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ABSTRACT

Objectives: This study proposes a novel Prior knowledge guided Integrated likelihood Estimation (PIE) method to cor-

rect bias in estimations of associations due to misclassification of electronic health record (EHR)-derived binary phe-

notypes, and evaluates the performance of the proposed method by comparing it to 2 methods in common practice.

Methods: We conducted simulation studies and data analysis of real EHR-derived data on diabetes from Kaiser

Permanente Washington to compare the estimation bias of associations using the proposed method, the

method ignoring phenotyping errors, the maximum likelihood method with misspecified sensitivity and specif-

icity, and the maximum likelihood method with correctly specified sensitivity and specificity (gold standard).

The proposed method effectively leverages available information on phenotyping accuracy to construct a prior

distribution for sensitivity and specificity, and incorporates this prior information through the integrated likeli-

hood for bias reduction.

Results: Our simulation studies and real data application demonstrated that the proposed method effectively

reduces the estimation bias compared to the 2 current methods. It performed almost as well as the gold stan-

dard method when the prior had highest density around true sensitivity and specificity. The analysis of EHR

data from Kaiser Permanente Washington showed that the estimated associations from PIE were very close to

the estimates from the gold standard method and reduced bias by 60%–100% compared to the 2 commonly

used methods in current practice for EHR data.

Conclusions: This study demonstrates that the proposed method can effectively reduce estimation bias caused

by imperfect phenotyping in EHR-derived data by incorporating prior information through integrated likelihood.

Key words: association study, bias reduction, electronic health record, misclassification, prior information.

INTRODUCTION

Electronic health records (EHRs) have emerged as a major source of

data for clinical and health services research.1–5 Despite their great

potential, the complex and inconsistent nature of EHR data brings

additional challenges for many clinical studies. One such challenge

is information bias, also known as observation, classification, or

measurement bias, which results from incorrect determination of

outcomes, exposures, or both in EHR-derived data.6–8 In particular,

automated phenotyping algorithms, which extract patients’ disease,
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treatment, and response information from EHRs using both struc-

tured data (eg, International Classification of Diseases, Ninth and

Tenth Revision codes) and unstructured data (eg, clinical narratives)

through advanced informatics technologies, may create misclassifi-

cation or measurement errors due to limited sensitivity and specific-

ity of the algorithms.9–11 Current practice in EHR-based studies

usually requires that phenotyping algorithms achieve reasonable

performance1,5 but ignores the errors of EHR phenotyping in subse-

quent analysis, which could lead to biased estimations of associa-

tions and loss of power in further association studies.12 Recently, we

conducted extensive simulation studies motivated by real-world

EHR data to quantify power loss due to misclassification of binary

outcomes in EHR-based genetic and epidemiological association

studies.13 We explored various settings, including different levels of

sensitivity and specificity, and found that estimation bias and power

loss can be substantial. Even in a relatively low misclassification sit-

uation, where the positive predictive value of the algorithm is 0.90

and the sensitivity is 0.84, the power loss can be as much as 25%

due to misclassification.13 Alternatively, phenotyping can be con-

ducted by manual chart review, but this approach is time-consuming

and costly. In most situations, only a small validation study using

manual chart review is affordable.

Standard likelihood-based or Bayesian methods can address this

challenge by accounting for misclassification and measurement

errors.14 Specifically, information bias due to an imperfect pheno-

typing algorithm can be parameterized using phenotype misclassifi-

cation parameters (sensitivity and specificity), and association

estimates can be obtained using joint estimates of the misclassifica-

tion parameters and the association parameters by a maximum like-

lihood (ML) or Bayesian approach.12,15,16 However, the sample size

required to successfully carry out this joint estimation is very large,

making this approach impracticable.14 Intuitively, the identified

“cases” and “controls” are a mixture of both diseased and healthy

individuals. Thus, joint estimation of the misclassification parame-

ters and the association parameters is a mixture-model problem,

which is notoriously difficult and requires an extremely large sample

size. In practice, investigators conducting EHR-based studies have

found that the maximum likelihood estimator (MLE) of the associa-

tion parameters using joint estimation has large bias and variabil-

ity.17 To overcome this challenge, one approach is to fix the

sensitivity and specificity at given values and maximize the likeli-

hood with respect to the association parameters only. Such methods

require the use of validation data to estimate the sensitivity and spe-

cificity or the use of previously reported misclassification rates di-

rectly.12 Two main limitations of these methods are as follows:

