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Abstract 

Background:  Obstructive sleep apnoea (OSA) is the most frequent form of sleep-disordered breathing in patients 
with Alzheimer’s disease (AD). Available evidence demonstrates that both conditions are independently associated 
with alterations in lipid metabolism. However, it is unknown whether the expression of lipids is different between AD 
patients with and without severe OSA. In this context, we examined the plasma lipidome of patients with suspected 
OSA, aiming to identify potential diagnostic biomarkers and to provide insights into the pathophysiological mecha‑
nisms underlying the disease.

Methods:  The study included 103 consecutive patients from the memory unit of our institution with a diagnosis of 
AD. The individuals were subjected to overnight polysomnography (PSG) to diagnose severe OSA (apnoea-hypopnea 
index ≥30/h), and blood was collected the following morning. Untargeted plasma lipidomic profiling was performed 
using liquid chromatography coupled with mass spectrometry.

Results:  We identified a subset of 44 lipids (mainly phospholipids and glycerolipids) that were expressed differently 
between patients with AD and severe and nonsevere OSA. Among the lipids in this profile, 30 were significantly cor‑
related with specific PSG measures of OSA severity related to sleep fragmentation and hypoxemia. Machine learning 
analyses revealed a 4-lipid signature (phosphatidylcholine PC(35:4), cis-8,11,14,17-eicosatetraenoic acid and two oxi‑
dized triglycerides (OxTG(58:5) and OxTG(62:12)) that provided an accuracy (95% CI) of 0.78 (0.69–0.86) in the detec‑
tion of OSA. These same lipids improved the predictive power of the STOP-Bang questionnaire in terms of the area 
under the curve (AUC) from 0.61 (0.50–0.74) to 0.80 (0.70–0.90).

Conclusion:  Our results show a plasma lipidomic fingerprint that allows the identification of patients with AD and 
severe OSA, allowing the personalized management of these individuals. The findings suggest that oxidative stress 
and inflammation are potential prominent mechanisms underlying the association between OSA and AD.
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Introduction
Alzheimer’s disease (AD) is the main cause of dementia 
and one of the main causes of disability and death after 
75 years of age. Given the increase in life expectancy, its 
prevalence is expected to increase drastically in the com-
ing years [1]. Currently, there is a lack of drugs that can 
cure or manage the disease long-term. Therefore, it is 
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important to identify all the factors that we can modify 
to avoid both the appearance and progression of this 
disease.

In recent years, different sleep disorders, including 
their duration and quality, have been shown to be risk 
factors for the development of AD. Of all known sleep 
disturbances, the presence of obstructive sleep apnoea 
(OSA) has been consistently identified as a risk factor 
for AD in population studies AD [2, 3]. Studies on cog-
nitively healthy elderly subjects with OSA have reported 
increased amyloid β-42 (Aβ-42) and phosphorylated 
tau (p-tau) levels as measured in the cerebrospinal fluid 
(CSF) or on positron emission tomography (PET) [4]. In 
addition, longitudinal studies have reported an increase 
in the speed of cerebral amyloid accumulation promoted 
by OSA [5]. Its prevalence in patients with AD ranges 
between 45 and 90%, presenting as severe OSA in up to 
40% of AD patients [6].

Clinically, although some studies have shown that the 
presence of OSA advances the age of diagnosis of mild 
cognitive impairment (MCI) and AD, suggesting that it 
could accelerate the progression of these diseases in the 
early stages [7], and that continuous positive airway pres-
sure (CPAP) can improve short-term cognitive perfor-
mance [8], other longitudinal studies have not observed 
that the presence of OSA worsens the cognitive evolution 
of patients with mild–moderate AD [9].

The high prevalence of OSA in patients with AD makes 
the diagnosis of OSA essential, given that it is also a risk 
factor for hypertension, diabetes, heart failure, stroke or 
depression, all of which are risk factors for AD [10, 11]. 
However, the study of sleep in these patients is complex. 
Although polysomnography (PSG) is the technique of 
choice, the need to go to the hospital to sleep one or two 
nights often limits its usefulness in patients with AD and 
can generate sleep data that do not correspond to the 
patient’s usual routine at home [12]. In addition, sim-
ple screening questionnaires, including the STOP-Bang 
questionnaire (SBQ) [13] and the Berlin questionnaire 
(BQ) [14], have been shown to be insufficient for iden-
tifying subjects at risk of OSA in this type of population 
[15]. Thus, the search for new screening tools to detect 
OSA in this population remains.

