in full-scale systems (31). Vuono et al. observed that a sudden decrease in
SRT from 12 to 3 days prompted a shift in community structure, favoring fast-growing
organisms that are adapted for high resource availability (22).

Activated sludge systems operate at loading rates typically in the range of 0.05 to
0.4 kg BOD (biochemical oxygen demand) per kg dry biomass and per day and can be
therefore considered oligotrophic environments (32). In other words, under stable
operation bacteria must adapt to grow under conditions of carbon limitation (22, 33).
Indeed, it has been inferred on the basis of the average number of rrn operons that
activated sludge is dominated by bacterial populations that are near carrying capacity
and make efficient use of available growth-limiting resources (22, 34). Thus, ecological
selection might be acting at the levels of both metabolic functions and life history
strategies of bacterial populations. This hypothesis could be tested directly by exam-
ining signatures in the genomes of the bacterial community. Metagenomics offers the
possibility to capture the genomic complexity of bacterial communities at high reso-
lution. In particular, genome-centric approaches have the additional advantage that
specific traits can be analyzed in the context of the other functional properties of the
microorganisms (35).

In this study, we used metagenomics and 16S rRNA sequencing to investigate
bacterial population and functional dynamics in a full-scale municipal activated sludge
WWTP over a period of 3 years, which comprised distinct operational process condi-
tions. Similar studies have investigated the importance of functional traits for commu-
nity assembly processes by applying the PICRUSt approach (36) to predict functional
profiles of microbial communities using 16S rRNA gene sequences and have estimated
the number of rRNA gene operons using the rRNA Database (22, 37). Our analysis differs
importantly from those previous studies in that we accomplished genome reconstruc-
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tion to assess the functional profile, and we estimated the number of rRNA gene
operons and the in situ growth rate of assembled genomes (38, 39). We first used 16S
rRNA amplicon sequencing data to identify patterns of co-occurrence between taxa
over the 3-year time series and compared the distribution of community composition
with operational and performance metadata, thereby establishing a consensus for
periods of disturbance and high stability. Second, we used metagenomic data to
identify differences in functional profiles between contrasting operational periods.
Finally, we estimated the number of rRNA gene operons and the in situ growth rate of
reconstructed genomes across the time series that comprised distinctly perturbed and
stable periods to test the hypothesis that shifts in bacterial community structure caused
by process disturbances reflected differences in functional characteristics of microor-
ganisms, including their growth traits.

RESULTS
WWTP performance. The main characteristics and average performance data of the

municipal full-scale activated sludge plant are given in Table S1 in the supplemental
material. The sewage treatment plant was sampled during the course of a planned
capacity expansion, which gave rise to a singular period, which lasted approximately 9
months, characterized by repeated disturbances, caused mainly by short-term plant
shutdown, each time for several hours. Features of this period were interruption of
wastewater feed supply, fluctuations in mixed liquor-suspended solids (MLSS) concen-
tration, and/or eventual periods of very low dissolved oxygen concentration, resulting
in higher effluent chemical oxygen demand (COD) (Fig. 1A). After a new operative
module was gradually put into operation, there was a moderate decrease in food to
microorganism ratio (F/M) (Fig. 1B), which ultimately led to a late period of 9 months
of very good performance, which included full nitrification (Fig. 1C). The SRT, ranging
between 4 and 7 days, changed in the opposite direction of F/M (Fig. 1D).

Phylogenetic analysis of activated sludge bacterial community structure and
dynamics. Initial analysis of the 3-year time series was based on sequences of 16S rRNA
gene amplicons, which were assigned to 1,002 operational taxonomic units (OTUs [97%
similarity]) with relative abundance higher than 0.01%. We performed local similarity
analysis (LSA) on the most abundant bacterial OTUs in order to explore co-occurrence
patterns. The network analysis grouped bacterial OTUs into two main clusters, which
were negatively correlated with each other (Fig. 2A). OTUs corresponding to one of the
main clusters belong mostly to phyla Bacteroidetes and Proteobacteria, whereas phyla
Acidobacteria, Actinobacteria, Patescibacteria, Chloroflexi, Planctomycetes, and Nitrospira
were mostly represented in the other major cluster. A plot of the temporal distribution
of bacteria belonging to the two main clusters of the network shows a striking
correspondence to each of the two operationally distinct periods of disturbance and
stability (Fig. 2B).