First, to achieve unbiasedness in the estimation of association

parameters, the validation sample must be large, but in practical

EHR-based studies, the validation sample size is typically relatively

small (eg, 100–500). Second, the performance of a phenotyping al-

gorithm may vary substantially when applied to a different EHR

dataset from the one for which it was originally developed.18,19

Direct use of literature-reported misclassification rates may cause in-

correct specification of the parameters, which also leads to biased

estimation of associations.20

In this paper, we propose a novel Prior knowledge guided Inte-

grated likelihood Estimation method (PIE) to address the challenge

of information bias caused by phenotyping errors without specifying

fixed values for the sensitivity and specificity of phenotyping algo-

rithms. The proposed method incorporates prior knowledge about

phenotype sensitivity and specificity through integrated likelihood

(IL),21 where uncertainty in sensitivity and specificity is rigorously

accounted for by integration. Such a method can mitigate the need

for validation data and can reduce bias in estimation of association

by fixing sensitivity and specificity at particular values. With simula-

tion studies and a real data example from Kaiser Permanente Wash-

ington (KPW), an integrated health care system in Washington

State, we demonstrate the advantage of this proposed method over

existing methods.

METHODS

We first compare the bias of the estimated association parameters

obtained from PIE and 2 commonly used methods using simulated

data. Then we evaluate the performance of the 3 methods on an

EHR dataset with information about type 2 diabetes from KPW,

where gold standard information (defined in the description of data-

set) is available.

Development and evaluation of the PIE using simulated

data
Simulation settings

To illustrate the idea in its simplest form, we consider a setting with

only one risk factor. However, proposed methods apply to more

complex settings that include multiple predictors. We wished to

study the association between a continuous predictor, x (eg, number

of cigarettes per day for one person), and a binary disease outcome,

y (eg, type II diabetes), using EHR-derived data. Due to imperfect

phenotyping, the identified diabetes status is subject to misclassifica-

tion, ie, a surrogate variable, Si, is observed rather than the true dis-

ease status, Yi, where i is the index of the subject. We assume the

true association between xi and Yi is described by a logistic regres-

sion model

logitfPr ðYi ¼ 1Þg ¼ b0 þ b1 � xi; (1)

where logit pð Þ ¼ logfp=ð1� pÞg. In the nondifferential misclassifi-

cation scenario, ie, where the misclassification rates of the surrogate

are not modified by the exposure level, the relationship between xi,

and the surrogate variable, Si, can be described as

Pr ðSi ¼ 1Þ ¼ 1� a0ð Þ þ a0 þ a1 � 1ð Þexpitðb0 þ b1 � xiÞ; (2)

where expit pð Þ ¼ expðpÞ=f1þ expðpÞg; a1 ¼ PrðSi ¼ 1jYi ¼ 1Þ and

a0 ¼ PrðSi ¼ 0jYi ¼ 0Þ are the sensitivity and specificity of the phe-

notyping algorithm, respectively.

We considered scenarios with disease prevalence ranging from

20% to 80% and 2 values of effect size, b1 ¼ 1 and 1:5, in model

(1). The sensitivity and specificity of a phenotyping algorithm for

the disease were either high (0.85 and 0.90, respectively) or low

(0.65 and 0.80, respectively). The continuous predictor was gener-

ated from a normal distribution for 1000 individuals,

xi � Nð0; r2Þ, where r2 ¼ 4, i ¼ 1; . . . 1000. The true disease

status of each subject was generated from a binomial distribution

with success rate, Pr ðYi ¼ 1Þ, calculated using model (1). The ob-

served surrogate, Si, was then generated using the assumed misclas-

sification rates.

