
Quantum Annealing Designs Nonhemolytic Antimicrobial Peptides
in a Discrete Latent Space
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ABSTRACT: Increasing the variety of antimicrobial peptides is crucial in
meeting the global challenge of multi-drug-resistant bacterial pathogens.
While several deep-learning-based peptide design pipelines are reported, they
may not be optimal in data efficiency. High efficiency requires a well-
compressed latent space, where optimization is likely to fail due to numerous
local minima. We present a multi-objective peptide design pipeline based on
a discrete latent space and D-Wave quantum annealer with the aim of solving
the local minima problem. To achieve multi-objective optimization, multiple
peptide properties are encoded into a score using non-dominated sorting.
Our pipeline is applied to design therapeutic peptides that are antimicrobial
and non-hemolytic at the same time. From 200 000 peptides designed by our
pipeline, four peptides proceeded to wet-lab validation. Three of them
showed high anti-microbial activity, and two are non-hemolytic. Our results
demonstrate how quantum-based optimizers can be taken advantage of in
real-world medical studies.
KEYWORDS: Antimicrobial peptides, quantum annealing, deep learning, generative models

Antibiotic resistance is an increasingly imminent threat to
global health and food security, which is accelerated by misuse
of antibiotics in humans and animals. It is expected that, by the
year 2050, global deaths by drug-resistant pathogens will rise to
10 million.1 Antimicrobial peptides (AMPs) are considered an
effective means to solving the growing health problems related
to drug-resistant pathogens, because microbes have been
exposed to natural AMPs for millions of years, but widespread
resistance to them is not yet reported.2 Conventional
development of AMPs is, however, struggling in dealing with
the huge peptide sequence space. This situation motivated a
series of studies of deep-learning-based AMP design. For
example, Das et al.3 employed a variational autoencoder with a
continuous latent space and applied a Bayesian sampling
method to the latent space to design AMPs. Capecchi et al.4

used a deep-learning model based on recurrent neural
networks to generate therapeutically favorable AMPs that are
not likely to destroy red blood cells (i.e., non-hemolytic). Tucs
et al.5 employed a generative adversarial network (GAN) to
create AMPs. Basically, these methods use the models
developed for natural language processing where a tremendous
amount of labeled data is available. The number of known
AMPs in the databases6−9 is on the order of 104, requiring a
data-efficient approach.

In this paper, we present a multi-objective AMP design
pipeline using a binary variational autoencoder (bVAE)10 and
a D-Wave quantum annealer11 (Figure 1) and report wet-lab-
confirmed discovery of non-hemolytic antimicrobial peptides.

In a class of deep-learning models called variational
autoencoders (VAEs),12 two neural networks called an encoder
and a decoder are used. The encoder transforms the input to a
latent representation. The decoder takes a latent representation
and returns a reconstruction. The loss function is defined to
measure the difference between the input and the reconstruc-
tion. After training with a dataset, a VAE will be able to
reconstruct any input approximately. A latent representation is
typically a real-valued vector,12 but bVAE uses a bit vector
instead. By specifying a latent representation (i.e., a point in
the latent space), one can generate a new entity as the output
of the decoder. In this paper, we provide peptide sequences as
the input so that a latent representation can be decoded into a
peptide sequence.

A quantum annealer (QA) is designed to solve a specific
discrete optimization problem, called QUBO (Quadratic
Unconstrained Binary Optimization).11,13 QUBO can be
mapped to the Hamiltonian of an Ising model. This fact
enables us to apply a variety of classical and quantum hardware
to build QUBO optimizers.14 Among them, the D-wave
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quantum annealer11 is a widely used piece of hardware based
on modulation of quantum fluctuations on superconducting
qubits. What makes a QA attractive is the theoretical guarantee
of finding the global optimal solution under the assumption of
ideal qubits and slow annealing.13 Although this goal is not
attainable currently, recent successful case studies in materials
science15,16 imply that the quality of qubits has improved to
the point that they are practically useful. In addition, QA-based
methods are likely to benefit from future development of
quantum technologies.