Lipidomics is the science of the large-scale determi-
nation of individual lipid species in biological samples 
and has demonstrated great potential in the search for 
disease-associated biomarkers. OSA is a pathologic 
condition that is strongly associated with systemic lipid 
dyshomeostasis [16]. In addition, OSA can increase 
lipoxidation, as has been evidenced in both the brain and 
blood of AD patients [17, 18]. Therefore, the identifica-
tion of systemic alterations in lipid species using high-
performance lipidomic platforms could contribute to 

finding OSA-associated lipid profiles in AD and increase 
our understanding of the relationship between these two 
complex pathological conditions.

Therefore, the aim of our study was (i) to evaluate 
whether the expression pattern of circulating lipids is 
different between AD patients with and without severe 
OSA, which would be of great relevance for the practi-
cal and noninvasive screening of OSA among patients 
with AD; (ii) to investigate whether the severity of OSA is 
correlated with changes in plasma lipid levels; and (iii) to 
evaluate the diagnostic performance of lipidomics find-
ings in joint use with classic screening tests such as the 
SBQ.

Materials and methods
Study population
This is an ancillary study from trial NCT02814045 that 
was conducted in the Cognitive Disorders Unit of the 
Hospital Universitari Santa Maria (Lleida, Spain) from 
November 2014 to November 2017 to evaluate the cogni-
tive evolution of AD patients with and without OSA after 
1 year of follow-up. The patients were recruited prospec-
tively and consecutively according to the eligibility crite-
ria: (1) males and females above 60 years without specific 
treatment for dementia at the moment of inclusion and 
with a new diagnosis of mild or moderate AD (Mini-
Mental State Examination (MMSE) score ≥20) according 
to the National Institute on Aging–Alzheimer’s Associa-
tion (NIA-AA) criteria [19]; (2) absence of visual or hear-
ing problems that, in the investigator’s judgement, would 
decrease compliance with the neuropsychological exami-
nation; (3) signed informed consent from the patient and 
the responsible caregiver (and/or if applicable, the legal 
representative if different from the responsible caregiver); 
and (4) a knowledgeable and reliable caregiver accompa-
nying the patient to all clinic visits during the study.

The exclusion criteria were as follows: (1) a previous 
diagnosis of OSA treated with CPAP; (2) severe AD, 
other types of dementia or patients with mild–mod-
erate AD with current acetylcholinesterase inhibitor 
treatment or memantine; (3) presence of any previously 
diagnosed sleep disorder: narcolepsy, severe insomnia or 
chronic lack of sleep; (4) comorbidities such as cancer, 
severe depression, severe renal or hepatic insufficiency 
and severe cardiac or respiratory failure; and (5) the 
presence of excessive somnolence for unknown reasons. 
All exclusion criteria are available in the paperwork for 
NCT02814045.

Study design
Patients with mild–moderate AD who gave consent to 
participate in the study underwent a detailed interview 
regarding personal history, a general clinical examination 
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for associated conditions and comorbidities and anthro-
pometric data collection. At baseline, participants were 
evaluated by a polysomnographic study, and blood and 
CSF samples were obtained to determine the APOE gen-
otype and the levels of Aβ42, total tau (t-tau) and p-tau, 
respectively.

Eligible individuals were selected and classified as 
severe OSA (apnoea-hypopnea index [AHI] ≥30/h) and 
nonsevere OSA (AHI <30/h) patients based on the PSG 
findings. Only those with a complete PSG and available 
blood samples for determining the plasma lipidome were 
included in the present study.

All participants underwent cognitive assessment using 
the MMSE [20]. Seventy patients also underwent a semi-
structured sleep questionnaire that included the SBQ for 
the detection of OSA. The SBQ comprises 8 items requir-
ing dichotomous responses related to OSA, snoring, 
tiredness, observed sleep apnoea, high blood pressure, 
body mass index (BMI), age, neck circumference and 
sex. The score ranges from 0 to 8, with the highest scores 
associated with a high probability of OSA. A cut-off score 
of ≥ 3 is considered high risk of moderate/severe OSA, 
and <3 is considered low risk [13].