Further taxonomic analysis was performed on draft genomes assembled from
metagenomes. We were able to reconstruct 173 good-quality metagenome-assembled
genomes (MAGs), taking advantage of the differences in contig coverage across the
large number of metagenomic data sets (n � 60). Table S2 in the supplemental material
details the characteristics of all MAGs, including their taxonomic affiliation, length,
number of contigs, and degree of completeness and contamination. Similar to the
results obtained for amplicons, network analysis of MAGs also showed two distinguish-
able clusters (see Fig. S1 in the supplemental material).

Given that rRNA genes of microbial communities are in general not efficiently
recovered using de novo assemblers, we used an iterative mapping method, based on
the expectation maximization algorithm, to reconstruct full-length small-subunit (SSU)
sequences from raw reads (40). In order to evaluate whether the population sets
obtained from the reconstruction of genomes in the metagenomes were a fair repre-
sentation of the “true” bacterial community structure, we compared the average
bacterial community structures determined from (i) the taxonomic classification of 16S
rRNA gene amplicons (Amp16S), (ii) the taxonomic annotation of 16S rRNA gene
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FIG 1 Functional performance and operating conditions of the full-scale activated sludge over 3 years of sampling. (A) Influent (red dots)
and effluent (black dots) chemical oxygen demand concentration. (B) Food/microorganism (F/M) ratio. Red dots indicate the F/M
calculated using data based on a 28-day moving average (89). (C) Nitrogen profiles over the 3 years of sampling. Black circles, influent
total Kjeldahl nitrogen (TKN); white circles, effluent total Kjeldahl nitrogen; red triangles, effluent nitrate concentration; red squares,

(Continued on next page)
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sequences assembled from the metagenomes (MA16S), and (iii) the taxonomic place-
ment of metagenome assembled genomes (MAGs) (see Fig. S2 in the supplemental
material).

As expected, the distributions of taxa at higher levels were very similar, albeit not
identical. The higher sequencing depth afforded by amplicon sequencing allowed
resolving for a higher proportion of minor phyla. Additionally, incomplete phylogenetic
placement of amplicons resulted in a small proportion of unclassified taxa. Other
differences could be explained by the different sources of amplification biases occur-
ring in PCR-based methods, the bias in the estimation of taxa relative abundances due
to differences in rrn operon copy number, and the incomplete reconstruction of the
total community members as MAGs. Despite these differences, the three methods
showed a highly satisfactory agreement. Therefore, we conclude that the set of
genomes assembled from the metagenomes adequately represent the bacterial com-
munities present in the system, confirming that our sequencing effort provided suffi-
cient resolution to obtain a comprehensive insight in the prokaryotic microbial com-
munity of the system.

Metagenomic analysis. The distribution of taxa across the time series was inves-
tigated with MAGs as input to construct 5-by-5 self-organizing maps (SOMs) (see Fig. S3
in the supplemental material). SOMs grouped MAGs into two distant superclusters (in
green and yellow in Fig. 3A) and a third supercluster (in pink) that includes all other
sampling dates. In order to identify differences in functional composition, an analogous
SOM analysis was applied to the whole metagenome (Fig. 3B). Relative abundance of
annotated genes (KEGG modules) in metagenomic contigs resulted in a similar clus-
tering pattern, with two distant groups of samples (also in green and yellow) and two
additional periods (in pink and purple) that include the remaining samples. Comparison
between function-based and genome-based SOM analyses enabled us to establish two
consensus periods, characterized by their close correspondence to operational periods
of disturbance (samples 10 to 25) and stability (samples 42 to 58) (Fig. 3C).

