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Abstract

X-linked inhibitor of apoptosis protein (XIAP) is constitutively expressed endogenous inhibitor of apoptosis, exhibit its
antiapoptotic effect by inactivating key caspases such as caspase-3, caspase-7 and caspase-9 and also play pivotal role in
rendering cancer chemoresistance. Our studies showed the coadministration of TQ and TAM resulting in a substantial
increase in breast cancer cell apoptosis and marked inhibition of cell growth both in vitro and in vivo. Anti-angiogenic and
anti-invasive potential of TQ and TAM was assessed through in vitro studies. This novel combinatorial regimen leads to
regulation of multiple cell signaling targets including inactivation of Akt and XIAP degradation. At molecular level, TQ and
TAM synergistically lowers XIAP expression resulting in binding and activation of caspase-9 in apoptotic cascade, and
interfere with cell survival through PI3-K/Akt pathway by inhibiting Akt phosphorylation. Cleaved caspase-9 further
processes other intracellular death substrates such as PARP thereby shifting the balance from survival to apoptosis,
indicated by rise in the sub-G1 cell population. This combination also downregulates the expression of Akt-regulated
downstream effectors such as Bcl-xL, Bcl-2 and induce expression of Bax, AIF, cytochrome C and p-27. Consistent with these
results, overexpression studies further confirmed the involvement of XIAP and its regulatory action on Akt phosphorylation
along with procaspase-9 and PARP cleavage in TQ-TAM coadministrated induced apoptosis. The ability of TQ and TAM in
inhibiting XIAP was confirmed through siRNA-XIAP cotransfection studies. This novel modality may be a promising tool in
breast cancer treatment.
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Introduction

Tamoxifen (TAM), a nonsteroidal triphenylethylene derivate

and selective ER modulator, has been used as a single agent in the

treatment of ER-a-positive breast cancer. Clinical response to

TAM is associated with both decreased proliferation and increased

apoptosis [1,2]. Studies have revealed that TAM is also effective in

treatment of ER-a-negative neoplasia including breast cancer,

malignant gliomas, pancreatic carcinomas and melanoma [3,4].

The apoptotic inducible effect of TAM is not reversible by

addition of estrogens, suggesting that ER-a-independent induction
of apoptosis could be a central mechanism of action in ER-a-
negative breast cancer [5,6,7]. In addition, TAM has been shown

to cause tumor necrosis and regression via inhibition of

angiogenesis in MCF-7 breast tumor xenografts [8].

Extended administration of TAM evokes serious side effects and

frequently results in gradual insensitivity to this treatment. Many

growth factors, such as epidermal growth factor, insulin-like

growth factor and heregulin, confer TAM-insensitivity in ER-a-
positive breast cancer cells [9,10,11]. Although, the mechanisms

by which resistance/insensitivity occur remain unclear. Resistance

to TAM is partly mediated through the serine/threonine protein

kinase B or Akt (PKB/Akt) in promoting estrogen-independent

cell proliferation. The PI3K/Akt pathway plays a crucial role in

breast cancer pathogenesis, the up-regulation of which is

associated with a more aggressive clinical phenotype and worse

clinical outcome for endocrine-treated patients [12,13]. Previous

studies also reported, the dysregulation of anti-apoptotic inhibitor

of apoptosis (IAPs) proteins or Bcl-2 proteins, might also

contribute to insensitivity to chemotherapy in patients, which are

therefore considered as novel therapeutic targets in various
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cancers. However, we are the first to establish whether antagonists

of endogenous anti-apoptotic proteins, such as XIAP, can improve

the efficacy of TAM targeted therapies and the possible role in Akt

regulation, in breast cancer.

Targeting multiple signaling molecules is essential to induce

enhanced apoptosis rather than single molecular target in cancer

therapy. Therefore in this study, we employed combination

therapy to aim multiple molecular targets in inducing apoptosis,

besides reducing the therapeutic dose of TAM [14]. Moreover,

combination therapy and the use of naturally occurring innocuous

dietary agents achieve greater efficacy in inhibiting tumor cell

growth/proliferation and angiogenesis, while at the same time

potentially preventing the development of TAM-insensitivity

appears to be a viable therapeutic approach [15,16]. In this view,

a dietary phytochemical thymoquinone (TQ) the main active

ingredient of the volatile oil of black seed (Nigella sativa), employed

to overcome TAM evinced serious side effects and assist in

inhibiting insensitivity on prolong TAM administration. TQ has

been shown to be safe when administered to a wide variety of

normal cells including normal mouse kidney cells [17], non-

malignant fibroblasts and normal human lung fibroblasts

[18,19,20,21,22]. Previous studies have shown that TQ exhibits

inhibitory effects on cell proliferation of many cancer cell types

including breast cancer cells [17,23]. TQ induces cell death,

retards human umbilical vein endothelial cell migration and

inhibits tumor growth by suppressing NF-kB, Akt activation, and
extracellular signal-regulated kinase signaling pathways, as well as

angiogenesis [24,25,26,27].

The objective of the current study was to evaluate the potency

of TQ in combination with TAM in inhibiting tumor cell growth/

proliferation, angiogenesis and to reveal underlying molecular

mechanisms involved in apoptosis, while at the same time

potentially preventing the development of TAM-insensitivity.

TQ treatment synergizes with a low dose of TAM to induce

cancer cell death. The synergistic combination exhibited its

inhibitory effect through XIAP mediated Akt downregulation.