Algorithms

The association parameter, b1, can be estimated using the following

methods:

Method ignoring phenotyping errors (naive). A straightforward so-

lution to estimating the odds ratio, b1, is to ignore misclassification
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and treat the surrogate Si as the true disease status. This estimates

the regression coefficient c1 in the logistic regression model

logitfPr ðSi ¼ 1Þg ¼ c0 þ c1 � xi: (3)

Although this method is simple and easy to implement, the esti-

mated association ĉ1 is a biased estimate of the true association, and

is toward null under nondifferential misclassification.22

ML method, unknown accuracy. A more rigorous procedure is to

use the MLE, which treats misclassification rates as nuisance param-

eters jointly estimated with the association parameters. In the non-

differential misclassification scenario, the likelihood function is

constructed as

L b0; b1; a0; a1ð Þ ¼
Yn
i¼1

pi
Si 1� pið Þ1�Si ; (4)

where pi ¼ Pr ðSi ¼ 1Þ ¼ 1� a0ð Þ þ a0 þ a1 � 1ð Þexpit b0 þ b1xið Þ.
The parameter of interest b1 can be estimated by maximizing

the likelihood L b0;b1; a0; a1ð Þ. The advantage of this method is that

the misclassified binary outcome is modeled using a1 and a0, and

the MLE is guaranteed to be unbiased when the sample size is very

large. However, the practical utility of this approach is limited by

the need for extremely large sample sizes.14,15 The performance of

the MLE in moderate sample sizes is poor, because the shape of the

likelihood L b0; b1; a0;a1ð Þ is usually very flat, leading to bias, as

shown in Figure 1. Thus, this method is not commonly used in

practice.

ML method, conditioned on accuracy (ML with fixed accuracy

parameters). To reduce the bias caused by the undesirable perfor-

mance of the MLE, one can fix the sensitivity and specificity at given

values and maximize the resulting likelihood function. For example,

by fixing a0 ¼ 0:90 and a1 ¼ 0:85, the new likelihood function

becomes

L b0;b1ð Þ ¼
Yn
i¼1

pi
Si 1� pið Þ1�Si ; (5)

where pi ¼ 0:1þ 0:75expit b0 þ b1xið Þ. The parameter of interest b1

can be estimated by maximizing the likelihood L b0; b1ð Þ. The disad-

vantage of this method is that correct specification of sensitivity and

specificity requires a large validation sample, which is not cost-

effective, and misspecification of these accuracy parameters will

lead to biased estimation of b1.

Prior knowledge guided integrated likelihood estimation method

(PIE). IL is a novel tool developed recently to make valid inferences

for parameters of interest in the presence of nuisance parame-

ters.21,23 It eliminates the nuisance parameters (here, sensitivity and

specificity) by integrating with respect to a prior function, so that

the resultant IL depends only on the parameters of interest (here, the

regression coefficients) and the data. Unlike standard likelihood-

based inference, where the nuisance parameters are maximized over

their ranges, in the IL the nuisance parameters are “averaged” or

“smoothed” over their ranges.21,23 The resultant likelihood func-

tion, LI b0; b1ð Þ, can be used as a standard likelihood function for in-

ference under certain conditions, and the estimate is obtained by

maximizing the IL. We propose to use a PIE method to account for

misclassification of phenotypes and to correct estimation bias in

EHR-based association studies.

Figure 1 illustrates the key idea of PIE and contrasts it with exist-

ing approaches. We generated true disease status based on model (1)

and a surrogate with sensitivity and specificity of 90%. The true

value of the association parameter is b1. We compare the shape of

the likelihood functions and the estimates of b1 when different

approaches are used. When the sensitivity and specificity are cor-

rectly specified, the estimate b̂1 is close to the true value b1. When

the sensitivity and specificity are incorrectly specified (both fixed at

100%), the estimate b̂1ML�MS has large bias. When the sensitivity

and specificity are unknown, the likelihood based on the joint func-

tion for the association and misclassification parameters reaches its

plateau over a wide range. As a consequence, the ML estimate

b̂1MLE (in blue) is grossly biased. However, the proposed IL (in red)

is much more quadratic than the likelihood (in blue), and the maxi-

mum IL estimate, b̂1PIE (in red), is close to the true value.

