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Protein-protein interactions are the basis of biological functions, and studying these interactions on a molecular level is of crucial
importance for understanding the functionality of a living cell. During the past decade, biosensors have emerged as an important
tool for the high-throughput identification of proteins and their interactions. However, the high-throughput experimental methods
for identifying PPIs are both time-consuming and expensive. On the other hand, high-throughput PPI data are often associated
with high false-positive and high false-negative rates. Targeting at these problems, we propose a method for PPI detection by
integrating biosensor-based PPI data with a novel computational model. This method was developed based on the algorithm of
extreme learning machine combined with a novel representation of protein sequence descriptor. When performed on the large-
scale human protein interaction dataset, the proposed method achieved 84.8% prediction accuracy with 84.08% sensitivity at
the specificity of 85.53%. We conducted more extensive experiments to compare the proposed method with the state-of-the-art
techniques, support vector machine.The achieved results demonstrate that our approach is very promising for detecting new PPIs,
and it can be a helpful supplement for biosensor-based PPI data detection.

1. Introduction

Proteins play crucial roles in cellular biology, including
signaling cascades, metabolic cycles, and DNA transcrip-
tion. In most cases, proteins rarely perform their functions
alone; instead, they cooperate with other proteins by form-
ing protein-protein interactions (PPIs) networks. PPIs are
responsible for the majority of cellular functions. Over the
past decades, many innovative techniques and systems for
identifying protein interactions have been developed [1]; for
example, in the high-throughput experimental technologies
such as yeast two-hybrid (Y2H) screens [2], tandem affinity
purification (TAP) [3], mass spectrometric protein complex
identification (MS-PCI) [4], and other large-scale biological
techniques for PPIs detection, a large amount of PPIs data
for different species has been accumulated [5–11]. However,
the experimental methods are costly and time consum-
ing; therefore, current PPI pairs obtained from biological
experiments only cover a small fraction of the complete

PPI networks [12–14]. In addition, large-scale experimental
methods usually suffer from high rates of both false positives
and false negatives [12, 15–20]. Hence, it is of great practical
significance to build low cost protein detection systems and
establish the reliable computational methods to facilitate the
detection of PPIs [21–25].

A number of computationalmethods have been proposed
for the prediction of PPIs based on different data types,
including phylogenetic profiles, gene neighborhood, gene
fusion, sequence conservation between interacting proteins,
and literature mining knowledge [12, 26–33]. There are also
methods that combine interaction information from several
different data sources [27]. However, the aforementioned
methods cannot be carried out if such biological information
about the proteins is not available. Recently, a number of
methods which derive information directly from protein
sequence are of particular interest [26, 28–30]. Researchers
are committed to develop the sequences-based method for
discovering new PPIs, and the experimental results showed
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Figure 1: The schematic diagram for mapping large-scale protein-protein interactions by integrating biosensor data with ELMmodel.

that the information of amino acid sequences of proteins
alone is sufficient to predict PPIs. Among them, one of the
excellent works is a support vector machine based method
developed by Shen et al. [29]. In that study, the twenty amino
acids were firstly clustered into 7 classes according to their
volumes and dipoles of the side chains. Then the conjoint
triad approach extracts the features of protein pairs based
on the classification of amino acids. When applied to predict
human PPIs, this method yields a high prediction accuracy of
about 84%.

Because the conjoint triad approach did not take neigh-
boring effect into account and the interactions usually occur
in the discontinuous amino acids segments in the sequence,
on the other work Guo et al. developed a method based on
SVM and autocovariance to extract the interactions infor-
mation in the discontinuous amino acids segments in the
sequence [26].Their method yielded a prediction accuracy of
86.55%, when applied to predicting Saccharomyces cerevisiae
PPIs. Lately, Pan et al. proposed a novel hierarchical LDA-
RF model to predict human PPIs from protein primary
sequences directly. In this study, the local sequential features
represented by conjoint triads are firstly extracted from
sequences. Then the generative LDAmodel is used to project
the original feature space into the latent semantic space to
obtain low dimensional latent topic features. Finally, the
random forest model is used to predict the interactions
between two proteins. The experimental results show that it
is a very promising scheme for PPIs prediction [28].