Materials and Methods

Cell Lines
Human breast cancer cell lines MCF-7, MDA-MB-231, MDA-

MB-468, T-47D, NIH/3T3 and HaCaT were obtained from the

National Center for Cell Science (NCCS), Pune, India and

cultured. Normal early passage primary human mammary

epithelial cells (HMEC) were obtained from Lonza Clonetics,

San Diego and cultured. Cells were incubated at 37uC in a 5%

CO2 and 95% humidified incubator. Mycoplasma status of all cell

lines has been detected through DAPI staining procedures (Data

shown for MCF-7 and MDA-MB-231 cells).

Reagents
Stock solutions of 10 mM TQ and 10 mM TAM (Sigma

Aldrich St. Louis, MO, USA), were dissolved in DMSO (Sigma

Aldrich St. Louis, MO, USA), stored at 220uC, and diluted in

fresh medium just before use. For Western blot analysis, the

following antibodies were used: rabbit monoclonal anti-PARP,

anti-XIAP, anti-AIF, anti-p-MAPK (Thr202/Tyr204), anti-

MAPK, anti-p-Akt (Ser473) and anti-Akt, anti-p-GSK-3b (Ser9),

anti-GSK-3b, anti-p-Bad (Ser136), anti-Bad and monoclonal

mouse anti-CD-31(Cell Signaling Technology, Beverly, MA,

USA) and mouse anti-Ki-67 (Santa Cruz Biotechnology, Santa

Cruz, CA, USA), mouse monoclonal anti-caspase-9 (BD Pharmin-

gen, San Jose, CA, USA), mouse monoclonal anti-b-actin (Sigma

Aldrich, St. Louis, MO, USA), mouse monoclonal anti-Bcl-2, anti-

Bax, anti-p53, anti-Bcl-xl, horseradish peroxidase-conjugated goat

anti-rabbit IgG and goat anti-mouse IgG (Santa Cruz Bio-

technology, Santa Cruz, CA, USA). Antibodies dilutions have

been made as per the manufacturer’s instruction for primary and

secondary antibodies were 1:1000 and 1:2000, respectively. The

pcDNA3-XIAP-Myc plasmid (Addgene plasmid 11833) was kindly

provided by Dr. Guy Salvesen (University of California, San

Diego, CA, USA) pcDNA3.1(-) was purchased from Invitrogen

and siRNA XIAP was purchased from Cell Signaling Technology,

Beverly, MA, USA. FuGENEH HD Transfection Reagent (Roche

Applied Science, Mannheim, Germany), Opti-MEMH I Reduced

Serum Media, Fetal bovine serum (FBS) (Gibco-BRL, Invitrogen

Corporation, CA, USA), Bovine serum albumin (BSA), Trypsin

(Himedia, Mumbai, INDIA) Chemiluminescent peroxidase sub-

strate, Propidium iodide (PI), 49, 6-diamidino-2-phenylindole

(DAPI) and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium

bromide (MTT) (Sigma-Aldrich, St. Louis, MO, USA) were

purchased from the corresponding company. Stock solutions of PI,

DAPI and MTT were prepared by dissolving 1 mg of each

compound in 1 ml PBS. The solution was protected from light,

stored at 4uC, and used within 1 month. Stock concentrations of

10 mg/ml RNase A (Sigma-Aldrich, St. Louis, MO, USA) were

prepared and kept at 220uC.

Evaluation of TQ and/or TAM Cytotoxicity
Cells were harvested in the logarithmic phase of growth; cell

suspensions were dispensed (200 ml) into 96-well tissue culture

plates at an optimized concentration of 16104 cells/well in

complete medium. After 24 h, cells were treated in quadruplicate

with TQ (0.01–60 mM) and/or TAM (0.01–40 mM), or with

DMSO (0.01%) control treatment, and incubated for 48 h. Cell

viability was measured by MTT dye reduction assay at 540 nm

[28] with slight modifications in protocol. The dose-effect curves

were analyzed using Prism software (GraphPad Prism, CA, USA).

Flow Cytometric Analysis
To study the combination effect of TQ and TAM, MCF-7 and

MDA-MB-231 Cells were treated with respective IC50 values for

48 h after seeding in 60-mm tissue culture plates. After treatment,

cells were collected, washed and incubated in 70% ethanol, kept at

220uC overnight for fixation. Cells were centrifuged, washed and

then incubated with PI solution (40 mg/ml PI, 100 mg/ml RNase

A in PBS) at 37uC for 1 h. The distribution of cells in the different

cell-cycle phases was analyzed from the DNA histogram using

Becton-Dickinson FACS Calibur and Cell Quest software, CA,

USA.

The procedure of Annexin V-FITC with propidium iodide (PI)

staining was carried out according to the manufacturer’s protocol

(Sigma-Aldrich, St. Louis, MO, USA). After TQ and/or TAM

treatment for 24 h, cells were trypsinized, washed with binding

buffer, and resuspended in Annexin V-FITC and PI added to the

binding buffer for 15 min under dark conditions [29,30]. The cell

samples were analyzed immediately by flow cytometry.

Western Blotting Analysis
MCF-7 and MDA-MB-231 cells were treated with TQ and/or

TAM at their respective IC50 dose for 24 h. For phosphoprotein

studies, experimental wells were treated with TQ and/or TAM at

respective IC50 concentrations, whereas the control wells were

treated with 0.01% DMSO for 1 h. Then, cells were activated

with recombinant human EGF (25 ng/ml) for 30 min. The cells

were then scraped and lysed in Nonidet P-40 lysis buffer. Cell

extracts (50 mg protein) were separated on sodium dodecyl sulfate-

polyacrylamide electrophoretic gel (SDS-PAGE) and transferred
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to nitrocellulose membranes, which were blocked in 3% BSA for

2 h. After blocking, the membranes were incubated with primary

antibodies overnight at 4uC and then with horseradish peroxi-

dase–conjugated secondary antibody for 2 h at room temperature.