In the first stage of our pipeline (Figure 1a), bVAE is trained
with known sequences. The second stage of designing peptides
starts with a small set of peptides (Figure 1b). The sequences
are mapped to bit vectors using the trained encoder. Multiple
properties such as antimicrobial activity and hemolyticity are
predicted by machine-learning models and summarized into a
score via non-dominated sorting,17 where each peptide is
scored by a distance from the Pareto front. Note that the
Pareto front is defined as the set of non-dominated solutions
where no property can be improved without sacrificing the
other at each solution.18 Then, a factorization machine (FM)19

Figure 1. Peptide design pipeline. (a) A binary variational autoencoder is trained with a set of antimicrobial and non-antimicrobial peptide
sequences. The autoencoder is trained to reconstruct the input sequence as accurately as possible. After the training, the decoder can map a bit
vector (i.e., latent space representation) to a peptide sequence. (b) In our pipeline, bit vectors sampled from the quantum annealer are mapped to
peptide sequences by the decoder. For these sequences, antimicrobial activity and non-hemolyticity are predicted. These two properties are
summarized to a score with non-dominated sorting. A factorization machine is trained with the bit vectors and corresponding scores, and the
quantum annealer is applied again to the trained factorization machine. The loop continues until the pre-determined number of peptides is
obtained.
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is trained with the pairs of bit vectors and scores. A quantum
annealer is employed to optimize the FM prediction score, and
the solutions are decoded to peptides using the decoder of
bVAE. Properties of the new peptides are acquired by the
prediction models, and the training set is expanded. This loop
allows us to explore the sequence space efficiently by means of
a highly compressed latent space and a powerful optimizer.

In the following, we present our peptide design pipeline
called MOQA (Multi-objective Optimization by Quantum
Annealing). First, we need to train two kinds of machine
learning models: (1) binary VAE and (2) property predictors.
We collected 19 530 antimicrobial and 5583 non-antimicrobial
peptide sequences from APD,8 CAMP,7 LAMP,9 DBAASP,6

and YADAMP20 databases. The antimicrobial and non-
antimicrobial sequences are used to train a binary VAE with
a 64-dimensional latent space for 400 epochs. We used the
bVAE implementation by Baynazarov and Piontkovskaya.21 To
predict antimicrobial activity, a deep-learning model with a
gated recurrent unit is trained. See Tucs et al.5 for details of the
predictor. As the hemolyticity predictor, an L2-regularized
logistic regressor was trained with 2677 sequences from the
DBAASP database. A sequence is labeled non-hemolytic if it
causes less than 10% hemolysis at a concentration of at least
100 μM. See section 1 in the SI for details.

By using the encoder of bVAE, all peptides are translated to
binary vectors. Our idea is to design a new binary vector using
a quantum annealer that is later decoded back to a peptide. Let
xi (I = 1, ..., M) denote the binary vectors and yi(1) and yi(2)

denote the antimicrobial activity and hemolyticity obtained by
the predictors, respectively. These two properties are
combined into a score yi by means of rank obtained by non-
dominated sorting. The samples at the Pareto front are
assigned rank 1. After removing rank 1 samples, we obtain the
Pareto front of the remaining samples, and those on the new
front are assigned rank 2. This is repeated until all of the
samples have their ranks. With a tunable parameter t, the score
of a peptide of rank r is defined as y = −1/r (r ≤ t), 10 (r > t).
The parameter t is set to 20 initially.