Comparison of functional profiles between metagenomes from disturbed and stable
periods disclosed a number of pathways that had significant differences in relative
abundance (see Fig. S4A and B in the supplemental material). The disturbed period was
significantly enriched in genomic features such as secretion system, two-component
systems, transporters, and energy metabolism. On the other hand, the stable period
contained a significantly higher proportion of genes in the categories of metabolism
and genetic information processing and genes coding for biosynthesis of secondary
metabolites and genes (Fig. S4B).

Statistical comparisons were also used to discriminate MAGs according to differ-
ences in their abundance between disturbed and stable periods (Fig. S4C). In agree-
ment with the 16S-based results, the abundance of Proteobacteria increased during the
disturbed period. Nevertheless, most phyla have representatives in both disturbed and
stable periods. Likewise, a genome-wide comparison of MAGs, based on predicted
metabolic capacities (KEGG modules), indicated that phylogenetically related MAGs,
sharing a large number of annotated genes, split into disturbed and stable periods (see
Fig. S5 in the supplemental material).

Bacterial community structure and growth traits. We searched for traits encoded
in bacterial genomes that could account for the differences in bacterial composition
observed between disturbed and stable periods. First, we calculated the rRNA (rrn)
operon copy numbers. We applied an approach for quantifying rrn copy numbers of
MAGs that is independent of the presence of rrn operons in the assembled genomes.
Matching MAGs to their corresponding 16S rRNA was initially accomplished by Pearson
correlation of the coverage of the MAG and the coverage of the 16S rRNA gene

FIG 1 Legend (Continued)
effluent nitrite concentration. (D) Solid retention time (SRT). The SRT was estimated by dividing the monthly average biomass
concentration in the aeration basins under operation by the loss of solids through wastage and effluent during the same period. Black
arrows indicate disturbance events.
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sequences reconstructed independently (MA16S) along the entire time series. The
matching was considered robust if the correlation was r � 0.7 (P � 0.001) and the
taxonomic classifications based on the 16S rRNA sequence and on the genome
phylogeny were coincident (see Table S3 in the supplemental material). Further support
was obtained from BLAST and/or paired-end (PE) reads connecting the 16S rRNA gene

FIG 2 (A) Network of co-occurring bacterial OTUs, based on local similarity analysis (LSA). Nodes (OTUs) are colored by phylum. The size of each node is
proportional to the OTU relative abundance across the 60 samples. Blue and red edges represent positive and negative significant correlations, respectively
(correlation � |0.6|; P � 0.01). Nodes that have no connections are distributed randomly. (Inset) The application of a k-core filter � 10 (considering only positive
correlations) highlights two clusters. (Nodes in each cluster are denoted in green and yellow.) (B) Time series abundance of OTUs belonging to the two major
clusters of the network shown in panel A. yellow and green bars are the sum of the relative abundance of nodes (OTUs) in each cluster.
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sequences assembled from the metagenomes (MA16S) with contigs in the MAG (see
Materials and Methods). The filtering procedure was successfully applied to 49 MAGs,
for which we could unequivocally match the reconstructed 16S rRNA gene with the
assembled genome. The number of rRNA operons (rrn) in each MAG was subsequently
calculated from the relationship between the coverage of the MA16S and the average
coverage of the rest of the genome (see Fig. S6 and Table S3 in the supplemental
material). Results obtained using this approach were further checked by comparing the
estimated rrn copy number against the copy number retrieved from rrnDB, the rRNA
operon copy number database (41) (Table S3). Figure 4A shows that the proportion of
genomes with a single copy of rrn operon was highest during the period of stable
operation and decreased to a minimum during the period of plant disturbance.
Differences in the abundance-weighted mean of per-MAG rRNA operon copy number
between both contrasting periods were significant at P � 0.001 (Fig. 4B). An almost
identical result was obtained when the rrn copy number was calculated using the
contigs directly from metagenomes, as the ratio of the coverage of total rRNA SSU
genes (MA16S) to the average coverage of total genomes, determined from the
coverage of a set of single-copy marker genes (Fig. 4C and D).

