
Feature Selection and Dimension Reduction of Social Autism 
Data

Peter Washington1, Kelley Marie Paskov2, Haik Kalantarian2,7, Nathaniel Stockham3, 
Catalin Voss5, Aaron Kline2,7, Ritik Patnaik4, Brianna Chrisman1, Maya Varma5, Qandeel 
Tariq2,7, Kaitlyn Dunlap2,7, Jessey Schwartz2,7, Nick Haber6, Dennis P. Wall2,7

1Department of Bioengineering, Stanford University, Palo Alto, CA, USA

2Department of Biomedical Data Science, Stanford University, Palo Alto, CA, USA

3Department of Neuroscience, Stanford University, Palo Alto, CA, USA

4Department of Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA

5Department of Computer Science, Stanford University, Stanford, CA, USA

6Graduate School of Education, Stanford University, Palo Alto, CA, USA

7Department of Pediatrics, Stanford University, Palo Alto, CA, USA

Abstract

Autism Spectrum Disorder (ASD) is a complex neuropsychiatric condition with a highly 

heterogeneous phenotype. Following the work of Duda et al., which uses a reduced feature set 

from the Social Responsiveness Scale, Second Edition (SRS) to distinguish ASD from ADHD, we 

performed item-level question selection on answers to the SRS to determine whether ASD can be 

distinguished from non-ASD using a similarly small subset of questions. To explore feature 

redundancies between the SRS questions, we performed filter, wrapper, and embedded feature 

selection analyses. To explore the linearity of the SRS-related ASD phenotype, we then 

compressed the 65-question SRS into low-dimension representations using PCA, t-SNE, and a 

denoising autoencoder. We measured the performance of a multi-layer perceptron (MLP) classifier 

with the top-ranking questions as input. Classification using only the top-rated question resulted in 

an AUC of over 92% for SRS-derived diagnoses and an AUC of over 83% for dataset-specific 

diagnoses. High redundancy of features have implications towards replacing the social behaviors 

that are targeted in behavioral diagnostics and interventions, where digital quantification of certain 

features may be obfuscated due to privacy concerns. We similarly evaluated the performance of an 

MLP classifier trained on the low-dimension representations of the SRS, finding that the denoising 

autoencoder achieved slightly higher performance than the PCA and t-SNE representations.
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1. Introduction

Autism Spectrum Disorder (ASD) is a complex developmental disability with a highly 

heterogeneous phenotype. ASD affects at least 214 million children worldwide, including 

one million children in the U.S. ten years of age and younger.1 Common behavioral traits 

associated with ASD include a struggle to make eye contact, recognize facial expressions, 

and engage in social interactions.2 Other behaviors often associated with ASD include 

repetitive behaviors, poor motor skills, and difficulty with language.3 ASD consists of 

several distinct and co-occurring symptoms.

The Social Responsiveness Scale, Second Edition (SRS) is a 65-item questionnaire filled out 

by a caregiver or teacher and designed to provide a metric for assessing social deficits and 

ASD severity in individuals 4 to 18 years old.4 The scale measures social responsiveness on 

five sub-scales: social awareness, social cognition, social communication, social motivation, 

and restrictive interests and repetitive behaviors. High scores indicate increasing social 

deficit and ASD severity. The scale is also used to assess ASD in research settings, e.g., as 

an outcome measure in digital therapies for ASD treatment.5,6

Duda et al.7,8 have performed item-level question selection on the SRS to identify questions 

which may provide the most predictive power in determining ASD classification while 

eliminating uninformative questions. For classification with relatively small training samples 

and high dimensionality, as is the case with ASD questionnaires, feature selection is 

essential for avoiding overfitting and improving overall classifier performance. Duda et al. 