The general trend in the current study for predicting PPIs
has focused on high accuracy but has not considered the
running time taken to train the classification model, which
should be an important factor of developing a sequence-
based method for predicting PPIs because the total number
of possible PPIs is very large. For example, if we assume
that the human genome consists of 22,500 protein-coding
genes, then the total number of possible PPIs is estimated

to be around 253,113,750 (𝑁 = 22, 500 × (22, 500 −

1)/2), which indicates that some classification models with
high classification accuracy may not be satisfactory when
considering the tradeoff between the classification accuracy
and the time for training the models. Here, in addition to
exploring the local and global descriptors to mine interaction
information from the multiscale amino acids segments at the
same time, we also investigate the use of a novel paradigm
of learning machine called extreme learning machine (ELM)
[34], in order to obtain a balance between high classification
accuracy and short training time.

In the present work, we report a novel sequence-based
method for the prediction of interacting protein pairs using
ELM combined with local and global descriptors. More
specifically, we first represent each protein sequence as a
vector by utilizing the novel representation of local and global
protein sequence descriptors which provides us with a chance
to mine interaction information from the multiscale amino
acids segments at the same time. Then we characterize a
protein pair in different feature vectors by coding the vectors
of two proteins in this protein pair. Finally, an ELM model
is constructed using these feature vectors of the protein pair
as input. To evaluate the performance, the proposed method
was applied to human PPI dataset. The experiment results
show that our method achieved 84.8% prediction accuracy
with 84.08% sensitivity at the specificity of 85.53%.

2. Materials and Methodology

In this section, we outline the main idea behind the proposed
method.The flowchart intuitively showing how tomap large-
scale PPIs by integrating biosensor-based PPI data with
computational model is given in Figure 1. Firstly, we discuss
the PPI dataset which is used in the study to evaluate the
performance of the proposed method. Next we introduce
the novel sequence-based protein representation method.
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Finally, we briefly descript the computational model, ELM,
used in this study.

2.1. Golden Standard Datasets. We evaluated the proposed
method with the human PPI dataset, which was downloaded
from theHuman Protein References Database (HPRD). After
self-interactions and duplicate interactions were removed,
the remaining 36,630 PPI pairs between 9,630 different
human proteins comprise the final positive dataset.

The chosen golden negative dataset has a variable impact
on the prediction performance, and it can be artificially
inflated by a bias towards dominant samples in the positive
data. For golden negative set, we followed the previous work
[28] assuming that the proteins in separate subcellular com-
partments do not interact with each other. In this study, the
golden negative dataset is generated fromSwiss-Prot database
version 57.3 according to four criteria: (1) protein sequences
annotated with uncertain subcellular location terms were
removed. (2) Protein sequences annotated by multiple loca-
tions were removed because of lack of the uniqueness. (3)
Protein sequences annotated with “fragment” were removed.
(4) Protein sequences with less than 50 amino acid residues
were also removed because they might be fragments. After
strictly following the above steps, we finally obtained 1,773
human proteins from six subcellular localizations. Then the
noninteracting protein pairs were constructed by randomly
pairing the proteins from separate subcellular compartments.

We also downloaded the golden negative dataset of
human with experimental evidence used in the study of
Smialowski et al. [35]. By combining the above two negative
datasets, the whole final golden negative dataset consists
of 36,480 noninteracting protein pairs. The whole dataset
consists of 73,110 protein pairs, where nearly half are from
the positive dataset and half are from the negative dataset.
Four-fifths of the protein pairs from the positive and negative
dataset were, respectively, randomly selected as the training
dataset and the remaining one-fifths were used as the testing
dataset.

2.2. Representing Proteins with Descriptors from Primary
Protein Sequences. To successfully use the machine learn-
ing methods to identify PPIs from primary protein amino
acids sequences, one of the most important computational
challenges is how to effectively represent a protein sequence
by a fixed length feature vector in which the important
information content of proteins is fully encoded [36, 37]. In
this study, two kinds of sequence representation approach
are used to transform the protein sequences into feature
vectors, including amino acid composition and a novel local
descriptor. For amino acid composition, it is evident that 20
amino acid composition descriptors reflecting the fraction of
each kind of amino acid in a protein sequence are directly
calculated.Then, a local multiscale decomposition technique
is used to divide protein sequence into multiple sequence
segments of varying length to describe local regions. Here,
the continuous sequence segments are composed of residues
which are local in the polypeptide sequence [38].