Because rrn copy number is directly related to maximum growth rate in bacteria
(42), we reasoned that differences in rrn copy number could be reflected by changes in

FIG 3 Self-organizing map (SOM) analysis. Shown is a circle packing representation of the tree derived from the 5-by-5 SOM clustering results (Fig. S3). Cluster
nodes are visualized as nested circles, with the node levels depicted by a blue gradient. Numbers in childless nodes are those of the time series samples.
Samples grouped into superclusters were classified using Ward’s minimum variance method and are displayed in yellow, green, pink, and purple. (A) SOM
clustering based on MAG abundance and (B) SOM clustering based on KEGG module abundance. (C) Overlap between samples in superclusters from panels
A and B were used to define consensus samples for disturbed (yellow) and stable (green) periods.
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bacterial growth rate between the disturbed and stable periods. To test this idea,
replication rates were estimated across the time series using the index of replication
(iRep). The index was estimated for 113 time points in the 35 genomes that were �75%
complete and had coverage higher than 5 in each sample (Fig. 5A). In contrast to our
prediction, iRep values were distributed uniformly throughout time, without differences
between disturbed and stable periods, and with no apparent relation to any other
measured parameter, including F/M and SRT. However, the lack of association might be
a result of low statistical power due to the coarse measurement of SRT (Fig. 1C). The null
hypothesis that the distribution of iRep values is indistinguishable from a normal
distribution centered at 1.57 with a standard deviation of 0.14 could not be rejected
(P � 0.39). This was further demonstrated by a very good fit between the quantiles of
the iRep data and those of a normal distribution (Fig. 5B and C). Also, we did not find
a significant correlation between the copy number of rrn operons and iRep values
(n � 33; Spearman’s correlation r � 0.31, P � 0.082). Based on these observations, we
conclude that bacteria present in disturbed and stable periods are characterized by
differences in rrn copy number but not by growth rate.

DISCUSSION

A genome-centric approach using time series metagenomic data from activated
sludge samples allowed insight into community response to disturbance. Our results
revealed clear differences between disturbed and stable operational periods regarding
bacterial rRNA (rrn) operon copy numbers. On the other hand, these differences were
not reflected in corresponding changes in replication rates.

FIG 4 (A) Relative abundance of metagenome-assembled genomes across the 3-year time series, color-coded according to the number of copies of the rrn
operon. Colored bars delimit samples corresponding to disturbed (yellow) and stable (green) consensus periods defined in Fig. 3. In parentheses are the number
of MAGs in each category. (B) Box plot of abundance-weighted mean of per-MAG rrn copy number, calculated from all MAGs present in the periods marked
as disturbed (yellow) and stable (green). (C) Average copy number of rRNA operons (rrn) per genome, calculated as the ratio of the coverage of total rRNA SSU
genes to the total coverage of single-copy universal marker genes in metagenomes’ contigs. The box plot was generated using 13 single-copy marker genes.
The blue line is the median. (D) Box plot of the average rrn copy number per genome in the periods marked as disturbed (yellow) and stable (green).
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A stable activated sludge process is a system that produces effluent with very low
oxygen demand, thus representing an environment characterized by a constant but
slow flux of resources, meaning that bacteria are fed at a near-starvation rate (32). The
trade-off between resource use efficiency and growth rate explains the dominance of
bacteria harboring a low rrn operon copy number as the result of a negative selection
for fast-growing bacteria (43) and the adaptation of bacteria with higher growth
efficiency in low-resource environments (42, 44). In line with this, our results showed
that bacteria with a low copy number of rrn operons dominated the activated sludge
community during periods of optimal performance. Similar results were obtained by