Clinical variables
The following variables were collected: age, sex, years of 
education, unhealthy habits (alcohol consumption and 
smoking), vascular risk factors (hypertension, diabetes 
mellitus, dyslipidaemia, stroke and heart diseases) and 
personal psychiatric history. BMI was calculated as body 
weight (in kg)/height (in m2). Excessive daytime sleepi-
ness was evaluated by the Epworth Sleepiness Scale (ESS) 
and was defined as a total ESS score > 10 [21].

Polysomnography (PSG)
PSG was performed according to international guidelines 
to classify the patients as nonsevere OSA (AHI <30/h) 
or severe OSA (AHI ≥30/h) patients. The following 
devices were used: an Embletta® sleep monitor (Embla, 
Canada), a Sibelmed Exea Series 5 (Sibel SAU, Spain), a 
Philips Respironics Alice 6 LDx (Philips, USA) and an 
ApneaLink Resmed (Resmed, Canada).

Apnoea was defined as the absence of airflow for more 
than 10 s. Hypopnea was defined as a reduction in airflow 
that lasted more than 10 s leading to arousal or oxygen 
desaturation (represented by a decrease in oxygen satura-
tion greater than 3%). The AHI was defined as the num-
ber of apnoea and hypopnea events per hour during the 
time spent sleeping. CT90 was defined as the percentage 
of cumulative sleep time with oxyhaemoglobin saturation 
(SpO2) <90%. The arousal index was defined as the num-
ber of awakening events per hour after sleep onset.

Genetic analysis
DNA was extracted from buffy coat cells using a Max-
well® RCS blood DNA kit (Promega, USA). APOE geno-
typing was performed using TaqMan® SNP genotyping 
assays (C_3038793_20 and C_904973_10) and real-time 
polymerase chain (PCR) according to the manufactur-
er’s user guide (Publication No. MAN0009593, revision 
B.0).

Cerebrospinal fluid (CSF) biomarkers
All patients underwent lumbar puncture between 8:00 
and 10:00 am to avoid variations related to the circadian 
rhythm. Samples were collected in polypropylene tubes, 
centrifuged at 2000 × g for 10 min at 4°C and stored 
at −80°C until use. The levels of CSF Aβ42 (Innotest® 
β-Amyloid (1-42)), t-tau (Innotest® hTAU Ag) and 
p-tau (Innotest® Phospho-Tau (181P)) were determined 
by the enzyme immunoassay method according to the 
manufacturer’s instructions (Fujirebio Europe, Ghent, 
Belgium). All samples were measured in duplicate and 
expressed in pg/ml. Samples were obtained with sup-
port from IRBLleida Biobank (B.0000682) and PLATA-
FORMA BIOBANCOS PT17/0015/0027.

Lipidomic profiling
The plasma lipidome of patients was determined using 
untargeted lipidomic analysis. The lipids were extracted 
based on a previously published and validated method 
[22]. Lipid extracts were analysed via ultrahigh-per-
formance liquid chromatography (UHPLC) coupled 
with electrospray ionization quadrupole time of flight 
(ESI-Q-TOF) tandem mass spectrometry (MS/MS) 
according to a previously published method [23, 24] 
using an Agilent 1290 liquid chromatography system 
(Agilent Technologies, Santa Clara, CA, USA) coupled 
with a 6520 ESI-Q-TOF mass spectrometer (Agilent 
Technologies, Santa Clara, CA, USA) was used. Data 
were acquired in both positive and negative ionization 
modes.

Lipidic identification
The differentially expressed features were identified 
in the Human Metabolome Database (HMDB) [25] 
according to the exact mass and retention time, while 
the molecular weight tolerance was adjusted to 30 ppm. 
Potential identities were confirmed by comparison of 
the exact mass, retention time and MS/MS spectral 
fragmentation pattern of the class representative inter-
nal standards, when available, with a public database 
using the LC–MS/MS search module of the HMDB web 
server, as well as Lipidmatch and MSDIAL software 
[26].
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Pathway enrichment analysis
The annotated differential lipids were searched against 
the KEGG library of H. sapiens. Pathway enrichment 
analysis was performed through the MetaboAnalyst 
web service (http://​www.​metab​oanal​yst.​cat/) [27]. A 
hypergeometric test was applied for overrepresentation 
analysis. p values regarding significantly affected path-
ways were adjusted for the false discovery rate (FDR).