Practically, to account for phenotyping errors and reduce infor-

mation bias, the proposed PIE method can be conducted in 2 steps:

1. Construct prior distributions for sensitivity and specificity from

a small validation study or a literature review on available evi-

dence for accuracy of phenotyping algorithms, and

2. Incorporate the prior distribution into the likelihood using the

PIE method to achieve bias reduction.

In practice, the exact sensitivity and specificity of a phenotyping

algorithm are often unknown. However, a reasonable range or dis-

tribution of the sensitivity and specificity can be obtained by mining

the existing literature or analyzing a small validation study.

The proposed IL is constructed as

LI b0; b1ð Þ ¼
ð ð

L b0;b1; a0; a1ð Þpða0; a1Þda0da1;

where pða0; a1Þ is a prior distribution for sensitivity and specificity.

We note that formulating the IL does not require accurate specifica-

tion of the sensitivity and specificity at a particular value. A plausi-

ble range or distribution is adequate. This feature makes the

proposed method feasible in practical settings and robust to misspe-

cification of the sensitivity and specificity, which can minimize the

cost of extensive chart review while reducing information bias.

Figure 1. Comparison of likelihood function with unknown accuracy (blue

solid line), likelihood function conditioned on misspecified accuracy (black

solid line), likelihood function conditioned on known accuracy (black dashed

line), and prior knowledge guided integrated likelihood function (red solid

line). The true sensitivity and specificity are 90%.
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Experiments and evaluation

In this study, we compare the PIE method to the method ignoring

phenotyping errors, referred to hereafter as the naı̈ve method, and

the ML method with misspecified sensitivity and specificity, referred

to hereafter as the ML with misspecification, or the ML-MS

method. The ML method with unknown phenotyping errors was

not included in the comparison, as this method is not commonly

used and is not considered practical. We also included the ML

method with known accuracy, referred to hereafter as the gold stan-

dard method. In reality, such a situation is relatively rare.

We simulated 500 datasets and compared the bias of the esti-

mated b1 from the naı̈ve method, the ML-MS method, the gold stan-

dard, and the proposed PIE method. For the PIE method, we

evaluated the performance under 5 prior distributions as follows,

also shown in Table 1 and Figure 2.

1. PIE1: transformed logit normal prior distributions with highest

density around the true values of sensitivity and specificity.

2. PIE1_sv: transformed logit normal prior distributions with high-

est density around the true values of sensitivity and specificity,

with small variances (sv).

3. PIE2: transformed logit normal prior distributions with highest

density �10% (on the scale of sensitivity and specificity) differ-

ent from the true values of sensitivity and specificity.

4. PIE2_lv: transformed logit normal prior distributions with high-

est density �10% (on the scale of sensitivity and specificity) dif-

ferent from the true values of sensitivity and specificity, with

large variances (lv).

5. PIE3: uniformly distributed prior distribution with a range of

30%, centered �10% (on the scale of sensitivity and specificity)

different from the true values of sensitivity and specificity.

The first 2 priors mimic the situation where the phenotyping al-

gorithm has been previously applied in similar settings and the per-

formance of the algorithm is relatively well understood. The second

2 priors mimic the case where the phenotyping algorithm is less well

characterized or its performance differs across datasets. In such sit-

uations, the highest density of the prior distribution obtained from

previous studies deviates from the actual performance in the study

population. The last prior mimics a situation in which investigators

believe that the phenotyping error could be any value within a range

with equal probability, a common situation in practice. For compa-

rability of PIE and ML-MS, we set the sensitivity and specificity for

the ML-MS method to values that are the same as the maximum of

the third and fourth prior distributions (PIE2 and PIE2_lv). We cal-

culated the mean and variance of estimation bias for each method as

the mean and variance of the 500 estimates minus the true value of

the association parameter.