FIG 5 (A) Replication index (iRep) calculated from the difference of coverage between the regions of the genome close to the single replication origin and
those of the rest of the metagenome assembled genomes. Values of iRep were calculated for 35 MAGs across 60 samples. Phyla are distinguished by colors.
The size of the circles is proportional to the MAG coverage. Numbers denote MAGs according to Table S2. (B) QQ (quantile-quantile) plot of iRep values versus
normal distribution. (C) Histogram of iRep values. The solid line in blue represents the normal distribution centered at 1.57 with a standard deviation of 0.14.
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Vuono and colleagues, who manipulated the SRT of a full-scale WWTP and showed that
phyla abundant at high and moderate SRT, such as Planctomycetes, Chloroflexi, Acido-
bacteria, and Nitrospira, were outcompeted by fast-growing microorganisms that are
adapted for high resource utilization, such as Proteobacteria upon a shift to very-low-
SRT operation (22). A positive linear correlation between resource availability and the
average rRNA operon copy number of microbial populations was also observed in
anaerobic digesters (45). Comparable trade-offs between bacterial ecological strategies
based on rrn copy number distribution were uncovered in microbial succession in
several habitats (46), including soil microcosms (47) and stream biofilms (48). In all these
previous studies, the observations were rationalized using the r-K selection model,
based on life history strategies. However, growth traits of an organism cannot be
directly inferred from taxon-based classifications, especially when oligotrophic micro-
organisms may be r-strategists, whereas copiotrophic microorganisms may be
K-strategists (14). As a case in point, we found in this study members of the same family
that contain different rrn copy numbers and are abundant during periods of contrasting
stability (see, e.g., Polyangiaceae in Fig. S5), confirming the heterogeneity in life history
strategies among phylogenetically related taxa (49). The fact that life history traits of
microorganisms present throughout disturbed and stable periods were estimated
directly using the experimental data is a strength of this paper.

Based on the generalized relationship between rrn copy number and bacterial
growth rate (42, 50), we anticipated that differences in rrn copy number would mirror
differences in bacterial growth rate between the disturbed and stable periods. Evalu-
ation of the bacterial growth rates of specific lineages could be performed using a mass
balance, if the numbers of bacteria entering and leaving the system are known (17).
Alternatively, growth rates can be probed in metagenomic samples from the differ-
ences in read coverage across bacterial genomes (51). Indeed, the algorithm iRep is
already an established tool for calculating the inferred in situ replication rates of
bacteria in microbial communities (38, 52–54).

We found in this study that, even though bacteria with higher rrn copy number
dominated the disturbed period, estimated replication index values were distributed
uniformly throughout time, and no differences were observed between disturbed and
stable periods nor had any apparent relationship to SRT. We note that even though the
large number of data points gives us high confidence in the reliability of our data, we
cannot prove that MAGs used for iRep calculation were a truly unbiased representation
of the community. Therefore, actual unseen differences in growth rates cannot be
entirely ruled out.

Yet bacterial growth traits that contribute to fitness include not only the rate of
exponential growth, but also the length of the lag phase (55). It has been shown that
the length of the growth lag phase declines with the number of ribosomal operons (43,
50, 56) and that the competitive fitness difference between Escherichia coli strains with
different numbers of rrn operons depends on the dynamics of nutrient availability,
being most pronounced during the lag phase (57). Similarly, computational models and
benchtop experiments of pairwise competition between E. coli mutants of the essential
enzyme adenylate kinase (Adk) demonstrated that strains with shorter lag time exhibit
higher competitive advantage, especially under nutrient-limiting conditions (58). Based
on these previous findings, we infer from the results of this study that bacteria with a
high rrn copy number might obtain a competitive advantage to rapidly adjust to
unsteady operating conditions by growing with a shorter lag phase.

We expect that this hypothesis could be confirmed in future research. Direct
measurement of the lag phase, using methods such as total viable count, optical
density measurements, or even quantitative PCR (qPCR) with primers targeting specific
bacterial populations, is not readily attainable in the context of complex microbial
communities such as activated sludge. On the other hand, accurate predictions of the
lag phase using computational approaches are very difficult to obtain even for simple
model systems (59).