identified the following top-ranking features for predicting ASD diagnosis: trouble with the 

flow of normal conversation, difficulty with changes in routine, lack of appropriate play with 

peers, difficulty relating to peers, atypical and inconsistent eye contact, and being regarded 

as ‘odd’ by other children.7 Bone et al. performed feature selection when combining 

questions from the SRS as well as the Autism Diagnostic Interview-Revised (ADI-R)9 using 

greedy forward-feature selection, finding that questions from the ADI-R can sometimes be 

more useful for distinguishing ASD from controls.10 Nevertheless, Duda et al. have used the 

top-ranking questions from the SRS to crowdsource parental responses to instrument-

derived versions of the top-15 SRS features, achieving an AUC of 0.89.8

Identifying salient behavioral features that overlap when predicting diagnostic outcomes is 

pertinent to preserving privacy in digital diagnostics and interventions. When collecting 

digital data from a sensitive population, such as pediatric groups or individuals with 

psychiatric conditions, the digital data streams may require obfuscation in order to satisfy 

clinical or legal privacy requirements as well as the desire of the patient or caregiver to 

consent to the data collection process. Such obfuscation of data, however, may degrade the 

performance of diagnostic classifiers. Identifying redundant features can ameliorate or 

minimize these concerns by providing alternative areas of focus for data collection and 

quantification.

In order to identify new behavioral targets for ASD diagnostics and demonstrate the 

potential to identify overlapping features for privacy-preservation of these features, we 

expand the dataset of SRS questionnaires to 16,527 individuals, building upon previous 
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work using 3,417 cases and controls combined.8 Using deep learning, we validate the 

predictive power of subsets of questions from the SRS for determining the diagnostic 

classification of a large pediatric population. We perform filter, wrapper, and embedded 

feature selection analyses to identify top-ranking questions as well as redundancies between 

features. Many of the most salient features validate those identified previously by Duda et al. 

while new additional features also become prominent. In addition, to explore the linearity of 

the social ASD space, we reduce the dimensionality of the 65-item SRS questionnaire into 

low-dimension representations using PCA, t-SNE, and a denoising autoencoder.

Our primary goal for this work is to identify new behavioral targets for ASD diagnostics via 

the largest ASD-related SRS dataset to date in order to identify any potential redundancy of 

features in this measure and to explore the linearity of the ASD diagnostic problem space. 

This work has implications for the replaceability of features when privacy-preserving 

mechanisms are applied in digital diagnostics and suggests that ASD is a slightly nonlinear 

phenotype with respect to the behaviors measured by the SRS.

2. Methods

2.1. Data Sources

Data were aggregated from 7 sources: Autism Genetic Resource Exchange (AGRE),11 

Autism Consortium (AC), National Database for Autism Research (NDAR),12 Simons 

Simplex Collection (SSC),13 Simons Variation in Individuals Project (SVIP),14 Autism 

Speaks (MSSNG), and Autism Genome Project (AGP).15 In total, the dataset contains 

16,527 individuals with the SRS Child/Adolescent questionnaires completed: 10,004 cases 

and 6,523 controls. The minority class (controls) was randomly upsampled to achieve class 

balance. 11,358 individuals are male and 5,169 are female. We note that the risk of ASD has 

long been noted to affect more males than females, explaining the gender imbalance in the 

datasets. We did not find any significant difference in demographics or SRS severity 

between the datasets we used.

2.2. Preprocessing

We analyzed data from the Social Responsiveness Scale (SRS), which is a 65-item 

questionnaire filled out by a caregiver about their child.4 The answers to the questions are 

categorical ordinal variables with a value of 1, 2, 3, or 4. Increasing numbers correspond to 

behaviors either more or less indicative of social responsiveness, depending on the question.

We used two sets of labels on the same input SRS data for prediction: (1) the diagnosis that 

would be arrived at using the SRS measure alone (we refer to this as the ‘SRS-derived ASD 

diagnosis’) and (2) the diagnosis that was provided within the dataset (we refer to this as the 

‘dataset-provided diagnosis’). Due to the differences in diagnostic labeling across datasets, 

we used a list of keywords corresponding to the ‘ASD’ class (e.g., ‘autism’, ‘ASD’, and 

‘Asperger’) across the sources as well as another set of keywords corresponding to the ‘not 

ASD’ class (e.g., ‘control’ and ‘neurotypical’) to arrive at the ‘dataset-provided diagnosis’.
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2.3. Feature Selection Analysis

In order to test the robustness of the selected features, we applied three different feature 

selection methods:

(1) Filter methods: Univariate filter feature selection methods consider each feature 

independently and measure the correlation between each feature and the 

outcome variable. We used the Mutual Information (MI) score. MI is a measure 

of the dependence between a question (feature) and the clinical ASD 

classification,16–18 quantifying the degree of information gain brought upon by a 

particular feature.