Application of PIE to an EHR dataset including

type 2 diabetes
Dataset

We applied the proposed method to a dataset derived from EHR

data for a sample from KPW. Data were provided by the Adult

Changes in Thought study, a longitudinal study of aging and demen-

tia. Participants were dementia-free, at least 65 years old at the time

of study enrollment, and randomly selected from the KPW member-

ship. Study procedures have been previously described.24 Our analy-

sis was based on a deidentified subset consisting of 2022

participants who met the same inclusion criteria as a prior study of

glucose and dementia.16

In the current analysis, “treated diabetes” was the phenotype of

interest and the gold standard was defined as “two filled prescriptions

for diabetes medications.” Based on KPW pharmacy records, we

Table 1. Five prior distributions used for the proposed PIE method

Prior names Prior for sensitivity Prior for specificity

Distribution sd Distribution sd

PIE1 0.5þ1/2*logitnormal(0.67,0.60) 0.07 0.5þ1/2*logitnormal(0.73,0.80) 0.08

PIE1_sv 0.5þ1/2*logitnormal(0.70,0.20) 0.02 0.5þ1/2*logitnormal(0.80,0.23) 0.03

PIE2 0.5þ1/2*logitnormal(0.50,0.60) 0.07 0.5þ1/2*logitnormal(0.58,0.60) 0.07

PIE2_lv 0.5þ1/2*logitnormal(0.50,1.20) 0.12 0.5þ1/2*logitnormal(0.53,1.20) 0.12

PIE3 uniform(0.60,0.90) 0.09 uniform(0.65,0.95) 0.09

Figure 2. Illustration of the 5 types of prior distributions in PIE method: PIE1

(distributions peak at the true values of sensitivity and specificity); PIE1_sv

(distributions peak at the true values of sensitivity and specificity, with small

variance); PIE2 (distributions have peaks that differ from true values); PIE2_lv

(distributions have peaks that differ from true values, with large variance);

and PIE3 (uniform distributions not centered at the true values). Vertical

dashed line marks the true value of sensitivity or specificity, and solid line

marks the peak of the prior distribution.
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extracted this information for all 2022 participants. An imperfect sur-

rogate measure for treated diabetes was created by dichotomizing the

average glucose level in the prior 5 years, based on laboratory results

for glucose and hemoglobin A1c, using a threshold of 140 mg/dL. We

investigated the association between treated diabetes and predictors

of interest, namely body mass index (BMI), treated hypertension, and

race (white vs nonwhite). By comparing the surrogate and true diabe-

tes measures, we estimated the true sensitivity and specificity of the

surrogate to be 0.89 and 0.98, respectively.

Evaluation

We applied the naı̈ve method, the ML method with true sensitivity

and specificity (gold standard in the simulation section), the ML-MS

method (accuracy 5% lower than the true sensitivity and specificity),

and the PIE method to this dataset. We used uniform prior distribu-

tions with ranges from 0.80 to 0.99 for sensitivity and specificity in

the PIE method, resembling the scenario where, based on prior stud-

ies, investigators hypothesize the misclassification rates of their phe-

notype to be at least 0.80. We compare the relative bias of the

estimated effect sizes (log odds ratio) for BMI, hypertension, and

race on type 2 diabetes using the 4 methods.

RESULTS

Evaluation of bias reduction through simulation studies
To illustrate the specification of the prior distributions in the PIE

method, Figure 2 visualizes the priors where true sensitivity and spe-

cificity of a phenotyping algorithm are 85 and 90%, respectively.

Figure 3 presents comparison of the estimates of b1 using box

plots. As expected, the gold standard method yielded estimates with

almost no bias and small variance. The estimates from the naı̈ve

method had small variance but large bias toward the null. The esti-

mates of the ML-MS method had both large bias and large varia-

tion. In contrast, the bias of the proposed PIE method under all 3

prior distributions (PIE1, PIE2, and PIE3) was substantially smaller

than that of the naı̈ve and ML-MS methods. Under PIE2, when the

peak of the prior distribution was about 10% lower than the truth,

the proposed PIE method had smaller bias compared to the ML-MS

method. This finding reveals the key advantage of the PIE method:

even when the prior distributions of sensitivity and specificity do not

peak at the true values, the PIE method can still reduce the bias by

integrating over the possible values of sensitivity and specificity. In-

terestingly, PIE3 (with a uniform prior not centered at the truth) has

much smaller bias than PIE2, and has comparable bias and only

slightly larger variance than PIE1 (where the prior distribution is

peaked at the truth). This suggests that (1) strong nonuniform priors

not peaking at the truth can lead to some bias, and (2) strong non-

uniform priors peaking at the truth sometimes cannot lead to much

efficiency gain compared to a weak uniform prior. Such findings

shed light on better strategies for specifying priors for PIE methods.