One of the objectives of shotgun analysis is to uncover possible functional genomic
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signatures that advance our understanding of the mechanisms that allow bacteria to
adapt to contrasting regimes of stability and disturbance in activated sludge and how
they were reflected in their genomes. The molecular bases of bacterial response to the
environment are still poorly understood. Existing studies are based on the exploration
of genomes of marine microorganisms (60, 61). In general terms, we note that func-
tional capabilities did not predict which bacterial populations will dominate periods of
disturbance or stability. On the contrary, MAGs belonging to each of the contrasting
operational periods were not necessarily functionally related. Analysis of MAGs belong-
ing to disturbed and stable periods, based on the presence or absence of metabolic
pathways inferred from the KEGG database, indicated that MAGs clustered by phylog-
eny, rather than by the operational regime to which they belong (Fig. S5). The failure
to identify a prototypical genome content that allows clear distinctions between
copiotrophic or oligotrophic bacteria was discussed previously by Roller et al. (42). Yet
we observed differences at the genomic level that are consistent with recently pro-
posed models, which predict that competitive advantage of bacteria under changing
environmental condition is achieved by reserve capacity of ribosomes and transporters.
Accordingly, subsaturation allows bacteria to rapidly adapt in fluctuating environments
by producing new ribosomes and high-affinity transporters for optimal growth (62, 63).
We also observed that the disturbed period was significantly enriched in secretion
systems, which are used to deliver a variety of different proteins, including bacterial
toxins and degradative enzymes such as proteases and lipases (64). Two-component
systems, used by bacteria to detect changes in their environment (65), were also
overrepresented in the disturbed period. On the other hand, the stable period con-
tained a significantly higher proportion of genes coding for increased production of
secondary metabolites, which are characteristics of organisms with a slow but efficient
lifestyle (60).

It may be argued that the nature and frequency of the disturbances occurring in our
field-scale experiment were relatively ill-defined. In general, disturbances can be diffi-
cult to define, especially for observational studies (8, 66). Here, we concur with the
definition of disturbance recently put forward by Cante for use in microbial ecology: “A
discrete, unpredictable event that causes direct removal of living biomass, thereby
altering community structure” (67). Of interest is that this definition refers to discrete
and unpredictable events and that it does not include the notion of disturbance as a
rare or relatively infrequent event. In our experiment, disturbance was a random factor
that encompassed several events, although the length of the interval between distur-
bances exceeded the short generation times of microorganisms.

In summary, our results show that disturbances, defined by short-term interruption
of wastewater feed supply, fluctuations in MLSS concentration, and/or eventual periods
of very low dissolved oxygen concentration, increase the relative proportion of bacteria
with higher rRNA operon copy number. Given that the rrn operon copy number is
considered to reflect ecological strategies in bacteria by influencing their growth traits,
we suggest that the length of the growth lag is of primary importance for the capacity
of bacteria to thrive under disturbance. We propose that the system has the capacity
to maintain its function in the face of disturbance (ecological resilience) through the
selection of bacteria that able to return rapidly to their equilibrium or steady-state
condition (engineering resilience). Future experiments examining the time course of
microbial composition after disturbance using shorter sampling intervals could provide
a direct experimental test for the hypothesis put forward in this study: i.e., that a shorter
lag phase provided bacteria an advantageous trait in a disturbed environment.

MATERIALS AND METHODS
Sample collection. Samples were obtained from a full-scale municipal WWTP, located in the

metropolitan area of Buenos Aires (Argentina), which provides preliminary, primary and secondary
treatment to remove organic matter and suspended solids from sewage for a population of 600,000
residents. The WWTP has a modular design, with a capacity of each module to treat 78,000 m3/day.
Primary effluent receives biological secondary treatment by an activated sludge process in four aeration
basins and four secondary clarifiers. At the time sampling started, only one module was in operation.
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Work on the WWTP upgrade started shortly after the beginning of the sampling period. The transition
period was marked by events of operational anomalies, especially caused by temporary shutdown (for
several hours) of one or more processes of the WWTP, necessary for civil engineering works. Start-up of
the second module was carried out gradually, according to the increase in total influent flow. Throughout
the entire sampling period, the plant achieved satisfactory biochemical oxygen demand (BOD) removal,
producing an effluent complying with the local effluent-quality regulation.