(2) Wrapper methods: Wrapper methods treat the feature selection process as a 

search problem. We applied a popular wrapper method, recursive feature 

elimination (RFE), which consists of removing the weakest feature and fitting a 

model until the desired number of features is achieved. We used a Support 

Vector Machine (SVM) for the RFE procedure and removed a single feature at 

each step.

(3) Embedded methods: We used the importance scores from a decision tree 

classifier. The feature importance weights were used to select top features. The 

same random state was used across all runs of the decision tree.

The reduced feature spaces were used to train a neural network classifying ASD from 

controls (see section 2.5). All feature selection was performed using the scikit-learn19 library 

in Python.

2.4. Dimension Reduction

We applied 3 separate dimension reduction techniques: Principal Component Analysis 

(PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and a denoising autoencoder. 

PCA and t-SNE were implemented using scikit-learn. No t-SNE hyperparemeter tuning was 

performed; the default scikit-learn hyperparemters were used for t-SNE (1000 iterations, a 

perplexity of 30, and a learning rate of 200). To create the denoising autoencoder, we used a 

dense fully-connected architecture. The ‘encoder’ half of the neural network contained 65 

input nodes (corresponding to each SRS question), followed by hidden layers of size 32, 16, 

8, and N, respectively. Here, N represents the number of dimensions we aimed to reduce to. 

The ‘decoder’ half of the neural network mirrored the ‘encoder’ half, with hidden layers of 

size 8, 16, 32, and 65 following the encoded layer, respectively. The denoising autoencoder 

was implemented in TensorFlow20 via the Keras21 Python library. The low-dimensional 

representations were used to train a neural network classifying ASD from controls (see 

section 2.5).

2.5. Multi-Layer Perceptron (MLP) Classifier

To determine the minimum number of questions that are needed to predict ASD class from 

SRS-derived information, we used the top-ranking questions for all three feature selection 

methods as inputs into a dense neural network. We compared performance using the top N 
questions, with values of N ∈ {1, 2, 3, 4, 5, 6}. To determine the number of dimensions 

needed to represent the data, we also evaluated classifier AUC scores with M-dimensional 
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representations of the data using PCA, t-SNE, and the denoising autoencoder, with values of 

M ∈ {1, 2, 3}. In all cases, the deep learning classifier was trained and evaluated using 10-

fold cross validation.

The MLP neural network used for evaluation was implemented in Keras21 using a 

TensorFlow20 backend. The network consisted of 1 or more fully-connected hidden layers 

with dropout applied to each hidden layer. In addition to parameterization of the number of 

hidden layers, hyperparameter optimization was conducted via Bayesian optimization using 

Hyperopt.22 Hyperparameter selection included uniform values between 0.0 and 1.0 for 

dropout rate, fully-connected layers with possible sizes ∈ {8, 16, 32, 64, 128, 256, 512, 

1024}, L2 regulation rate at each hidden layer ∈ {0, 0.001, 0.005, 0.01, 0.05, 0.1}, number 

of epochs trained ranging from 1 to 10, and using one of { RMSProp, stochastic gradient 

descent, Adam23 optimization } for training of model weights. Binary cross-entropy was 

used for the loss function.

3. Results

3.1. Feature Selection Analysis

The features with the highest importance scores using filter, wrapper, and embedded feature 

selection to predict SRS-derived ASD diagnoses are listed in Table 1. Similarly, the highest-

rated questions for predicting dataset-provided diagnoses across all feature selection 

methods are in Table 2. While feature importance rankings are heavily dependent on the 

metric used, question 37 (relating to peers) consistently has the highest feature importance 

out of all SRS questions for predicting SRS-derived ASD diagnosis while question 35 

(trouble keeping up with conversational flow) consistently appears in the top-2 features for 

predicting dataset-specific diagnoses.