By comparing the results from the PIE methods with the naı̈ve

method, we can see a clear variance-bias trade-off. However, the

bias of the naı̈ve method persists in larger samples, while the vari-

ance of the PIE estimates becomes smaller with larger sample size.

Table 2 provides a more quantitative comparison of bias and

variance among the methods under evaluation. Compared to the na-

ive method, the percentage of relative bias reduction (absolute bias

reduction divided by true association) of the PIE methods is between

38% and 65%, 20% and 65%, and 28% and 47%, when the prior

distribution is peaked at the truth (PIE1), peaked at 10% away from

the truth (PIE2), and uniformly distributed with center not at the

truth (PIE3), respectively. The PIE method can reduce bias more

when the true association is stronger, ie, b1 ¼ 1:5 compared to

b1 ¼ 1, or when the actual sensitivity and specificity are lower,

ie, a0=a0=a1 ¼ 80%=65% compared to a1 ¼ 90%=85%. Com-

pared to the ML-MS method, the percentage of relative bias reduc-

tion of the PIE methods is up to 78%. The standard deviations of

the estimates of the PIE methods also increase when the true associa-

tion is stronger (with difference up to 0.23) and the actual sensitivity

and specificity are lower (with difference up to 0.41).

Figure 4 shows the relative impact of bias and variance of prior

distributions on the performance of PIE estimates. We found that

Figure 3. Box plots of estimates of b1 using the ML method with correctly

specified sensitivity and specificity (gold standard), the method ignoring mis-

classification (naı̈ve), the ML method with misspecified sensitivity and specif-

icity (ML-MS), and the prior knowledge guided integrated likelihood method

with 3 priors (PIE1, PIE2, PIE3). Solid black segment in each box shows the

median of the estimates.

Table 2. Comparison of methods for estimation of the association parameter, b1, in term of bias and standard deviation

a1; a0 b1 Bias Standard deviation

GS Naı̈ve ML-MS PIE1 PIE2 PIE3 GS Naı̈ve ML-MS PIE1 PIE2 PIE3

0.85, 0.90 1 0.00 �0.42 0.70 0.04 0.21 0.06 0.10 0.09 0.24 0.17 0.20 0.20

1.5 0.03 �0.78 1.24 0.07 0.24 0.08 0.17 0.08 0.47 0.28 0.28 0.30

0.65, 0.80 1 0.04 �0.70 �0.45 0.11 �0.23 �0.42 0.22 0.09 0.10 0.51 0.39 0.14

1.5 0.08 �1.15 �0.79 0.17 �0.17 �0.68 0.44 0.08 0.10 0.69 0.62 0.22

Abbreviations: GS, or gold standard: ML method with true sensitivity and specificity; Naive: method ignoring misclassification; ML-MS: ML method with mis-

specified sensitivity and specificity; PIE1, PIE2, PIE3: PIE methods under 3 priors.
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when prior distributions were centered around the true value and

had small variance (PIE1_sv), indicating that prior knowledge was

accurate and informative, the PIE estimates had the best perfor-

mance, with little bias and small variance. When the variance of the

prior distribution increased (PIE1), the PIE estimates still had little

bias but the variance increased. The worst scenario was when the

prior distributions were centered away from the true value and had

small variance (PIE2_lv), indicating that prior knowledge was inac-

curately assumed to be informative, and the PIE estimates had large

bias. When the variance of the prior distribution increased, the bias

of the PIE estimates decreased but the variance increased, demon-

strating a bias-variance trade-off.

Validation using the diabetes dataset from KPW
We applied the proposed method to the diabetes data from KPW.

Table 3 summarizes the variables of interest in this dataset. Table 4

presents the estimated effects (on log odds ratio scale) of the risk

factors for treated diabetes using different methods. Relative to the

estimates of the gold standard method (using true sensitivity and

specificity calculated based on true treated diabetes status), the esti-

mated effects using the naı̈ve method were biased toward the null

for all 3 predictors. The relative biases were�23%,�11%,

and�16% for hypertension, BMI, and race, respectively. The ML-

MS method also had large bias, with inflated estimated effects rela-

tive to the estimates based on true treated diabetes status. PIE

greatly reduced the bias, and the estimated effect sizes were very

close to the gold standard method with relative bias<10%.