The dataset D = (xi,yi) where i = 1, ...M is used to train a
factorization machine (FM). The functional form of a FM is
described as

= +
= = =

y h x w w x x
i

M

i i
i j

M

k

K

ki kj i j
1 , 1 1 (1)

where the weight matrix of quadratic terms is a low-rank matrix
parameterized by wki. Given a training set, the FM is trained by
minimizing the squared loss by libFM.19 In the following
experiments, the rank K is set to eight. After the parameters are
fixed, a D-wave quantum annealer is applied to find the
solutions minimizing eq 1. Due to noise, it is not always
possible to attain the global optimal solution. We obtain a
batch of 10 solutions from the quantum annealer at a time.
These solutions are decoded to peptides, and their
antimicrobial activity and hemolyticity are predicted. They
are then added to the dataset D, and the non-dominated
sorting scores are updated. The FM is retrained with the
expanded dataset, and a next batch of solutions is obtained by
the quantum annealer. This procedure is repeated until the
predetermined number of peptides is generated. Notice that
the parameter t is reduced by one whenever 100 sequences are
generated. It allows our FM model to pay increasing attention
to the Pareto front. It is a reasonable choice, because the

Pareto front obtained in early iterations is not accurate and the
score should be less sensitive to the rank.

Before solving our main peptide design problem, we
benchmarked our pipeline in optimizing three easily
computable properties (charge density, instability index, and
Boman index). In computing these properties, we used Python
package modlAMP22 instead of predictors. The performance of
our pipeline was measured by Pareto hyper-volume,23 defined
as the volume of a convex hull containing the origin and Pareto
front. Figure 2 shows the distribution of Pareto hypervolume in

10 attempts of sampling 2000 sequences. We compared
MOQA with MOQA*, i.e., the alternative pipeline with fixed
rank t = 20, Bayesian optimization24 on 100 000 randomly
sampled sequences (i.e., bVAE+BO), random selection in the
latent space of bVAE (i.e., bVAE), and the recurrent neural
network used by Capecchi et al.4 (i.e., RNN). See Figure S1 for
the change of Pareto hypervolume with respect to the number
of samples and Figure S2 for the results of individual
properties. MOQA performed significantly better than RNN
and Bayesian optimization, showing that MOQA is com-
petitive with existing approaches.25 MOQA was shown to be
more effective than MOQA*, indicating the importance of
taking Pareto-front uncertainty into account. Adaptive tuning
allows the pipeline to put more emphasis on expanding the
Pareto front, as the Pareto front is more accurately estimated.

A total of 200 000 peptide sequences are generated by
MOQA in 10 independent runs. D-Wave Advantage (system
4.1) was used, and the dimensionality of the latent space was
set to 64. We selected 75 sequences satisfying the following
constraints. (1) The sequence does not have three consecutive
amino acids. (2) Less than 50% of the amino acids in the
sequence are hydrophobic. (3) The prediction probability of
the CAMP server7 is larger than 0.999. In addition, we used
CAMPsign26 to identify family-specific sequence signatures.
Four sequences with more than two signatures were selected
for experimental validation (Table 1).

We evaluated the antimicrobial activity of our peptides
based on minimum inhibitory concentration (MIC) against E.
coli. MIC is determined as the minimum concentration of an
antimicrobial at which the growth of a target microbial is
suppressed. See section 3 in the SI for details. No unexpected
or unusually high safety hazards were encountered. As shown
in Figure 3a, three out of four peptides exhibited effective

Figure 2. Benchmarking. Multi-objective optimization methods are
compared in terms of Pareto hypervolume with 2000 samples. RNN
represents the recurrent neural network used by Capecchi et al.4

bVAE represents random selection in the latent space of bVAE. bVAE
+BO represents Bayesian optimization on 100 000 randomly sampled
sequences. MOQA and MOQA* represent our pipeline with adaptive
tuning and with fixed rank t = 20, respectively. The distributions over
10 experiments are shown.
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antimicrobial activity. Among them, TA2-3 exhibited the best
antimicrobial performance, 3.1 μg/ML, which is twice better
than that of a well-known antimicrobial, ampicillin (6.25 μg/
ML). TA2-1 and TA2-2 were also highly active. We also
conducted negative control experiments with 10 peptides
created from randomly chosen points in the latent space. They
did not show notable antimicrobial activities.