Table 3 illustrates the accuracy of the MLP classifier for predicting SRS-derived ASD 

diagnosis when adding features from the top-ranked list of questions using all 3 feature 

importance metrics. Table 4 contains the same information for predicting dataset-provided 

ASD diagnosis. Using only the single top-rated question results in an AUC of over 92% 

when predicting the SRS-derived diagnosis and an AUC of over 83% when predicting the 

dataset-provided diagnosis. Using the top-three questions results in an AUC of 97% or 

higher when predicting the SRS-derived diagnosis and an AUC of 86% or higher when 

predicting the dataset-provided diagnosis. When using all questions, the AUC is 99.7% for 

the SRS-derived diagnosis and 90.0% for the dataset-provided diagnosis.

3.2. Dimension Reduction

Figure 1 shows the separation of control (purple) from ASD (yellow) in 2 dimensions for 

PCA, t-SNE, and the denoising autoencoder, colored by both SRS-derived diagnosis (a, c, 

and e) and dataset-specific diagnosis (b, d, and f). Even when reducing the SRS space to 

only 2 dimensions, there is a clear separation between the 2 classes across all techniques.

In order to determine the lowest number of dimensions that the questions can be reduced to 

while still maintaining high diagnostic accuracy, we evaluated classifier AUC across 

different numbers of dimensions. Tables 5 (for SRS-derived diagnoses) and 6 (for dataset-
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provided diagnoses) show the AUC, precision, and recall when predicting ASD diagnosis 

when reducing to 1, 2, and 3 dimensions using PCA, t-SNE, and the denoising autoencoder.

The baseline AUC of the classifier using all 65 questions of the SRS as features is 99.8% 

when predicting the SRS-derived ASD diagnosis and 90.3% when predicting the dataset-

provided diagnosis. When reducing the dimension to only 1 feature using all three 

dimension reduction techniques, the AUC is still above 99% when predicting the SRS-

derived diagnosis and above 84% when predicting the dataset-provided diagnosis. Increasing 

the number of dimensions beyond 1 improves the AUC only marginally. Notably, the 

denoising autoencoder outperforms PCA and t-SNE for the dataset-provided diagnosis when 

using a low number of dimensions.

3.3. Feature Redundancy and Correlation

We analyze redundancy of features by calculating the Spearman correlation between each of 

the 65 SRS questions. The mean correlation of the 66 possible pairwise-correlations between 

all distinct questions in the set of questions that appear in the top-6 rated features for at least 

one of the feature selection methods (questions 8, 12, 13, 16, 24, 29, 33, 35, 37, 44, 58, and 

59) is 0.506 (SD = 0.201). By contrast, the mean correlation of the set of all non-identical 

pairwise correlations is 0.368 (SD = 0.126). A two-sided Welch’s t-test performed between 

these two sets of correlations is statistically significant (t = 5.566, p < 0.001). This difference 

in mean correlation appears in all 7 datasets we aggregated (AGP: t = 4.058, p = 0.001; 

AGRE: t = 4.865, p < 0.001; AC: t = 4.819, p < 0.001; MSSNG: t = 5.153, p < 0.001; 

NDAR: t = 6.106, p < 0.001; SVIP: t = 6.000, p < 0.001; SSC: t = 5.564, p < 0.001).

4. Discussion

The selected features from the SRS indicate new areas of exploration for ASD diagnostics. 