DISCUSSION

In this paper, we proposed PIE as a method to correct bias in as-

sociation estimates due to information bias in EHR-derived data.

The results of both simulation studies and real data analysis show

that the proposed PIE method effectively reduced bias in

estimation of associations by incorporating prior information on

performance of phenotyping algorithms. The proposed method

outperformed 2 existing methods that are commonly used in

EHR-related studies and was comparable to the gold standard

method. A unique strength of the proposed method is that it does

not require specification of fixed values for sensitivity and specif-

icity, thus is more robust to model misspecification compared to

existing methods.

An important implication of the PIE method is that bias reduc-

tion without validation data is possible under practical scenarios for

EHR-based studies. More precisely, when validation data are not

available,5,25–28 prior information on sensitivity and specificity can

be obtained by mining the existing literature to extract previously es-

timated misclassification rates. For diseases that have been well

studied and for which sensitivity and specificity of the phenotyping

algorithms have been reported in various datasets (eg,29), the prior

distribution of the sensitivity and specificity can be built using the

empirical distribution of the sensitivity/specificity obtained from

text-mining existing literature. In other scenarios where the condi-

tion is less studied or algorithms are newly developed such that prior

information is limited in the literature, a uniform prior distribution

with a reasonable range of values for sensitivity and specificity can

be used. In both situations, the proposed method can substantially

reduce the bias of estimated associations compared to the naı̈ve

method and the ML-MS method, as we demonstrated in simulation

studies and a real case study.

In practice, when a small validation dataset is available,1,28,30–36

a common strategy is to jointly model the validation data and the

nonvalidated data, and base inferences on ML estimation. In future

studies, it will be of interest to compare the performance of the ML

estimation method with the PIE method, which incorporates infor-

mation on phenotyping accuracy as an informative prior.

Further work is needed to fully develop and evaluate the PIE

method. For example, the confidence sets for the PIE estimates can

be obtained by reversing the IL ratio test.19,21 Practically, such sets

can also be obtained by resampling methods for computational effi-

ciency. In addition, maximizing the IL function in PIE can be com-

putationally expensive due to the double integration in the

likelihood function when the dimension of predictors is relatively

high. Numerical optimization approaches, eg, coordinate de-

scent,37–39 need to be developed to improve computational effi-

ciency. Furthermore, we have not evaluated a full Bayesian

approach in our methods comparison. It would be of interest to de-

velop a full Bayesian method and compare it with the proposed PIE

method. Finally, the current investigation has been limited to the

case where misclassification is nondifferential. In practice, misclassi-

fication rates may depend on exposure status. The PIE method needs

to be further developed to account for such challenges.

In this paper, we have focused on correction of bias due to mis-

classification of binary outcomes in EHR-derived data. Similar ideas

can be adapted to misclassification of survival outcomes and

measurement errors in exposure variables. These extensions are cur-

rently under investigation and will be reported in the future. We be-

lieve the proposed approach is an important contribution to bias

reduction in EHR-based association studies.

Figure 4. Box plots of estimates of b1 using the prior knowledge guided inte-

grated likelihood method with 4 priors (PIE1_sv, PIE1, PIE2_lv, PIE2). Solid

black segment in each box shows the median of the estimates.

Table 3. Summary statistics of the variables of interest in the diabe-

tes dataset from KPW

Variables of interest N¼ 2022 (%)

Treated diabetes

Yes 230 (11.4)

No 1792 (88.6)

Hypertension

Yes 1403 (69.4)

No 619 (30.6)

Race

White 1821 (90.1)

Nonwhite 201 (9.9)

350 Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 3



CONCLUSION

In this study, we proposed a maximum IL estimation method, the

PIE method, to reduce estimation bias by incorporating prior knowl-

edge of phenotyping errors. Our evaluation using simulated datasets

and data from KPW demonstrated that the proposed PIE method

can effectively reduce bias compared to methods that are commonly

used in current EHR-based studies.
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