Statistical analyses
Descriptive statistics were used to summarize the char-
acteristics of the study population. Continuous variables 
were summarized using the mean (standard deviation) 
for normally distributed data and the median (25th per-
centile; 75th percentile) for nonnormally distributed 
data. The normality of the distributions was assessed by 
the Shapiro–Wilk test. Categorical data were summa-
rized using frequency (percentage). Clinical and sociode-
mographic characteristics of the patients were compared 
between groups separated according to the OSA status 
(AHI ≥ 30 vs. AHI <30) using the t test (or an equivalent 
nonparametric test) or the chi-squared test depending 
on whether the variables were quantitative or categori-
cal, respectively. Lipid levels were log-transformed for 
statistical purposes. Linear models with empirical Bayes 
statistics were used to evaluate differences in lipid lev-
els between groups [28]. Models for differential expres-
sion between groups were adjusted for age, sex and body 
mass index (BMI). Lipids with a significant difference 
(p value <0.05) between groups and a fold change (FC) 
higher than 1.25 (or lower than 0.8 for downregulated 
lipids) were considered differentially expressed. Differ-
ential expression between study groups was displayed 
in volcano plots. Correlations between differentially 
expressed lipids and PSG parameters were evaluated 
using Pearson’s correlation coefficient. Furthermore, the 
variable importance, calculated as the average of 50 runs 
of random forests, was calculated for each differentially 
expressed lipid.

A feature selection process based on the random forest 
algorithm [29] was performed to construct a lipidomic 
signature that predicted severe OSA. This feature selec-
tion process is suitable for high-dimensional data and 
was applied to the differentially expressed lipids identi-
fied and repeated 10 times to account for variability in 
the selection process. The lipids selected in some execu-
tions of the process were included in the candidate set for 
the final predicted model. The candidates were included 
as predictors in a logistic model with OSA status as a 
response. The best model, based on the Akaike infor-
mation criterion (AIC), included the lipids that com-
posed the final lipidomic signature. The accuracy (95% 

confidence interval (CI)) of the model was estimated 
and compared. Receiver operating characteristic (ROC) 
curves were constructed for the lipidomic signature and 
the reference questionnaire (STOP-Bang), and the area 
under the ROC curve (AUC) was used as the global dis-
crimination value measure. p values <0.05 were consid-
ered to indicate statistical significance. All statistical 
analyses were performed using R software, version 4.0.2.

Results
Characteristics of the sample
A total of 103 consecutive mild–moderate AD patients 
with clinical data and plasma samples were included in 
the study. The mean (SD) age of the population was 75.49 
(5.62) years; 59 (57.28%) participants were women, and 
the MMSE score was 23.5 (2.38) points. Arterial hyper-
tension was the most frequent vascular risk factor, pre-
sent in 60 (58.25%) patients, followed by dyslipidaemia 
in 47 (45.63%) participants and diabetes in 19 (18.44%) 
participants. Regarding the sleep parameters, the mean 
ESS was 5.57 (4.09), and the mean AHI was 29.53 (21.85). 
Sixty-three patients were considered to have nonsevere 
OSA (AHI <30), and 40 patients were considered to have 
severe OSA (AHI≥30). The characteristics of the patients 
at baseline were similar between the severe OSA and 
nonsevere OSA groups. The baseline characteristics by 
OSA status are summarized in Table 1.

Untargeted lipidomic analysis
The first objective of the study was to evaluate the differ-
ences in the lipidome in patients with and without severe 
OSA. Nondirected lipidomics was performed by LC–
MS. After quality control, 1022 lipids were detected and 
included in the analyses. After adjusting for confound-
ing factors (age, sex and BMI), 44 differentially expressed 
lipid species were identified, 11 with reduced (FC from 
0.65 to 0.75) and 33 with increased plasma levels in 
patients with severe OSA (FC from 1.26 to 1.90) (Fig. 1A 
and Fig. S1). Subsequently, we identified a lipidomic pre-
diction model for the detection of severe OSA based on 
random forest analysis. In Fig. 1B, we can see the impor-
tance of each lipid in the classification of the study groups 
(severe OSA vs. nonsevere OSA).