In order to extract local information, we first divided
the entire protein sequence into seven equal length fractions.

Then a novel binary coding scheme was adopted to construct
a set of continuous regions on the basis of the above partition.
For example, consider a protein sequence “CCYGGGYY-
CYYYCGGCCYYCG” containing 21 residues. To represent
the sequence by a feature vector, let us first divide each protein
sequence into multiple regions. For simplicity, the protein
sequence is divided into four equal length segments (denoted
as S
1
, S
2
, S
3
, and S

4
).Then it is encoded as a sequence of 1’s and

0’s of 4-bit binary form. In binary format, these combinations
are written as 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,
1000, 1001, 1010, 1011, 1100, 1101, 1110, and 1111. The number
of states of a group of bits can be found by the expression
2
𝑛, where 𝑛 is the number of bits. It should be noticed that
here 0 or 1 denotes one of the four equal length regions,
and S

1
–S
4
are excluded or included in constructing the

continuous regions, respectively. For example, 1100 denotes a
continuous region constructed by S

1
and S
2
(the first 50% of

the sequence). Similarly, 0011 represents a continuous region
constructed by S

3
and S
4
(the final 50% of the sequence).

It should be noticed that the proposed representation
can be simply and conveniently edited at multiple scales,
which offers a promising new approach for addressing these
difficulties in a simple, unified, and theoretically sound way
when presenting a protein sequence. For a given number
of bits, each protein sequence may take on only a finite
number of continuous or discontinuous regions. This limits
the resolution of the sequence. If more bits are used for
each protein sequence, then a higher degree of resolution is
obtained. In this study, the protein sequence is encoded by 7-
bit binary form; each protein sequencemay take on 126 (27−2)
different regions. Higher bit encoding requires more storage
for data and requires more computing resource to process.
In this study, only the continuous regions are used and the
discontinuous regions are discarded.

For each continuous region, three types of descriptors,
composition (𝐶), transition (𝑇), and distribution (𝐷), are
used to represent its characteristics. 𝐶 denotes the amino
acids number of a particular property (e.g., hydrophobicity)
divided by the total amino acids number in a local region.
𝑇 is the percentage frequency with which amino acids for
a particular property are followed by protein amino acids
of another property. 𝐷 characterizes the chain length within
which the first 25 percent, 50 percent, 75 percent, and 100
percent of the protein amino acids of a particular property
are located, respectively [39].

The three descriptors can be calculated in the following
ways. Firstly, in order to reduce the complexity inherent in
the representation of the 20 standard protein amino acids, we
firstly clustered them into seven clusters based on the volumes
and dipoles of the side chains. Amino acids within the same
groups likely involve synonymous mutations because of their
similar characteristics [29]. The amino acids belonging to
each group are shown in Table 1.

Then, every amino acid in each protein sequence is
replaced by the index depending on its grouping. For exam-
ple, protein sequence “CCYGGGYYCYYYCGGCCYYCG” is
replaced by 773111337333711773371 based on this classification
of amino acids (see Figure 2). There are six “1,” eight “3,” and
seven “7” in this protein sequence.The composition for these
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Protein sequence:
Group index of residue:

Ordinal number for 7:
Ordinal number for 3:
Ordinal number for 1:

1–3 transitions:
1–7 transitions:
3–7 transitions:

C C Y G G G Y Y C Y Y Y C G G C C Y Y C G

7  7 3 1  1  1  3  3 7 3 3  3  7 1  1 7  7  3  3  7 1
1  2  3                           4  5                     6

1              2  3     4 5  6                      7  8 
1  2                          3            4          5  6          7

Figure 2: Sequence of a hypothetic protein indicating the construc-
tion of composition, transition, and distribution descriptors of a
protein region.

Table 1: Division of amino acids into seven groups based on the
dipoles and volumes of the side chains.