Duda et al. identified a similar yet slightly different set of SRS questions7 for distinguishing 

ASD from ADHD using the mutual information metric (ranked from most to least 

important): trouble with the flow of normal conversation (question 35), difficulty with 

changes in routine (question 24), appropriate play with peers (question 22), difficulty 

relating to peers (question 37), atypical or inconsistent eye contact (question 16), and being 

regarded as ‘odd’ by other children (question 29). It is interesting to note that the top-3 

ranking features for distinguishing an SRS-derived ASD diagnosis from a control using 

mutual information (Tables 1 and 2)-namely, trouble with the flow of normal conversation, 

difficulty relating to peers, being regarded by other children as ‘odd’-appear in the list of 

top-ranking features for distinguishing ASD from ADHD as reported by Duda et al. This 

provides validation of Duda et al.’s work using a larger dataset. This also suggests that these 

features may distinguish neurotypical children from children with ASD, although further 

work is needed. In addition, the understanding of cause and effect appears as a new high-

ranking feature in this study, hinting at the possibility that the understanding of how events 

relate to each other might be critical to social behavior.

Due to the general nature of the SRS questions, it is likely that the top questions are not 

specific to ASD-that is, high sensitivity but low specificity. Due to the feature overlap with 

Duda et al.7 when distinguishing ASD from ADHD, many of the features are able to 
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successfully identify behaviors specific to ASD and one of its common co-occurring 

disorders, ADHD. Future work is required to determine the predictive power of these 

questions for other behavioral disorders. The procedures described, while here applied 

towards ASD, could be generalized and applied to other mental health conditions where 

electronic medical record (EMR) information is stored.

Such a large dataset has not been used except by Paskov24 when exploring low dimensional 

representations of SRS and other ASD questionnaires for imputation. The increased size of 

the data permitted an exploration of dense neural networks with ReLU activation, a method 

traditionally suited for large data.

The low ranking of features in the decision tree that appear as high ranking ASD features for 

MI and RFE suggest that there is high feature redundancy among SRS questions. In 

particular, trouble keeping up with conversational flow and trouble relating to peers seem to 

have high feature redundancy, but these behaviors are distinct from being regarded as ‘odd’. 

This hints that certain features that are obfuscated by privacy-preserving mechanisms could 

be replaced by the extraction of other non-obfuscated features. Instead of digitally tracking 

trouble relating to peers, which might require consent or assent from any peer that the child 

in question interacts with when using a digital diagnostic or intervention, the device could 

instead track trouble keeping up with conversational flow, which only requires consent from 

the child in question. Future work is required to explore additional redundancy of features 

according to the SRS in addition to redundancies present in other measures of ASD severity.

The dimension reduction analysis provides initial insight into the linearity of the ASD 

phenotype, as the performance of the classifier across the three methods yielded similar 

performance, indicating that the ASD phenotype can be successfully distinguished with 

linear methods. However, the superior performance of the autoencoder suggests that the 

phenotype is at least slightly nonadditive. We also point out the limitations of using t-SNE: 

in particular, the t-SNE representation was not fit to the testing set, and the t-SNE 

hyperparameters were arbitrarily chosen. As the dataset-provided diagnoses are much more 

noisy, this work provides support for the potential of denoising autoencoders to produce 

low-dimensional representations of noisy high-dimensional data. As denoising autoencoders 

do not require hyperparemter tuning (unlike t-SNE), the method may also be more 

convenient and computationally efficient than t-SNE in some cases, including the use case 

presented in this paper.

5. Future Outlook

Precision medicine therapies for ASD are beginning to track longitudinal behavioral 

phenotype changes for measuring treatment outcomes. The feature reduction conducted here 

sets the stage for future work exploring mechanisms of replacement of the behavioral 

measurements collected in digital monitoring tools based on redundancy of information. 

Beyond single time-point diagnostics, the results of the present study can inform areas of 

focus for future digital phenotyping25 efforts for ASD. At-home digital therapies for 

ASD5,6,26 could benefit from targeted tracking of behavioral features in order to provide 

customized digital therapies to the child. Dual-purpose digital therapies aimed at 
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simultaneous data capture and intervention27–30 could focus the area of target towards 

capturing salient behaviors. Furthermore, crowdsourcing has been shown to be an effective 

technique for acquiring near-clinical grade answers to instrument-derived diagnostic 

questions.31–33 When crowdsourcing the acquisition of answers to questions for video-based 

ASD diagnostics in this way, replacing questions that have related diagnostic power can 

enable shorter and customizeable feature sets.