In Fig.  1C, we show the correlation between the dif-
ferent dysregulated lipid species and different param-
eters of the PSG related to sleep fragmentation (arousal 
index), different types of apnoea and different measures 
of hypoxemia (AHI, respiratory arousal index, average 
and minimum arterial oxygen saturation (SaO2) and 
CT90. The analysis revealed that of the 44 differentially 
expressed lipids, 30 were significantly associated with 
one or more parameters of OSA severity.

http://www.metaboanalyst.cat/
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Identification of differentially expressed lipids
Table  2 includes a list of the 25 dysregulated lipid spe-
cies identified between both groups. These lipid species 
can be grouped into 14 phospholipids (PLs) (consist-
ing of four phosphatidylcholines (PCs), two lysophos-
phatidylcholines (lysoPCs), one phosphatidylserine (PS), 

three phosphatidyl ethanolamine plasmalogens (PE(P)
s), one lysophosphatidic acid (lysoPA), one phosphatidic 
acid (lysoPA) and one cardiolipin (CL)), seven glycerolip-
ids (GLs) (consisting of four triglycerides (TGs), two 
ether-linked TGs (TG(O)s) and one diglyceride (DG)), 
3 fatty acids (consisting of 9,10-epoxyoctadecenoic 

Table 1  Characteristics of Alzheimer’s disease patients according to their obstructive sleep apnoea (OSA) status. BMI body mass index, 
AD Alzheimer’s disease, AHI apnoea-hypopnea index per hour, CSF cerebrospinal fluid, APOE Ɛ4 apolipoprotein epsilon 4, MMSE Mini-
Mental State Examination, ACE angiotensin-converting enzyme, OSA obstructive sleep apnoea, SaO2 oxygen saturation, CT90 time 
with SaO2 <90%

All (n=103) Non-severe OSA 
(AHI<30/h) (n = 63)

Severe OSA (AHI≥30/h) 
(n = 40)

p value

Demographic characteristics
  Age at baseline visit (years), median [IQR] 76.0 [72.0; 80.0] 75.0 [71.5; 79.5] 78.0 [72.8; 80.0] 0.14

  Gender (female), n (%) 61 (59.2%) 42 (66.7%) 19 (47.5%) 0.085

  Education (years), mean (SD) 7.31 (2.68) 7.46 (2.32) 7.08 (3.19) 0.511

  BMI (kg/m2), mean (SD) 27.7 [25.0; 31.1] 27.6 [24.7; 30.6] 28.1 [26.8; 32.4] 0.081

Medical disorders
  Hypertension (yes), n (%) 60 (58.3%) 37 (58.7%) 23 (57.5%) 0.999

  Diabetes (yes), n (%) 19 (18.4%) 13 (20.6%) 6 (15.0%) 0.999

  Hypercholesterolaemia (yes), n (%) 42 (40.8%) 24 (38.1%) 18 (45.0%) 0.625

  Depression (yes), n (%) 29 (28.2%) 18 (28.6%) 11 (27.5%) 0.999

  Smoker 0.662

    Nonsmoker, n (%) 82 (79.6%) 48 (76.2%) 34 (85.0%)

    Current, n (%) 1 (0.97%) 1 (1.59%) 0 (0.00%)

    Former, n (%) 20 (19.4%) 14 (22.2%) 6 (15.0%)

  Family history of AD (yes), n (%) 40 (38.8%) 21 (33.3%) 19 (47.5%) 0.219

  Use of acetylcholinesterase inhibitors or memantine 
(yes), n (%)

98 (95.1%) 60 (95.2%) 38 (95.0%) 0.999

Polysomnography parameters
  AHI (events/h), median [IQR] 23.6 [12.2; 47.7] 15.0 [7.47; 20.3] 52.2 [42.3; 62.0] <0.001

  CT90, % 2.20 [0.31; 9.31] 1.12 [0.18; 4.86] 5.80 [1.07; 14.9] 0.004

  Mean SaO2, % 93.0 [92.0; 94.0] 93.0 [92.0; 94.0] 93.0 [92.0; 93.0] 0.269

  Minimum SaO2, % 84.0 [79.0; 87.0] 86.0 [82.0; 88.0] 81.5 [78.0; 85.0] 0.003

  Arousal index, events/h 37.6 [26.2; 49.5] 29.0 [19.7; 40.6] 46.1 [40.0; 55.8] <0.001