Group Class Dipole scale Volume scale

1 Ala, Gly,
Val Dipole < 1.0 Volume < 50

2 Ile, Leu,
Phe, Pro Dipole < 1.0 Volume > 50

3 Tyr, Met,
Thr, Ser 1.0 < dipole < 2.0 Volume > 50

4 His, Asn,
Gln, Trp 2.0 < dipole < 3.0 Volume > 50

5 Arg, Lys Dipole > 3.0 Volume > 50

6 Asp, Glu Dipole > 3.0
(opposite orientation) Volume > 50

7 Cys 1.0 < dipole < 2.0
(form disulphide bonds) Volume > 50

three symbols is 6/(6 + 7 + 8) × 100% = 28.57%, 8/(6 + 7 +
8) × 100% = 38.10% , and 7/(6 + 7 + 8) × 100% = 33.33%,
respectively. There are 2 transitions from “1” to “3” or from
“3” to “1” in this sequence, and the percentage frequency of
these transitions is (2/20)×100% = 10%.The transitions from
“1” to “7” or from “7” to “1” in this sequence can similarly be
calculated as (3/20) × 100% = 15%.The transitions from “3”
to “7” or from “7” to “3” in this sequence can also similarly be
calculated as (6/20) × 100% = 30%.

For distribution 𝐷, there are 6 residues encoded as “1”
in the example of Figure 3, the positions for the first residue
“1,” the 2nd residue “1” (25% × 6 = 2), the 4th “1” residue
(50% × 6 = 3), the 6th “1” (75% × 6 = 5), and the 8th
residue “1” (100% × 6 = 6) in the encoded sequence are
4, 5, 6, 15, and 21, respectively, so the 𝐷 descriptors for “1”
are (4/21) × 100% = 19.05%, (5/21) × 100% = 23.81%,
(6/21) × 100% = 28.57%, (15/21) × 100% = 71.43%,
and (21/21) × 100% = 100%, respectively. Similarly, the 𝐷
descriptor for “3” and “7” is 14.29%, 33.33%, 47.62%, 57.14%,
and 90.48% and 4.76%, 9.52%, 61.9%, 76.19%, and 95.24%,
respectively.

For each continuous local region, the three descriptors (𝐶,
𝑇, and𝐷) were calculated and concatenated, and a total of 63
descriptors are generated: 7 for 𝐶, 21 ((7 × 6)/2) for 𝑇, and
35 (7 × 5) for 𝐷. Then, the local descriptor from 27 regions
(7-bit) was concatenated and a total 1701 dimensional vector
has been built to represent each protein sequence. Finally,
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Figure 3: The structure of extreme learning machine.

the PPI pair is characterized by concatenating the local and
global descriptors of two individual proteins. Thus, a 3442-
dimensional vector has been constructed to represent each
protein pair and was used as a feature vector for input into
SVM classifier.

2.3. Extreme Learning Machine. By virtue of their approxi-
mation capabilities for nonlinear mappings, the feed-forward
neural networks (FNN) have become ideal classifiers inmany
applications. Huang et al. proved that the single-hidden-
layer FNN could exactly learn 𝑀 distinct observations for
almost any nonlinear activation function with almost 𝑀
hidden nods [34, 40, 41]. However, the hidden layer biases
and input weights of FNN have usually to be tuned using
some parameter adjusting approach, which are generally
time-consuming due to inappropriate learning steps with
significantly large latency to converge to local maxima.
Therefore, the slow learning speed of FNN has been a major
bottleneck in different applications.

Extreme learning machine (ELM) was originally devel-
oped for the single hidden layer feed-forward neural network
(SLFNN) and then extended to the generalized SLFNNwhere
the hidden layer need not be neuron alike [34, 40]. As shown
in Figure 3, its architecture is similar to that of a SLFNN.
Recently the ELM algorithm has been increasingly popular
in classification tasks due to its high generalization ability and
fast learning speed. Different from the popular thinking that
network parameters need to be adjusted, the input weights
and first hidden layer biases need not be adjusted but they are
randomly assigned in ELM. It has been proved that the ELM
algorithm performs learning at an extremely fast speed and
achieves a good generalization performance with activation
functions which are infinitely differentiable in hidden layers
[40, 42, 43].

The ELM algorithm transforms the learning problem into
a simple linear system; that is, the output weights of ELM
can be analytically determined through a generalized inverse
operation of the hidden layer weight matrices. Compared
with traditional learning frameworks such a learning scheme
can operate at extremely much fast speed. Improved gen-
eralization performance of ELM with the smallest training
error shows its superior classification capability for real-time



BioMed Research International 5

applications at an exceptionally fast pacewithout any learning
bottleneck [44].