Proteins were visualized using the chemiluminescence substrate

and exposed to Kodak X-OMAT AR autoradiography film

(Eastman Kodak, Rochester, NY, USA). Cytosolic protein extracts

were isolated based on previous reported method [31].

Transfection Studies
Breast cancer cells were plated in 70-mm petri dishes at a density

over 46105 per plate in DMEM media supplemented with 10%

FBS. After growth for 16 to 20 h, cells were starved for 6 h with

2% FBS. 70–80% confluent cells were transiently transfected with

5 mg of pcDNA3-XIAP-Myc with 7.5 ml of FuGENEH HD

Transfection Reagent in 100 ml of Opti-MEMH I Reduced Serum

Media (Gibco-BRL, Invitrogen Corporation, CA, USA) according

to manufacturer’s protocol (Roche Diagnostics GmbH, Man-

nheim, Germany). After 24 h transfection, the mix was replaced

with complete media containing no compound or TQ and/or

TAM for 24 h. The cells were then scraped and pelleted, and the

protein expression profiles were determined by western blotting

following similar protocol as mentioned above. Densitometric

analysis of blots was performed by ImageMaster 2D Platinum 7.0

Software (GE Healthcare Life Sciences, NJ, USA).

In cotransfection studies, using FuGENEH HD Transfection

Reagent, MCF-7 and MDA-MB-231 cells were transfected/co-

transfected with 2 ml of 300 nM siRNA-XIAP and 5 mg of

pcDNA3-XIAP-Myc. The transfective reactives for each trans-

fection were prepared using 2 ml of 300 nM siRNA-XIAP, 5 mg of
pcDNA3-XIAP-Myc and 7.5 ml of FuGENEH HD Transfection

Reagent in 100 ml of Opti-MEMH I Reduced Serum Media and

the tubes were left at room temperature for 45 min. After

incubation, transfection procedures were carried out according to

manufacturer’s protocol (Roche Diagnostics GmbH, Mannheim,

Germany).

In vivo Xenograft Studies
Tumor response to TQ and/or TAM was studied using

a human breast cancer nude mouse xenograft model. Our study

was approved by the Department of Biotechnology (DBT), INDIA

under the project number: E-1/MMSMST/12, at Indian Institute

of Technology Kharagpur, INDIA and the mice were maintained

in accordance with the institute animal ethical committee (IAEC)

guidelines approved by Indian Council of Medical Research

(ICMR), New Delhi. Mice were housed and acclimatized in

pathogen free environment at institute animal facility for 1 week

prior to injection with MDA-MB-231 cells. Exponentially growing

MDA-MB-231 cells were harvested and a tumorigenic dose of

2.56106 cells in Matrigel (0.5 mg/ml) were injected subcutane-

ously (s.c.) in 6–7 week-old female athymic BALB/c (nu+/nu+)
mice [32,33]. Tumors were allowed to grow for 7 d; all of the mice

were then weighed, and all of the tumors were measured using

microcalipers. Tumor volume was calculated using the formula (A)

(B2) p/6, where A was the length of the longest aspect of the

tumor, and B was the length of the tumor perpendicular to A. All

mice were randomized into four groups, containing 5 mice per

group. Group one, the control group received 1% poysorbate

resuspended in deionized water, the second group was treated with

TQ (20 mg/kg body weight) in alternative days s.c. for 3 weeks,

group three received TAM 5 mg/kg/d orally 2 times a week for 3

weeks and group four was treated together with TQ 20 mg/kg

(s.c.) in alternative days and TAM 5 mg/kg/d orally 2 times a week

for 3 weeks. The doses were selected based on previous

experiments. Tumors were measured at the end of every week.

After 4 weeks of treatment, mice were euthanized, and the tumors

were measured again. During the experiment, mice were

examined twice weekly for weight loss.

Immunohistochemical Analysis (IHC)
Immunohistochemistry was performed with the following

antibodies: rabbit anti-XIAP, anti-p-Akt (Ser473) and anti-Akt,

anti-p-GSK-3b (Ser9), anti-GSK-3b, anti-p-Bad (Ser136), anti-

Bad and monoclonal mouse anti-CD31 (Cell Signaling Technol-

ogy, Beverly, MA, USA) and mouse anti-Ki-67. IHC studies were

performed as described previously with slight modifications [32].

Images were captured at magnification 106 and digitized using

FLUOVIEW 1000 (Version 1.2.4.0) imaging software (TYO,

Japan).

Statistical Analysis
All the statistical analysis was performed by Graphpad Prism 5

software. Data are presented using mean 6 S.D. The statistical

significance was determined by using one-way analysis of variance

(ANOVA). ***P,0.001 and **P,0.05 were considered signifi-

cant.