Epworth Sleepiness Scale (0–24), median [IQR] 5.00 [2.50; 8.00] 5.00 [2.00; 8.00] 5.00 [3.00; 8.00] 0.773

STOP-Bang score
MMSE score 23.0 [22.0; 25.0] 23.0 [22.0; 25.0] 24.0 [22.0; 25.0] 0.512

AD biomarkers
  Aβ42 CSF (pg/ml), median [IQR] 493 [399; 580] 489 [393; 584] 505 [406; 564] 0.679

  Total tau CSF (pg/ml), median [IQR] 494 [350; 696] 494 [369; 707] 469 [346; 684] 0.676

  Phospho-tau CSF (pg/ml), median [IQR] 81.0 [55.4; 97.5] 80.0 [58.0; 95.0] 81.0 [55.1; 98.0] 0.929

  ApoE Ɛ4 (carrier), n (%) 55 (53.4%) 32 (50.8%) 23 (57.5%) 0.644

Medications
  ACE inhibitors, % 32 (31.1%) 21 (33.3%) 11 (27.5%) 0.707

  Beta-blockers, % 16 (15.5%) 7 (11.1%) 9 (22.5%) 0.202

  Diuretic agents, % 30 (29.1%) 21 (33.3%) 9 (22.5%) 0.339

  Calcium-channel blockers, % 13 (12.6%) 9 (14.3%) 4 (10.0%) 0.738

  Lipid-lowering agents, % 43 (41.7%) 24 (38.1%) 19 (47.5%) 0.376

  Insulin, % 2 (1.94%) 1 (1.59%) 1 (2.50%) 0.999
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acid (9,10-EOA), cis-8,11,14,17-eicosatetraenoic acid 
(8,11,14,17-ETA) and one acylcarnitine) and one sphin-
golipid (a ceramide). Several lipid species, especially 
those from the GL category, were oxidized. Nearly all of 
these oxidized lipids had higher levels in the plasma of 
AD patients with severe OSA than in nonsevere OSA 

patients. A list of the all differentially expressed lipid spe-
cies can be seen in Table S1.

Lipidomic prediction model for severe OSA
The next objective of this study was to identify a plasma 
lipidomic signature that would allow the identification of 

Fig. 1  Untargeted lipidomic profiling in AD patients with severe OSA. A Volcano plots of the FC (x-axis) and p value (y-axis) for each detected 
lipid in the comparison of severe OSA vs. nonsevere OSA subjects. Red dots represent significantly downregulated (FC <0.80) molecules, and 
blue dots represent significantly upregulated (FC> 1.25) molecules in severe OSA patients. The results were adjusted for confounding factors 
(age, sex and BMI). The p value threshold defining statistical significance was <0.05. B Top 20 significant lipids in the classification of the study 
groups (severe OSA vs. nonsevere OSA) based on random forest. C Significant correlations between PSG parameters of OSA severity and the 
differentially expressed lipids. The colour scale illustrates the degree of correlation and ranges from red to blue, indicating negative and positive 
correlations, respectively. Unknown features are presented as exact mass @ retention time. Definition of abbreviations: AHI apnoea-hypopnea 
index, LysoPC lysophosphatidylcholine, PG phosphatidylglycerol, FC fold change, OSA obstructive sleep apnoea, PC phosphatidylcholine, PE 
phosphatidylethanolamine, OxTG oxidized triglyceride, CT90 time with oxygen saturation <90%. For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article
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subjects with severe OSA. The 25 differentially expressed 
and identified lipid species were included in the con-
struction of prediction models using machine learning 
approaches. The multivariate analysis of variable selec-
tion based on the random forest revealed a specific fin-
gerprint of severe OSA composed of 4 lipid species 
(Fig. 2): PC (35:4), 8,11,14,17-ETA and two oxidized TGs 
(OxTG (58:5) and OxTG (62:12)). The predictive perfor-
mance of this fingerprint showed an AUC of 0.78 (95% 
CI 0.69–0.86) in the detection of severe OSA in patients 
with AD. Addition of the lipid signature data to the infor-
mation provided by the SBQ (AUC = 0.61 (95% CI 0.50–
0.74)) increased the predictive potential for severe OSA 
(AUC = 0.80 (95% CI 0.70–0.90)) (Fig. 3).