A total of 60 samples of activated sludge were collected biweekly over a period of 3 years (beginning
on November 2012) from one of the aeration basins. Samples were transported within 2 h from the
sewage plant to the laboratory and stored at �70°C until DNA extraction.

DNA extraction and sequencing. Total DNA from sludge samples was isolated by a direct lysis
procedure involving physical disruption of cells and a CTAB (cetyltrimethylammonium bromide)
method as described in reference 68. The 60 DNA samples extracted from sludge were sent to
INDEAR, Rosario, Argentina, for Nextera DNA library preparation and sequencing. A rapid-run sequenc-
ing on two lanes was performed in a HiSeq 1500 Illumina, generating paired-end (PE) reads of 250 bp.
The same DNA samples were also sent to Macrogen, Inc., South Korea, for 16S rRNA gene amplicon
sequencing. Amplicons of the V3-V4 region were sequenced using Illumina MiSeq, generating PE reads
of 300 bp, using the primers b341F (5=CCTACGGGNGGCWGCAG-3=) and Bakt805R (5=-GACTACHVGGGT
ATCTAATCC-3=) (69).

16S rRNA amplicon sequencing analysis. Amplicon sequencing of the activated sludge samples
resulted in 7,293,800 PE reads. After sequence quality controls, raw reads were filtered with Trimmomatic
(70) using recommended quality parameters for PE reads and removing reads below 200 bases. A total
of 4,581,297 PE reads passed the quality filters. USEARCH v8.1.1861 (71) was used to join the paired
sequences, considering a minimum overlap of 32 bp. The USEARCH pipeline was also used to filter
merged sequences and define operational taxonomic units (OTUs) at 97% similarity. For diversity
analysis, samples were rarified to the lowest number of sequences (11,810). Sequences were classified
with Silva database v.132 (72), using 88% minimum identity with the query sequence.

Metagenome assembly and binning. Metagenomic sequencing of the activated sludge samples
resulted in 328 million PE reads (an average of 5.5 million per sample). PE reads (2 � 250 bp) were filtered
and trimmed to remove ambiguous bases (N) and ensured a minimum average quality (q) value of 30.
After quality filtering, approximately 35% of reads were removed, and the remaining reads were used for
the assembly. The filtered reads of the 60 samples were combined into a single file and assembled using
MEGAHIT (73), with multiples k-mer length (95 to 99) and default parameters, generating 409,381 contigs
longer than 1,500 bp. In order to assemble individual genomes from the contig pool, contigs were
binned with MetaBAT (74), using tetranucleotide frequency and coverage information in each of the 60
samples. Binning was manually refined using Cytoscape (75) to visualize the following three criteria: (i)
GC percentages, (ii) tetranucleotide frequency distribution, and (iii) abundance profiles along the 60
samples. Manual binning of scaffolds consisted of clustering scaffolds (i.e., considered a bin) when the
composite sequences contained �5% of average percentage of GC, and all scaffolds were intercon-
nected according to Pearson’s significant positive correlations (based on tetranucleotide frequency
distribution and abundance profiles). As a final step, the reads mapping the contigs from each bin were
extracted and reassembled using MEGAHIT as described above. In each sample, approximately one-half
of the reads that assembled in contigs (�1,000 bp) were mapped to metagenome-assembled genomes
(median, 48.9%; maximum, 59.7%; minimum, 31.2%) (see Fig. S7 in the supplemental material). CheckM
(76) was used to estimate the quality (completeness and contamination) of the metagenome-assembled
genomes (MAGs).

To estimate the abundance per sample, filtered PE reads were mapped back to the contigs using
Bowtie2 (77). The coverage was calculated using MetaBAT (jgi_summarize_bam_contig_depths script).
Taxonomic assignment of bacterial genomes was done using the software toolkit GTDB-Tk v.0.1.3 (78)
and default parameters.