Because a single dimension was sufficient for compressing ASD data, it is feasible to 

imagine the development of more efficient scoring schemes with data-driven methods. The 

‘map’ of ASD appears to be at least slightly nonadditive, suggesting more work with 

nonlinear models for classification. Furthermore, current rule-based scoring schemes for 

SRS and other ASD instrument data could be replaced by supervised (via feature selection) 

or unsupervised (via dimension reduction) approaches.
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Fig. 1. 
(a and b) Principal Component Analysis (PCA), (c and d) t-Distributed Stochastic Neighbor 

Embedding (t-SNE), and (e and f) a 2-dimensional encoding using a denoising autoencoder 

with a middle layer of size 2 on the answers to the 65 questions of the Social 

Responsiveness Scale (SRS). (b, d, and f) There remains a clear but more noisy separation 

between cases and controls when coloring by dataset-provided diagnosis.
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Table 1.

The SRS questions with the highest feature importances for predicting the SRS-derived ASD diagnosis. 

Because Recursive Feature Elemination (RFE) does not weight the selected features, we display the values of 

N for which the question appears in the top-N for values of N up to 6.

SRS Question
Mutual Information
(MI) Score (Rank)

RFE Features
to Select

Decision
Tree (Rank)

Relating to peers (37) 0.383 (1) 1, 4, 5, 6 0.604 (1)

Trouble keeping up with conversation flow (Q35) 0.355 (2) N/A 0.005 (13)

Regarded by other children as odd (Q29) 0.339 (3) 2, 6 0.002 (47)

Socially awkward, even when trying to be polite (Q33) 0.333 (4) 3 0.006 (11)

Bizarre mannerisms (Q8) 0.332 (5) 3, 4, 5, 6 0.030314 (4)

Trouble understanding cause and effect (Q44) 0.324 (6) 2, 4, 5, 6 0.099 (2)

Difficulty with changes in routine (Q24) 0.292 (9) 3, 4, 5, 6 0.021 (5)

Communication of feelings to others (Q12) 0.134 (47) 5 0.005 (14)

Focuses on details rather than the big picture (Q58) 0.216 (23) 6 0.004 (22)

Either avoids or has unusual eye contact (Q16) 0.287 (20) N/A 0.035 (3)
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Table 2.

The SRS questions with the highest feature importances across selection methods for predicting the dataset-
specific ASD diagnosis. Because Recursive Feature Elemination (RFE) does not weight the selected features, 

we display the values of N for which the question appears in the top-N for values of N up to 6.

SRS Question
Mutual Information
(MI) Score (Rank)

RFE Features
to Select

Decision
Tree (Rank)

Trouble keeping up with conversation flow (Q35) 0.224 (1) 1, 2, 3, 4, 5, 6 0.391 (1)

Relating to peers (Q37) 0.205 (2) 6 0.007 (51)

Regarded by other children as odd (Q29) 0.204 (3) 2, 3, 4, 5, 6 0.057 (2)

Trouble understanding cause and effect (Q44) 0.203 (4) 4, 5, 6 0.010 (16)

Trouble with conversational turn taking (Q13) 0.179 (5) N/A 0.010 (20)

Either avoids or has unusual eye contact (Q16) 0.172 (8) 3, 4, 5, 6 0.024 (3)

Bizarre mannerisms (Q8) 0.178 (6) N/A 0.006 (56)

Is overly suspicious (Q59) 0.002 (65) 5, 6 0.005 (63)

Repetitive behaviors (Q50) 0.126 (19) N/A 0.019 (4)

Repetitive behaviors (Q57) 0.045 (56) N/A 0.012 (5)
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Table 3.

The AUC, precision (prec.), and recall (rec.) of a dense neural network predicting the SRS-derived ASD 
diagnosis trained on the top-ranking features of the 65-item SRS questionnaire using each feature selection 

technique.

Number of
Questions (Features)

Mutual Information
AUC / Prec. / Rec.

RFE
AUC / Prec. / Rec.