The basic idea behind ELMalgorithm is briefly descripted
as follows: suppose learning 𝑁 arbitrary distinct samples
(𝑥
𝑖
, 𝑡
𝑖
) ∈ 𝑅𝑛 × 𝑅𝑚, where 𝑥

𝑖
= [𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑛
]
𝑇
⊆ 𝑅𝑛,

𝑡
𝑖
= [𝑡
𝑖1
, 𝑡
𝑖2
, . . . , 𝑡

𝑖𝑚
]
𝑇
⊆ 𝑅𝑚, a standard ELM with 𝐿 hidden

neurons and activation function 𝑔(𝑥) are mathematically
modeled by

𝐿

∑
𝑖=1

𝛽
𝑖
𝑔 (𝑥
𝑗
) =

𝐿

∑
𝑖=1

𝛽
𝑖
𝑔 (𝑤
𝑖
⋅ 𝑥
𝑗
+ 𝑏
𝑖
) = 𝑜
𝑗
, 𝑗 = 1, . . . , 𝑁,

(1)

where 𝑤
𝑖
= [𝑤
𝑖1
, 𝑤
𝑖2
, . . . , 𝑤

𝑖𝑛
]
𝑇 represents the weight vec-

tor connecting the 𝑖th hidden node and the input nodes,
𝛽
𝑖
= [𝛽
𝑖1
, 𝛽
𝑖2
, . . . , 𝛽

𝑖𝑚
]
𝑇 represents the weight vector connect-

ing the 𝑖th hidden neuron and the output neurons, and 𝑏
𝑖
is

the bias of the 𝑖th hidden neuron. 𝑤
𝑖
⋅ 𝑥
𝑗
denotes the inner

product of 𝑤
𝑖
and 𝑥

𝑗
. A wide variety of functions could be

selected as the activation function, including sigmoid func-
tion, radial basis function, sine function, hardlim function,
and triangular basis function. The architecture of ELM is
shown in Figure 3. Equation (1) can be written compactly as

𝐻𝛽 = 𝑇, (2)

where

𝐻(𝑤
1
, . . . , 𝑤

𝐿
, 𝑏
1
, . . . , 𝑏

𝐿
, . . . , 𝑥

1
, . . . , 𝑥

𝑁
)

=
[
[

[

𝑔 (𝑤
1
⋅ 𝑥
1
+ 𝑏
1
) ⋅ ⋅ ⋅ 𝑔 (𝑤

𝐿
⋅ 𝑥
1
+ 𝑏
𝐿
)

... ⋅ ⋅ ⋅
...

𝑔 (𝑤
1
⋅ 𝑥
𝑁
+ 𝑏
1
) ⋅ ⋅ ⋅ 𝑔 (𝑤

𝐿
⋅ 𝑥
𝑁
+ 𝑏
𝐿
)

]
]

]𝑁×𝐿

𝛽 =
[
[

[

𝛽𝑇
1

...

𝛽𝑇
𝐿

]
]

]𝐿×𝑚

, 𝑇 =
[
[

[

𝑡𝑇
1

...

𝑡𝑇
𝑁

]
]

]𝑁×𝑚

.

(3)

𝐻 is termed as the hidden layer output matrix of the SLFNN;
the 𝑖th column of𝐻 is the 𝑖th hidden neuron’s output vector
with respect to inputs𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁
. Hence for fixed arbitrary

input weights 𝑤
𝑖
and the hidden layer bias 𝑏

𝑖
, training a

SLFNN equals finding a least-squares solution 𝛽 of the linear
system𝐻𝛽 = 𝑇; that is,


𝐻 (𝑤
1
, . . . , 𝑤

𝐿
, 𝑏
1
, . . . , 𝑏

𝐿
, 𝑥
1
, . . . , 𝑥

𝑁
) 𝛽 − 𝑇



= min
𝛽

𝐻 (𝑤1, . . . , 𝑤𝐿, 𝑏1, . . . , 𝑏𝐿, 𝑥1, . . . , 𝑥𝑁) 𝛽 − 𝑇
 .

(4)

Equation (12) becomes a linear system and the solution is
estimated as

𝛽 = 𝐻
†
𝑇, (5)

where 𝐻† is the Moore-Penrose generalized inverse of the
hidden layer output matrix𝐻.