Results

TQ Aggrandize TAM’s Ability in Disrupting Cell Viability
of Breast Cancer Cells
To determine the effect of TQ and TAM alone and in

combination on the cell viability of breast cancer cells in vitro, ER-

a-positive MCF-7 and T-47D cells and ER-a-negative MDA-MB-

231 and MDA-MB-468 cells were initially treated with increasing

concentrations of either TQ (0.01 mM–60 mM) or TAM

(0.01 mM–40 mM) (Fig. 1A and 1B). Combination treatments

were carried out by varying TAM (0.01 mM–20 mM) in the

presence of 5 mM TQ. TQ treatment on ER-a-positive MCF-7

and T-47D cells resulted in an IC50 of 19.7860.04 mM and

18.0660.71 mM, respectively, whereas ER-a-negative MDA-MB-

231 and MDA-MB-468 cells had an IC50 of 15.5560.68 mM and

12.3060.62 mM, respectively. TAM treatment of ER-a-positive
MCF-7 and T-47D cells produced an IC50 of 9.0660.29 mM and

8.9960.55 mM, respectively, whereas ER-a-negative MDA-MB-

231 and MDA-MB-468 cells had an IC50 of 13.0560.91 mM and

11.5660.65 mM, respectively. Combined TQ (5 mM) treatment

with varying concentrations of TAM resulted in a leftward shift of

the concentration-response curve (Fig. 1C). The IC50 values of the

four cell lines MCF-7, T-47D, MDA-MB-231 and MDA-MB-468

were 5.0960.35 mM, 3.5160.26 mM, 2.9460.47 mM and

2.8060.29 mM, respectively, indicating enhanced cytotoxicity.

TQ (0.01–25 mM) and TAM (0.01–15 mM) and in combination

TQ (5 mM)+TAM (0.01–7.5 mM) showed negligible/less toxicity

in NIH/3T3, HaCaT and HMEC normal cell lines.

TQ Enhances TAM Induced Apoptosis and Growth
Inhibition
The effects of TQ and/or TAM on MCF-7 and MDA-MB-231

cell cycle were analyzed (Fig. 1D). TQ or TAM treated MCF-7

(IC50 of TQ 20 mM and TAM 9 mM) and MDA-MB-231 (IC50 of

TQ 16 mM and TAM 13 mM) cells had an increased percentage

of apoptotic cells (sub-G1 phase) compared to untreated controls

(0.2761.6%). Interestingly, a low dose combination of TQ and

TAM (TQ 5 mM+TAM 5 mM for MCF-7 and TQ 5 mM and

TAM 3 mM for MDA-MB-231) had a significantly higher

percentage of apoptotic cells than higher doses of either drug
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alone. Cell apoptosis studies were further assessed through

morphological and nuclear changes (Live/dead assay, Trypan

blue and DAPI staining) (methods, results and figures are provided

in Data S1, Fig. S1).

TQ plus TAM Inhibit in vivo Angiogenesis and in vitro
Tube-like Capillary Formation
The CAM model was used to investigate the effect of TQ and/

or TAM on angiogenesis in vivo [34] (Materials and method

section was included in Data S1) [35,36]. As shown in Fig. 2A and

2D, the chorioallantoic membranes in the serum-free medium

(SFM) alone as control group do not show any observable

avascular zone around the implanted filter paper. However, TQ

and/or TAM inhibited the development of new embryonic

capillaries and produced an avascular zone around the implanted

filter papers. The inhibition of angiogenesis was more prominent

following TQ-TAM combination treatment than either drug

alone. However, no apparent toxicity was observed in the embryos

used in this experiment. Next, we performed tube formation assays

in HUVEC cells, which are widely used as in vitro assays for

angiogenesis. After 24 h, HUVECs treated with serum-free

medium rapidly aligned and formed hollow, tube-like structures

(Fig. 2B and 2E). In contrast, HUVECs treated with TQ and

TAM in combination showed a significant reduction of tube

formation in comparison to TQ or TAM alone. Collectively, these

results suggest that TQ enhances the anti-angiogenic action of

TAM by inhibiting HUVEC differentiation into tube-like

structures during angiogenesis.

TQ Augments TAM’s Efficacy in Inhibiting in vitro Cell
Migration and Invasion
To determine the effect of TQ and/or TAM on migration,

in vitro wound (scratch) assays were performed in both MCF-7 and

MDA-MB-231 cells (methods, results and figures are provided in

Data S1, Fig. S2). To examine the effect of TQ and/or TAM on

the invasive ability of MDA-MB-231 cells, Boyden chambers

coated with Matrigel were used (Materials and methods section

was included in Data S1) [37,38]. MDA-MB-231 cells treated with

TQ and/or TAM for 24 h were plated in the upper chamber, and

the number of cells that moved to the underside of the coated

Figure 1. Dose-dependent growth inhibition of breast cancer cells by thymoquinone (TQ) and/or tamoxifen (TAM). Cell viability
assays of MCF-7, MDA-MB-231, T-47D, and MDA-MB-468, NIH/3T3, HaCaT and HMEC cells treated with: (A) TQ, (B) TAM and (C) TQ-TAM (varying
concentrations of TAM along with 5 mM TQ for 48 h). Points represent mean 6 S.E. (n = 4), p,0.05. (D) Representative histogram plot of MCF-7 and
MDA-MB-231 breast cancer cells showing distribution in the different phases of the cell cycle after 48 h treatment, determined by ow cytometry after
staining cells with PI. Each individual experiment has been repeated three times.
doi:10.1371/journal.pone.0061342.g001
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membrane was counted 12 h later using a light microscope. The

chambers were stained with hematoxylin- and eosin (H&E)

staining and analyzed by photography. These experiments

demonstrated that the number of cells that invaded the lower

chamber was significantly decreased after 24 h following combi-

nation treatment in comparison to either drug alone (Fig. 2C and

2F).