The hemolytic activity of the peptides was assayed by
spectrophotometrically measuring hemoglobin released from
red blood cells. Let us denote by h, hpos, and hneg the amount of
released hemoglobin in the sample of interest and in the
positive and negative controls, respectively. The hemolytic
activity is defined as (h − hneg)/(hpos − hneg). See section 4 in
the SI for details. Even at a high peptide concentration of 100
μM and a long incubation time of 6 h, TA2-1 and TA2-2
showed effectively no hemolytic activity, suggesting that these
peptides are therapeutically viable (Figure 3b). TA2-3 showed
relatively high activity of around 40%; hence it is less favorable
therapeutically. This activity is, however, considered modest in
comparison to the strong activity of naturally existing
hemolytic peptide, melittin, that exhibits over 90% hemolytic
activity in 1 h at 1 μM peptide concentration.27

We presented a peptide design pipeline consisting of
quantum annealing and several machine-learning models and
reported successful discovery of two non-hemolytic antimicro-
bial peptides. Our pipeline has room for improvement with
respect to the following points: the accuracy of the predictors
should be improved as much as possible; the factorization
machine may not be the optimal choice as a surrogate model;
the quantum annealer does not always optimize the objective
function completely. Nevertheless, multiple successes in
experimental validation show that our pipeline is working in
practice.

In most cases, the number of possible synthesis experiments
is limited due to available resources. We stopped our pipeline
after generating 200 000 sequences and selecting four peptides
for synthesis. If a user had more resources, it would be possible
to continue generating more sequences. Our pipeline may be
evaluated by the hit rate, i.e., the number of generated
sequences to obtain a qualifying peptide. According to our
synthesis experiments, the hit rate is estimated as 1/100 000.
However, this estimate is quite rough.

Quantum annealing has been shown to be superior to
classical simulated annealing in theory,13 but the results of
experimental comparison using the D-Wave quantum annealer
are mixed (see Yaacoby et al.28 and references therein). For
example, Denchev et al.29 showed that the quantum annealer is
more efficient than simulated annealing in randomly generated
problems, while Vert et al.30 reported that the quantum
annealer performed worse than simulated annealing in hard
instances of bipartite matching problems. As mentioned earlier,
however, qubit technologies are still in rapid development, and
the optimization capability of quantum annealing is expected
to improve. Our pipeline can be coupled with other Ising
machines14 such as a coherent Ising machine31 or driven by a
quantum approximate optimization algorithm32 (QAOA)
implemented on gate-based quantum computers. Our results
are a first step toward expanding the application domain of
quantum computing from routine optimization problems33

such as the traveling salesman problem and graph coloring to
real-world medical problems. Since bVAE can easily be
modified to generate images, strings, and graphs,10 our pipeline
has the potential to be applied to a wide range of biological,
chemical, and pharmaceutical design problems. Hopefully, our
work serves as a stepping stone to successful and pervasive
employment of quantum technologies in medical research.

■ ASSOCIATED CONTENT
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The code of MOQA is available at https://github.com/tucs7/
MOQA.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsmedchemlett.2c00487.

Table 1. Peptides Selected for Experimental Validation

ID sequence MIC (μg/mL) hemolyticity

TA2-1 GFKTLKNLAKKVAKKVLKAVR 6.25 non-hemolytic
TA2-2 KLGKKILKKVGKHVGKFYTGII 6.25 non-hemolytic
TA2-3 WKSVLKKVIKGIGKVVSKVMGQAQ 3.13 hemolytic
TA2-4 GLVTVLKKVAKGIVKTASKVGSKEL >100 N/A
ampicillina N/A 6.25 N/A

aAmpicillin is a commonly used antibiotic shown here for reference.

Figure 3. Experimental validation. (a) Optical density in micro-
dilution assays against peptide concentration. (b) Hemolytic activity
at 100 μM after 6 h. Error bars indicate variation over three
experiments.
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Section 1, details about the hemolyticity predictor;
section 2, description of the negative control experi-
ments; sections 3 and 4, experimental details about
peptide synthesis and measurement; Figure S1, opti-
mization results of multi-objective peptide design;
Figure S2, results of optimizing individual properties
(PDF)
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