In summary, given a training dataset ℵ = {(𝑥
𝑖
, 𝑡
𝑖
) | 𝑥
𝑖
∈

𝑅𝑛, 𝑡
𝑖
∈ 𝑅𝑚, 𝑖 = 1, . . . , 𝑁}, activation function 𝑔(𝑥), and

hidden neuron number𝐿, the ELM-based learning procedure
can be summarized as follows.

Step 1. Assign arbitrary input weight 𝑤
𝑖
and bias 𝑏

𝑖
, 𝑖 =

1, . . . , 𝐿.

Step 2. Calculate the hidden layer output matrix𝐻.

Step 3. According to (13), calculate the output weight 𝛽.

3. Results and Discussion

In this section, we describe our simulation methodology
and present the experimental results that evaluate the
effectiveness of our schemes. The proposed sequence-based
PPI predictor was implemented using MATLAB platform.
For ELM algorithm, the implementation by Zhu and Huang
available from http://www.ntu.edu.sg/home/egbhuang was
used. Regarding SVM, LIBSVM implementation available
from http://www.csie.ntu.edu.tw/∼cjlin/libsvm/index.html
was utilized, which was originally developed by Chang
et al. [33]. Tree kinds of kernel functions were chosen
and the optimized parameters were obtained with a grid
search approach. All the simulations were carried out on
a computer with 3.1 GHz 2-core CPU, 8GB memory, and
Windows operating system.

3.1. Cross Validation and Performance Evaluation. In the
study, fivefold cross-validation technique has been employed
to evaluate the performance of the proposed model. In five-
fold cross-validation technique, the whole dataset is ran-
domly divided into five subsets, where each subset consists
of nearly equal number of interacting and noninteracting
protein pairs. Four subsets are used for training and the
remaining set for testing. This process is repeated five times
so that each subset is used once for testing. The performance
of method is average performance of method on five sets.

Seven metrics have been used in the study to measure the
predictive ability of the proposed method. The parameters
are as follows: (1) the overall prediction accuracy (ACC)
is the percentage of correctly identified interacting and
noninteracting protein pairs; (2) the sensitivity (SN) is the
percentage of correctly identified interacting protein pairs;
(3) the specificity (SP) is the percentage of correctly identified
noninteracting protein pairs; (4) the positive predictive value
(PPV) is the positive prediction value; (5) the negative
predictive value (NPV) is the negative prediction value; (6)
the 𝐹-score is a weighted average of the PPV and sensitivity,
where an 𝐹-score reaches its best value at 1 and worst score
at 0; (7) Matthew’s correlation coefficient (MCC) is a more
stringent measure of prediction accuracy accounts for both
under- and overpredictions. These parameters are defined as
follows:

ACC = TP + TN
TP + FP + TN + FN

, (6)
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SN =
TP

TP + FN
, (7)

SP = TN
TN + FP

, (8)

PPV = TP
TP + FP

, (9)

NPV = TN
TN + FN

, (10)

𝐹1 = 2 ×
SN × PPV
SN + PPV

, (11)

MCC = (TP × TN − FP × FN)

× ((TP + FN) × (TN + FP)

× (TP + FP) × (TN + FN))−1/2,

(12)

where true positive (TP) is the number of true PPIs that
are predicted correctly; false negative (FN) is the number of
true PPIs that are predicted to be noninteracting pairs; false
positive (FP) is the number of true noninteracting pairs that
are predicted to be PPIs, and true negative (TN) is the number
of true noninteracting pairs that are predicted correctly.

The above mentioned parameters rely on the selected
threshold. The area under the ROC curve (AUC), which is
threshold-independent for evaluating the performances, can
be easily calculated according to the following formula [45]:

AUC =
𝑆
0
− 𝑛
0
(𝑛
0
+ 1) /2

𝑛
0
× 𝑛
1

, (13)

where 𝑛
0
and 𝑛

1
denote the number of positive and negative

samples, respectively, and 𝑆
0
is the sum of the ranks of all

positive samples in the list of all samples ranked in increasing
order by estimated probabilities belonging to positive. AUC
values can give us a good insight into performance com-
parison of different prediction methods. Although the AUC
is threshold-independent, an appropriate threshold must be
selected for the final decision. For the classifier which outputs
a continuous numeric value to represent the confidence or
probability of a sample belonging to the predicted class,
adjusting the classification threshold will lead to different
confusion matrices which decide different ROC points [29].