Synergistic Action of TQ and TAM Alters Expression
Profiles of Cell Cycle Regulatory and Apoptotic Proteins
Western blotting confirmed the antiproliferative and apoptotic

role of TQ in modulating TAM’s ability to decrease cell viability.

There was a decrease in the levels of anti-apoptotic Bcl-2 and Bcl-

xL expression, and an increase in the levels of pro-apoptotic Bax,

p27, cytosolic AIF and cytochrome C proteins following combi-

nation treatment (Fig. 3A). Release of cytochrome C from

mitochondria leads to Caspase-9 activation (cysteine-aspartate

proteases) and the downstream caspase cascade by cleaving at

specific sites and hetero-dimerizing to produce the active caspases

that play a central role in the execution-phase of cell apoptosis

(Fig. 3A). Apoptotic cell death induced by activation of caspase-9 is

also regulated by intracellular XIAP protein levels, which were

reduced to a greater extent following TQ-TAM combination

treatment than with either drug alone. The activated caspase-9

(37-Kd) processes other caspases, including various death sub-

strates such as poly (ADP-ribose) polymerase (PARP) and other

Figure 2. Anti-angiogenic and anti-neovascularization potential of TQ and/or TAM monitored in angiogenic models. (A)
Chorioallantoic membrane (CAM) assays. CAMs were implanted with sponges loaded with: serum-free medium (SFM) alone as control; SFM
supplemented with vascular endothelial growth factor (VEGF) alone; and with TQ and/or TAM. Combination treatment inhibited the VEGF-induced
angiogenic response. (B) Inhibition of capillary tube formation in vitro (HUVECs assay). HUVECs were seeded (7.56103 cells/well) into a 96-well tissue
culture plate coated with 50 ml Matrigel. Then, TQ and/or TAM were added. Cells were incubated in HUVEC growth medium in a 37uC, 5% CO2

incubator. Tube formation was observed for 24 h and images were taken (magnification of 106). (C) Representative photomicrographs of Boyden
chamber assays of cell invasion through Matrigel. (D) Data are presented as means 6 S.D. of number of blood vessel formation in the CAM assay.
P,0.05. (E) Number of capillary-like structures was measured in HUVEC capillary formation assay by light microscopy after 24 h in four independent
experiments. (F) Data represent the average percentage of cells (6 S.D.) invading the Boyden chamber inserts. Data are presented as means 6 S.D.
P,0.05. Each individual experiment has been repeated three times.
doi:10.1371/journal.pone.0061342.g002
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molecules, at conserved aspartic acid residues. Cleavage of PARP

was observed in MCF-7 and MDA-MB-231 cells treated with

either TQ or TAM as compared to control. The cleavage was

more profound following combination treatment as there was

increased expression of the 85-Kd fragment (cleaved PARP) with

almost absence of the 116-Kd fragment (uncleaved PARP)

(Fig. 3A).

TQ-TAM Interfere with Akt Signaling through p-Bad and
p-GSK-3b Down Regulation
Because the PI3K/Akt signaling pathway is involved in cell

survival signaling and insensitivity in human breast cancer, [39]

we determined the potential attenuation of this pathway by TQ-

TAM treatment. Western blotting analysis (Fig. 3B and 3C)

confirmed a specific reduction in the p-Akt protein in MCF-7 and

MDA-MB-231 cells treated with TQ-TAM, as compared with

that of untreated controls as well as cells undergoing individual

drug treatment. The total Akt level, however remained unaffected

by all treatment conditions. The expression levels of Akt

downstream substrates including Bad and GSK-3b were assessed

(Fig. 3B and 3C). The combination treatment also decreased p-

Bad, p-MAPK and p-GSK-3b without affecting their non-

phosphorylated forms. Taken together, these data suggest that

regulation of the Akt pathway is intimately associated with TQ-

TAM-induced growth inhibition and apoptosis.

XIAP Overexpression Induce Akt Phosphorylation and
Effects its Downstream Targets
To confirm the involvement of XIAP in TQ- and/or TAM-

mediated apoptotic cell death, we overexpressed XIAP in MCF-7

and MDA-MB-231 cells lines by transfection with pcDNA3-

XIAP-Myc (Fig. 4A, 4B and 4C). XIAP is a member of the

inhibitor of apoptosis protein family that potentially inhibits

apoptotic cell death by specifically targeting caspase-9 [40]. As

shown in annexin studies (Fig. 4C), vector control cells underwent

apoptosis (,37% and ,40% in MCF-7 and MDA-MB-231 cells,

respectively) when treated in combination with TQ and TAM for

24 h. By comparison, cells overexpressing XIAP underwent

,25% and ,26% apoptosis in MCF-7 and MDA-MB-231 cells,

respectively. Western blot analysis of coadministered TQ-TAM

revealed enhanced inhibition of p-Akt levels in XIAP over-

expressed cells while that of control. In the downstream targets of

p-Akt we observed extensive cleavage of caspase-9 and PARP in

comparison to pcDNA 3.1-transfected cells (Fig. 4A), which

decreased modestly in XIAP overexpressed cells confirming the

involvement of XIAP in TQ- and TAM-mediated cell death.

Distinguishingly, our finding revealed two and three fold decrease

of XIAP protein profile in MCF-7 and MDA-MB-231 cells,

respectively in dual drug treated XIAP overexpressed cells in

comparison to control.