Number of rRNA operons (rrn). We applied an approach for quantifying rrn copy numbers in MAGs
that was independent of the presence of rrn operons in the assembled genomes. Reads corresponding
to the 16S rRNA gene were identified from raw data from the 60 metagenomic samples using Metaxa2
(79) and assembled de novo using EMIRGE (40). Metagenome-assembled 16S rRNA genes (minimum of
900 nucleotides [nt]; called “MA16S” by analogy to MAG) were classified using the Silva database v.132
(72), using 88% minimum identity with the query sequence. Filtered PE reads were mapped back to the
MA16S with Bowtie2, and the coverage per sample was estimated using MetaBAT as described above.
We applied several filtering criteria to ensure the most accurate matching between MA16S and MAGs for
use in downstream analyses. MAGs were initially matched to their corresponding 16S rRNA by Pearson
correlation (r � 0.7, P � 0.001) between the coverage of the MAG and the coverage of MA16S along the
entire time series. Second, taxonomic classifications based on the 16S rRNA sequence and on the
genome phylogeny had to be concurrent at the highest possible taxonomic resolution. Further support
was obtained by sequence match between assembled 16S rRNA genes and contigs in the MAG using
BLAST (98% similarity; alignment length of �100 nt; mismatches, �5). Additionally, we searched for the
presence of at least five paired-end reads connecting the 16S rRNA gene sequences assembled from the
metagenomes (MA16S) with one or more contigs in the MAG. For all the pairs of MAGs and MA16S that
satisfied these criteria, the copy number of rRNA operons per MAG was then inferred from the ratio of
the coverage of the MA16S to the coverage of the MAG.

To verify that the results obtained from the assembled genomes were not biased by the use of a
limited set of MAGs, the rrn copy number was also calculated using the whole-metagenome data sets,
as follows. The total coverage of genomes in each data set was estimated from the coverage of
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single-copy universal marker genes, identified in contigs of �500 bp by utilizing hidden Markov models
(80). Therefore, the average copy number of rRNA operons (rrn) per genome was calculated as the ratio
of the coverage of total rRNA SSU genes (MA16S) to the total coverage of a marker gene. This calculation
was repeated for a set of 13 single-copy universal marker genes shorter than 450 bp (150 amino acids
[aa]).

Local similarity analysis. Local similarity analyses (LSA) (81) among the most abundant OTUs
(relative abundance average of �0.05%) was used to determine associations and co-occurrence between
bacterial species. Local correlations with a score lower than �0.6 and higher than 0.6 and a q value of
�0.01 were considered significant. The same procedure was applied to determine associations and
co-occurrence between MAGs. Gephi software (82) was used to visualize and model the networks.

Self-organizing maps. Self-organizing maps (SOMs) were constructed using the R-package SOM-
brero (83). SOM analyses were used to cluster the 60 activated sludge samples using two different
criteria: (i) abundance patterns of KEGG pathway modules (84) in the whole metagenome and (ii) MAG
abundance. For the analysis of functional modules, genes in contigs longer than 2 kbp were predicted
using the GeneMark software (85) and annotated with the GhostKOALA tool (86). Only prokaryotic
modules identified as complete by the KEGG Mapper—Reconstruct Module tool (87) were used. The
abundance of the pathway modules was calculated for each sample as the sum of the abundances of the
genes that composed that module.

To identify the KEGG modules and MAGs showing significant differences (P � 0.05) between SOM
clusters, two group comparisons (t test) were performed using the STAMP software (88).

In situ growth rate determination. In situ growth rate of bacteria in the activated sludge system was
calculated using the replication index (iRep), a recently developed method that allows the direct
estimation of bacterial replication rates from draft-quality genomes assembled from metagenome
sequences. The index is estimated from the difference of coverage between the regions of the genome
close to the single replication origin and those of the rest of the genome (38, 39). We applied the iRep
algorithm, using default parameters, for MAGs with less than 175 scaffolds per Mbp that were more than
75% complete, had less than 5% contamination, and had a genome coverage higher than 5 in any
individual sample.

Data availability. Sequencing data are available at NCBI BioProject under accession no.
PRJNA484416.
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