3.2. Determination of ELMParameter. Thenumber of hidden
nodes is a critical factor for the generalization of ELM. To
determine the parameter, four-fifths of the whole dataset are
randomly chosen to train the ELM classifiers with different
number of hidden nodes, while the rest one-fifths of the
dataset are used as the validation set to compute the accuracy.

Here the sigmoid function was used as the activation
function of the ELM classifier. The results are plotted in
Figure 4, which shows that the accuracy value reaches about
0.9 and increases slowly when the number of hidden neurons
was set to 9 percent of the amount of samples. Based on
Figure 4, we finally set 9 percent of the sample number as the
number of hidden neurons for the ELM classifier.The second
experiment was to examine how the running time scales with
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the number of hidden neurons. We increase the number of
hidden neurons from 1 to 11 percent of the amount of samples
and measure the average time overhead. Figure 5 shows that
the running time of proposed ELMmodel scales nearly linear
as the hidden neuron size increases.

3.3. Prediction Performance of Proposed Model. We eval-
uated the performance of the proposed model using the
PPIs dataset as described in the aforementioned section. To
guarantee that the experimental results are valid and can
be generalized for making predictions regarding new data,
we adopted the fivefold cross-validation in this study. The
advantages of cross-validation are that the impact of data



BioMed Research International 7

Table 2: Comparison of the prediction performance by the proposed method and state-of-the-art SVM classifier on the human dataset.

Method Kernel Mean/std Time (s) ACC SN SP PPV NPV F1 MCC AUC
Testing

ELM

Sigmoid Mean 72.7901 0.8480 0.8408 0.8553 0.8547 0.8415 0.8477 0.7422 0.9232
Variance 1.9062 0.0022 0.0019 0.0028 0.0040 0.0038 0.0029 0.0030 0.0028

Hardlim Mean 77.4139 0.8206 0.8171 0.8242 0.8227 0.8185 0.8199 0.7056 0.9020
Variance 3.7710 0.0050 0.0040 0.0063 0.0088 0.0026 0.0063 0.0064 0.0031

Gaussian Mean 76.9615 0.7257 0.7328 0.7186 0.7232 0.7283 0.7279 0.6018 0.7624
Variance 4.1012 0.0036 0.0048 0.0054 0.0085 0.0077 0.0044 0.0033 0.0017

Training

ELM

Sigmoid Mean 1282.12 0.8887 0.8831 0.8944 0.8933 0.8843 0.8882 0.8022 0.9561
Variance 17.25 0.0006 0.0010 0.0018 0.0014 0.0001 0.0008 0.0010 0.0012

Hardlim Mean 1330.33 0.8668 0.8655 0.8682 0.8683 0.8654 0.8669 0.7691 0.9397
Variance 46.28 0.0027 0.0021 0.0033 0.0027 0.0027 0.0024 0.0039 0.0031

Gaussian Mean 1435.45 0.7824 0.7896 0.7753 0.7790 0.7860 0.7843 0.6595 0.8626
Variance 94.85 0.0033 0.0022 0.0053 0.0040 0.0026 0.0029 0.0037 0.0038

Testing

SVM

Sigmoid Mean 2794.29 0.8177 0.8119 0.8232 0.8215 0.8144 0.8165 0.7018 0.8878
Variance 16.71 0.0127 0.0266 0.0128 0.0067 0.0200 0.0155 0.0160 0.0143

Gaussian Mean 5237.89 0.6947 0.4714 0.9191 0.8535 0.6348 0.6064 0.5320 0.8997
Variance 67.82 0.0228 0.0412 0.0112 0.0178 0.0265 0.0340 0.0276 0.0364

Polynomial Mean 3612.98 0.8019 0.8219 0.7819 0.7903 0.8144 0.8057 0.6820 0.8838
Variance 20.16 0.0101 0.0126 0.0117 0.0165 0.0114 0.0125 0.0122 0.0138

dependency is minimized and the reliability of the results can
be improved.