Cotransfection Studies Revealed the Efficacy of
Synergistic Combination in Inhibiting XIAP Expression in
Breast Cancer Cells
Indeed, we checked the potency of our combination in

inhibiting XIAP in both MCF-7 and MDA-MB-231 cells with

respect to siRNA-XIAP as positive control. In normal cells, the

extent of XIAP inhibition by coadministration of TQ-TAM

showed analogous inhibition profiles as that of control siRNA-

XIAP. The fold decrease of protein expression was around 2.5 and

2 in siRNA-XIAP and dual drug treated, respectively in both the

cell lines corresponding to control. pcDNA3-XIAP-Myc trans-

fected cells showed elevated levels of XIAP expression in

comparison with normal cells (Fig. 4D and 4E). Besides its

overexpression, synergistic combination showed analogous in-

hibition of XIAP to that of siRNA-XIAP and pcDNA3-XIAP-Myc

cotransfected cells with respect to pcDNA3.1 transfected control.

Synonymously, overexpressed cells displayed 1.7 and 1.5 fold

decrease of XIAP expression in siRNA-XIAP and dual drug

treated, respectively in both MCF-7 and MDA-MB-231 cells. The

percent apoptosis in cotransfected cells was demonstrated through

annexin PI studies (Fig. 4F). Collectively, from the above results

synergistic combination inhibited XIAP despite of its overexpres-

sion, concluding its potency and precise targeting of XIAP for

apoptosis in breast cancer.

Effective Role of TQ and TAM in Reducing Tumor in MDA-
MB-231 Mice Xenografts Models
We further tested the combination effects of TQ plus TAM on

in vivo tumor growth, using MDA-MB-231 breast cancer cells in

a nude mouse xenograft model (Fig. 5A). There was a significant

reduction in tumor size and tumor mass (p = 0.0002, n= 5,

unpaired t-test) (Fig. 5B and 5C) after combination drug treatment

compared to either drug alone. In the mouse xenograft model,

either TQ or TAM given alone inhibited the growth of MDA-MB-

231 cells in nude mice 985.135636.123 mm3 in TQ-treated and

629.689627.646 mm3 in TAM-treated, versus

1551.249656.931 mm3 in control animals after 4 weeks of tumor

cells implantation (Fig. 5A and 5C). We also observed more

profound antitumor effect following TQ-TAM combination

treatment than with either agent given alone

(187.561652.480 mm3, P,0.0035, ANOVA test). There was no

weight difference between the animal groups, and we observed no

toxicity. Immunohistochemical studies showed a decrease in Ki-67

positivity and an increase in DNA fragmentation, as shown by

antibody staining and TUNEL assays, respectively (Fig. 5D), in

TQ-TAM-treated compared to control mice bearing tumors,

thereby confirming a role of this combination in exerting

antiproliferative and apoptotic-promoting effects. Additionally,

there was a decrease in CD-31 staining in MDA-MB-231

xenografts after combination treatment (Fig. 5D), suggesting an

inhibitory effect on angiogenesis.

TQ and/or TAM Block Akt-mediated Signaling in Breast
Carcinoma Cells Growing Subcutaneously in Nude Mice
Immunohistochemical studies revealed the reduced levels of

XIAP expression in combination treatment group while the

expression level of total Akt, GSK-3b and Bad did not vary

significantly among tumors from all the four groups (Fig. 6). In

contrast, Akt phosphorylation was markedly reduced in tumors

treated with TQ-TAM than with either drug alone. When

antibodies specific to serine phosphorylated (activated) Akt was

used, receptor showed high levels of phosphorylation in the

absence of treatment. Levels of Akt phosphorylation were

markedly reduced in tumors treated with TQ and/or TAM in

comparison with controls. The status of a major downstream

target of the Akt pathway, GSK-3b, was also assessed by

immunohistochemical analysis. There were only negligible or no

changes in the levels of expression of total Akt, GSK-3b and Bad

proteins in the treatment vs. control groups. However, the

phosphorylation status of GSK-3b and Bad proteins, although

high in the control, was distinctly downregulated in the mice

treated with TQ and TAM (Fig. 6). Expression studies of Ki-67,

CD-31 and TUNEL confirmed the anti-proliferative, anti-

angiogenic and anti-apoptotic effects of TQ and TAM (Fig. 5D).
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Figure 3. Phosphoprotein and total protein expression profiles of MCF-7 and MDA-MB-231 breast cancer cells treated with TQ and/
or TAM. (A) Pro- and anti-apoptotic protein expression profiles by western blotting assays. (B) Autophosphorylation of p-MAPK (Thr42/22), p-Akt
(Ser473), p-Bad (Ser136) and p-Gsk-3-b (Ser9) was evaluated along with the total protein expression in vitro in cells grown in serum-free medium and
cells stimulated with recombinant human EGF (25 ng/ml) for 30 min alone and in the presence of drug(s). b-actin protein expression was used as an
internal probe for equal protein loading. (C) Densitometric analysis of phospho protein levels in western blot where each bar represents three
independent experiments; P,0.05 (t-test).
doi:10.1371/journal.pone.0061342.g003
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These results correlate directly with the findings described for the

in vitro experiments.

Discussion

TAM has been extensively used for decades to treat a wide-

range of cancers [3]. Despite of its success in breast cancer therapy

it also renders undesirable side effects which contributes to poor

clinical quality life of patients, thus made in search for benign

alternatives [13]. The dose-escalation necessary to overcome even

a small increase in cellular resistance can cause severe dose-

limiting cytotoxicity to normal tissue. Consequently, strategies

using dual agents that act through distinct molecular mechanisms,

rather than using single agents, represent a potentially viable

alternative for achieving higher cure rates with less toxicity

following cancer chemotherapy. Recently, there has been an

increasing interest in evaluating synergistic cancer cell cytotoxicity

by combining chemotherapeutic agents with highly promising and

relatively innocuous dietary phytochemicals [41,42]. In this

regard, we had chosen TQ as an adjuvant to TAM mediated

therapy in breast cancer.