Decision Tree
AUC / Prec. / Rec.

1 0.928 / 0.900 / 0.928 0.928 / 0.900 / 0.928 0.928 / 0.900 / 0.928

2 0.961 / 0.947 / 0.906 0.955 / 0.912 / 0.919 0.962 / 0.943 / 0.906

3 0.971 / 0.919 / 0.953 0.975 / 0.932 / 0.938 0.973 / 0.939 / 0.933

4 0.974 / 0.937 / 0.938 0.979 / 0.941 / 0.944 0.980 / 0.944 / 0.943

5 0.980 / 0.941 / 0.941 0.982 / 0.939 / 0.948 0.984 / 0.950 / 0.951

6 0.983 / 0.944 / 0.949 0.985 / 0.949 / 0.951 0.987 / 0.950 / 0.961

Unaltered  0.997 / 0.972 / 0.979  
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Table 4.

The AUC, precision (prec.), and recall (rec.) of a dense neural network predicting the dataset-provided ASD 
diagnosis trained on the top-ranking features of the 65-item SRS questionnaire using each feature selection 

technique.

Number of
Questions (Features)

Mutual Information
AUC / Prec. / Rec.

RFE
AUC / Prec. / Rec.

Decision Tree
AUC / Prec. / Rec.

1 0.836 / 0.750 / 0.774 0.836 / 0.727 / 0.843 0.836 / 0.724 / 0.836

2 0.866 / 0.730 / 0.882 0.870 / 0.734 / 0.907 0.870 / 0.735 / 0.899

3 0.874 / 0.735 / 0.902 0.876 / 0.738 / 0.905 0.876 / 0.736 / 0.909

4 0.879 / 0.739 / 0.912 0.881 / 0.740 / 0.917 0.880 / 0.741 / 0.907

5 0.880 / 0.739 / 0.916 0.880 / 0.740 / 0.911 0.882 / 0.737 / 0.920

6 0.881 / 0.736 / 0.924 0.884 / 0.742 / 0.923 0.886 / 0.745 / 0.914

Unaltered 0.900 / 0.754 / 0.921
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Table 5.

The AUC, precision (prec.), and recall (rec.) of a dense neural network predicting the SRS-derived ASD 
diagnosis and trained on lower dimensional representations of the 65-item SRS questionnaire via PCA, t-SNE, 

and the middle encoded layer of a denoising autoencoder.

Dimension PCA
AUC / Prec. / Rec.

t-SNE
AUC / Prec. / Rec.

Autoencoder
AUC / Prec. / Rec.

1 0.9975 / 0.9778 / 0.9719 0.9871 / 0.9702 / 0.9356 0.9975 / 0.9828 / 0.9740

2 0.9975 / 0.9769 / 0.9759 0.9934 / 0.9766 / 0.9514 0.9974 / 0.9503 / 0.9950

3 0.9979 / 0.9739 / 0.9739 0.9920 / 0.9734 / 0.9415 0.9975 / 0.9818 / 0.9730

Unaltered 0.9979 / 0.9799 / 0.9884

Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Washington et al. Page 17

Table 6.

The AUC, precision (prec.), and recall (rec.) of a dense neural network predicting the dataset-provided ASD 
diagnosis and trained on lower dimensional representations of the 65-item SRS questionnaire via PCA, t-SNE, 

and the middle encoded layer of a denoising autoencoder.

Dimension PCA
AUC / Prec. / Rec.

t-SNE
AUC / Prec. / Rec.

Autoencoder
AUC / Prec. / Rec.

1 0.8717 / 0.7272 / 0.9097 0.8448 / 0.7246 / 0.9356 0.9017 / 0.7304 / 0.9373

2 0.8727 / 0.7206 / 0.9110 0.8821 / 0.7650 / 0.9157 0.9016 / 0.7193 / 0.9564

3 0.8813 / 0.7306 / 0.9150 0.8788 / 0.7542 / 0.8934 0.9021 / 0.7304 / 0.9373

Unaltered 0.9034 / 0.7673 / 0.9161
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