The prediction performance of ELM predictor with novel
representation of protein sequence across five runs is shown
in Table 2. It can be observed from Table 2 that high predic-
tion accuracy of 84.8% is achieved for the ELM model with
sigmoid function. To better investigate the prediction ability
of our model, we also calculated the values of sensitivity,
specificity, PPV,NPV,𝐹-score,MCC, andAUC. FromTable 2,
we can see that ourmodel gives good prediction performance
with an average sensitivity value of 84.08%, specificity value
of 85.53%, PPVvalue of 85.47%,NPVvalue of 84.15%,𝐹-score
value of 84.77%, MCC value of 74.22%, and AUC value of
0.9232. Further, it can also be seen in Table 2 that the standard
deviation of accuracy, sensitivity, specificity, PPV, NPV, 𝐹-
score, MCC, and AUC is as low as 0.0022, 0.0019, 0.0028,
0.0040, 0.0038, 0.0029, 0.0030, and 0.0028, respectively.

To demonstrate the performance of the proposed model,
we further compared our method with the state-of-the-art
predictor SVM. From Table 2, we can see the performance
of ELM and SVM model. As observed from Table 2, the
testing time of SVM algorithm (2794.29 s) is roughly 38 times
the testing time of ELM algorithm (72.7901 s) for sigmoid
activation function. In addition, the prediction performance
of ELM is also promising. The AUC of the SVM algorithm is
0.8878, which is lower than the ELM. The overall accuracy,
sensitivity, specificity, PPV, NPV, 𝐹1 score, and MCC of SVM
algorithm are, respectively, 81.77%, 81.19%, 82.32%, 82.15%,
81.44%, 81.65%, and 70.18% as illustrated in Table 2. Hence,
it can be seen that almost all evaluation measures of ELM
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Figure 6: The ROC (receiver operator characteristic) curve illus-
trating the performance of different activation functions. The curve
presents the true positive rate (sensitivity) against the false positive
rate (1 − specificity).

algorithm are a little better than those of SVM algorithm,
while its learning speed is much more faster than SVM.

We also conduct an experiment to characterize the
sensitivity (i.e., the size of true positives that can be detected
by our method) and specificity (i.e., 1 − false positive
rate) of proposed approach for different activation functions
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(Figure 6). The results in Figure 6 are reported using receiver
operator characteristic (ROC) curves, which plot the achiev-
able sensitivity at a given specificity (1 − false positive rate).
Good performance is reflected in curves with a stronger bend
towards the upper-left corner of the ROC graph (i.e., high
sensitivity is achievedwith a low false positive rate).We found
that the proposedmethod achieved over 83 percent detection
rate with less than 10 percent false positive rate. The results
demonstrate that the proposed ELM can successfully classify
positive and negative samples in all five activation functions
that we investigated. Our algorithm can perfectly classify
interacting and noninteracting protein pairs with only a few
exceptions.

To sum up, considering the high efficiency as well as the
good performance we can readily conclude that the proposed
approach generally outperforms the state-of-the-art model
with higher discrimination power for predicting PPIs based
on the information of protein sequences. Therefore, we can
see clearly that ourmodel is amuchmore appropriatemethod
for predicting new protein interactions compared with the
othermethods. Consequently, it makes us bemore convinced
that the proposed method can be very helpful in assisting the
biologist to assist in the design and validation of experimental
studies and for the prediction of interaction partners.

4. Conclusions

In this paper, we have developed an efficient and fast learning
technique, which utilizes global and local information of
protein amino acid sequence, for accurate identification PPIs
at considerably high speed both in training and testing phase.
The first contribution of this work is a novel protein amino
acids sequence representation using amino acid composition
and a descriptor to represent global and local information
of a protein sequence, respectively. Then, the application
of extreme learning machine ensures reliable recognition
with minimum error and learning speed approximately
thousands of times faster than the state-of-the-art classi-
fication method SVM. Experimental results demonstrated
that the proposed method performed significantly well in
distinguishing interacting and noninteracting protein pairs.
It was observed that the proposed method achieved the
mean classification accuracy of 84.8% using 5-fold cross-
validation. Meanwhile, comparative study was conducted on
the proposed method and the state-of-the-art SVM. The
experimental results showed that our method significantly
outperformed SVM in terms of classification accuracy with
shorter running time.
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