XIAP is an eye catching member of the IAP family, indulged in

malignant effects of tumor cells especially cell invasion, pro-

liferation, angiogenesis and chemoresistance. However, elevated

XIAP expression has been found to be tightly associated with

malignancy property, the underlying molecular mechanisms

giving rise to XIAP accumulation in different malignant cancer

are still unclear. The ability of XIAP to inhibit caspases is thought

to contribute chemoresistance in breast cancer and also act as

adverse prognostic factor. Targeting XIAP through chemothera-

peutic drugs modulates its expression and induce apoptotic

threshold with the considerable growth reduction in tumor both

in vitro and in vivo. Constitutive expression of XIAP results in

binding and inhibition of terminal effectors in apoptotic cascade,

and regulates cell survival through PI3-K/Akt pathway thereby

inducing activation of Akt by phosphorylation at ser473 in the C-

terminal activation domain [43]. Reciprocally, phosphorylation of

XIAP by Akt has been shown to protect XIAP from ubiquitination

and degradation in cancer cells [44]. Recent studies suggested that

there is an intricate, coordinated regulatory system at play

between XIAP and the Akt signaling pathway through feedback

mechanism. The high levels of p-Akt induce activation of survival

and anti-apoptotic proteins, thus reflect in cell proliferation and

growth. The knocking down of XIAP is associated with activation

of caspase-9 through Akt signal transduction in breast cancer cells

[45]. Consequently, activated caspase-9 elevates intracellular

PARP cleavage and also increase Bax/Bcl-2 ratio thus encourag-

ing mitochondrial release of cytochrome C, resulting in apoptosis.

Utilizing the information that there is a strong interaction

between XIAP and Akt in cancer, we were able to induce

a synergistically potent apoptotic response after coadministration

of TQ and TAM on MCF-7 and MDA-MB-231 cells. Our

western blot results confirmed the antiproliferative and apoptotic

role of TQ in modulating TAM’s ability to decrease cell viability.

TQ and TAM in combination induced apoptosis by increasing

pro-apoptotic Bax, AIF, cytochrome C and p27, and inhibiting

anti-apoptotic Bcl-2 and Bcl-xl (Fig. 3A), thus shifting the balance

from survival to apoptosis. TQ-TAM downregulates anti-apopto-

tic XIAP, resulting decrease in p-Akt levels thereby inducing

procaspase-9 cleavage. Cleaved procaspase-9 activates mitochon-

drial release of cytochrome C by inhibiting bax/Bcl-2 ratio.

Caspase-9 further induces cleavage of other procaspases as a result

elevates intracellular PARP cleavage, which was further confirmed

through transfection studies.

PI3K/Akt signal transduction plays a critical role in the control

of cell growth and proliferation [46]. The increased Akt activation

or dysregulation due to elevated Akt expression and indirect

changes in Akt regulators results in enhanced cell survival

signaling, which is a common feature in various forms of human

cancers, including human breast carcinomas [47]. PI3K-activated

(phosphorylated) Akt promotes cell survival by inhibiting apoptosis

through its ability to phosphorylate/inactivate downstream targets

of the apoptotic machinery, such as the pro-apoptotic Bcl-2 family

member Bad and GSK-3b. These substrates directly or indirectly

regulate apoptosis. GSK-3b, for example, is phosphorylated by

Akt, and GSK-3b itself is involved in the regulation of cell

proliferation, anti-apoptotic pathways, and cell cycle progression

[48,49]. Bad, a pro-apoptotic Bcl-2 family member is an Akt target

directly implicated in regulating cell survival [47,50]. Phosphor-

ylation of Bad changes its affinity to Bcl-2 molecules and p-Bad is

unable to inhibit Bcl-2 function [51]. We also observed down-

regulation of p-GSK-3b, and p-Bad by TQ-TAM treatment

(Fig. 3B). At present, it is difficult to attribute the impact and

individual contribution of these regulatory factors to TQ-TAM-

induced apoptosis. However, it is certain that modulation of Akt

activation by the combination treatment represents a major

intracellular switch to mechanistically control TQ-TAM-induced

tumor cell apoptosis. However, GSK-3b is not the only PI3K/Akt

downstream factor potentially involved in regulating TAM-

induced apoptosis. There are other downstream components of

PI3K/Akt pathway that could also participate and account for the

observed apoptotic effect. The expression level of MAPK increases

markedly in breast cancer tissue in comparison to normal tissue

and strongly correlates with axillary lymph node metastasis.

Moreover, in vitro activated p-ERK/MAPK is expressed in cells

with high metastatic potential in comparison to non-metastatic

MCF-7 cells. The MAPK inhibitor CI-1041 decrease phosphor-

ylated MAPK and reduces cell proliferation of follicular thyroid

cancer and breast cancer cells in vitro and in vivo [52]. Our results

also confirm that TQ-TAM in combination can be used to inhibit

the MAPK/ERK pathway responsible for human breast cancer

tumorigenesis and progression (Fig. 3B).

Moreover, the possible synergistic effect of TQ and TAM in

inhibiting XIAP mediated Akt regulation was elucidated by

overexpression of XIAP through transfection studies. To verify the

role of XIAP in regulating Akt phosphorylation MCF-7 and

MDA-MB-231 cells were transfected with pcDNA3-XIAP-Myc.

Besides XIAP overexpression, the coadministration of TQ and

TAM induce significant reduction in XIAP and p-Akt levels

(Fig. 4A). This result is further supported through PARP cleavage,

Figure 4. Overexpression of XIAP inhibits TQ and TAM-induced apoptosis. (A) MCF-7 and MDA-MB-231 cells were transfected with
pcDNA3-XIAP-Myc construct. Cell lysates were subjected to western blotting analysis using XIAP, p-Akt, caspase-9, PARP, and b-Actin (Equal loading
marker) antibodies. (B) Densitometric analysis of XIAP, p-Akt, caspase-9 and PARP protein levels in transfection blot where each bar represents three
independent experiments; P,0.05 (t-test). Light and dark color bars represent pcDNA3.1 and pcDNA3-XIAP-Myc transfected cells, respectively. (C)
Early and late apoptosis of pcDNA-XIAP-Myc cotransfected cells were analysed through flow cytometer after staining the cells with Annexin V-FITC
and PI. (D) MCF-7 and MDA-MB-231 cells were cotransfected with siRNA-XIAP and pcDNA3-XIAP-Myc construct. Cell lysates were subjected to
western blotting analysis using XIAP. (E) Densitometric analysis of XIAP protein levels in cotransfection blot where each bar represents three
independent experiments; P,0.05 (t-test). (F) At the end of the treatment period, cells were collected from annexin studies (for apoptotic cell count).
doi:10.1371/journal.pone.0061342.g004
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Figure 5. Antitumor activity of TQ and/or TAM in MDA-MB-231 human breast carcinoma xenografts. Nude mice bearing MDA-MB-231
xenografts were treated with TQ (20 mg/kg body weight) s.c. on alternate days and/or TAM 5 mg/kg/day orally 2 times a week, starting 1 week after
tumor cell implantation and continued for 3 weeks. Nude mice (A) bearing xenografted MDA-MB-231 breast carcinoma cells along with the images of
the excised tumors at the time of sacrifice, (B) Bar graph represents tumor mass in grams, and (C) tumor volume in mm3, after 4 weeks of tumor cells
implantation provided as mean 6 S.D. (n = 5), p,0.05, when compared with the cancer control group. (D) Tumors from different treatment groups
underwent immunohistochemical analysis for expression of Ki-67 (cell proliferation marker), CD-31 (angiogenesis marker) and TUNEL (apoptotic
marker). Representative pictures were taken at 106magnification.
doi:10.1371/journal.pone.0061342.g005

Enhanced Anticancer Activity of TAM-TQ

PLOS ONE | www.plosone.org 10 April 2013 | Volume 8 | Issue 4 | e61342



Caspase-9 activation and apoptotic profiling through annexin

studies.

To explore the potency of TQ-TAM we had chosen siRNA-

XIAP as positive control through cotransfection studies. Cotrans-

fection studies revealed the potency of TQ-TAM in determining

the extent of XIAP inhibition. In validation, we came across 3 fold

decrease in MCF-7 and MDA-MB-231 cells on TQ-TAM

treatment in comparison to siRNA XIAP treated control

Figure 6. Immunohistochemistry of TQ and/or TAM-treated MDA-MB-231 human breast carcinoma xenografts. Paraffin-embedded
sections of MDA-MB-231 bearing tumors in nude mice were processed and IHC was done. IHC of XIAP, p-Akt (Ser473), p-Gsk-3-b (Ser136) and p-Bad
(Ser136) (along with total Akt, Gsk-3-b and Bad) representative of three independent experiments. Representative pictures were taken at 106
magnification.
doi:10.1371/journal.pone.0061342.g006
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(Fig. 4D). The fold decrease of XIAP in TQ-TAM showed

comparable results as that of control, thus suggesting potential of

TQ-TAM in inhibiting XIAP by regulating Akt phosphorylation

in inducing apoptosis.

Taken together, these results suggest synergistic inhibition of

XIAP mediated p-Akt, which in turn regulates downstream targets

in inducing breast cancer apoptosis. In a line, our preclinical

studies showed effective approach with promising results in this

synergistic combination of TQ-TAM, possibly direct future

clinical development of XIAP mediated p-Akt inhibition in breast

cancer.

Supporting Information

Figure S1 TQ enhances antiproliferative and cytotoxic
effects of TAM. Photomicrograph of MCF-7 and MDA-MB-

231 cells treated with the indicated compound(s) for 24 h: (A) Cell

death assessed by live/dead assay staining with Calcein AM (live,

green) and Ethidium homodimer-1 (dead, red) after 24 h

treatment. (B) Cell counts by Trypan blue dye exclusion assay

and (C) Fluorescent micrographs of DAPI stained cells. Bars,

10 mm. The arrow indicates the nuclear blebbing in apoptotic

cells. Each individual experiment has been repeated three times.

(TIF)

Figure S2 TQ enhances anti-migratory and apoptotic
activity of TAM in MCF-7 and MDA-MB-231 cells. (A)

Representative H & E stained cell images migrating into the

wounded area in an in vitro wound healing assay at time 0 and

48 h. Bars,100 mm. (B) Bars, S.E., three random widths along the

wound before and 48 h post-treatment. P,0.05. Bars, represent

level of significance with P,0.05 (n= 3) with respect to control.

Each individual experiment has been repeated three times.

(TIF)

Data S1 Supplementary Methods and Results.

(DOC)
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