Integrated analysis of lipid pathways in severe OSA
Pathway enrichment analysis, using a class representa-
tive of all dysregulated lipid features with a putative 
identity as input, was conducted using the MetaboAna-
lyst platform. As shown in Fig. 4, this integrated analysis 

approach yielded four significantly enriched pathways, 
including PL metabolism, linoleic acid metabolism, GL 
metabolism and arachidonic acid metabolism. In addi-
tion, the p values for PL metabolism and linoleic acid 
metabolism remained significant after FDR correction 
(p = 1.3086E−5 and 0.027, respectively).

Discussion
In this study, we identified a lipidomic profile associated 
with the presence of severe OSA in patients with AD. 
This lipidomic profile was significantly correlated with 
different polysomnographic measures related to sleep 
fragmentation and hypoxemia related to OSA sever-
ity. We identified 25 plasma lipids that were found in 
different amounts between AD patients with and with-
out severe OSA, regardless of the incorporation of con-
founding factors. The differentially expressed lipids were 
mostly phospholipids, suggesting that cellular mem-
branes are especially susceptible to OSA-mediated path-
ological alterations. In the machine learning multivariate 

Table 2  Putative identity of the significantly differentially expressed lipids between AD patients with and without severe OSA

Definition of abbreviations: GL glycerolipid, PL phospholipid, FA fatty acid, SP sphingolipid, LysoPC lysophosphatidylcholine, PC phosphatylcholine, OxPC oxidized 
phosphatidylcholine, DG diglyceride, TG triglyceride, OxTG oxidized triglyceride, PE(P) phosphatidylethanolamine plasmalogen, Cer ceramide, OxCer oxidized 
ceramide, PG phosphatidylglycerol, PS phosphatidylserine, LysoPA lysophosphatidic acid, OxAcCar oxidized acylcarnitine, CL Cardiolipin

Putative identity Class Mass RT (min) Mass/z Fold change p

LysoPC(18:0) PL 523.3624 3.63 524.3624 1.628 0.001

PC(40:6) PL 893.6143 7.40 892.6143 1.307 0.002

DG(40:3) GL 734.5885 9.16 733.5885 1.365 0.002

OxTG(62:12) GL 1059.885 9.98 1060.885 1.669 0.003

PE(P-40:6) PL 775.5565 7.63 776.5565 1.408 0.006

OxPC(42:9) PL 903.5824 6.56 904.5824 1.467 0.007

Cer(O-37:4)/OxCer(37:5) SP 587.4894 7.78 588.4894 0.753 0.012

PE(P-36:4) PL 723.5188 7.25 724.5188 1.259 0.013

OxTG(58:5) GL 1017.834 9.82 1018.834 1.358 0.019

LysoPC(16:0) PL 555.3516 2.74 554.3516 1.333 0.021

Cis-8,11,14,17-Eicosatetraenoic acid FA 364.2588 3.83 363.2588 1.402 0.024

PC(37:6) PL 791.5414 6.55 792.5414 0.671 0.024

TG(O-56:9) GL 924.7008 7.11 925.7008 1.339 0.024

PG(33:0) PL 737.5363 7.51 736.5363 1.418 0.025

PC(35:4) PL 749.5353 7.33 748.5353 1.32 0.027

TG(O-56:1) GL 902.8486 7.30 903.8486 0.74 0.028

LysoPC(18:1) PL 521.3469 2.89 522.3469 1.287 0.03

PS(42:2) PL 853.6181 7.39 852.6181 0.714 0.032

OxTG(58:6) GL 1015.822 9.66 1016.822 1.566 0.032

PE(P-36:1) PL 729.5663 8.11 728.5663 1.48 0.034

LysoPA(18:4) PL 430.2058 3.62 429.2058 1.481 0.036

OxAcCar(18:0) FA 443.3681 4.07 444.3681 0.715 0.037

TG(58:8) GL 990.7796 10.02 989.7796 1.454 0.04

9,10-Epoxyoctadecenoic acid FA 278.2241 2.62 277.2241 1.705 0.04

CL(78:2) PL 1605.186 7.56 1604.186 1.334 0.043
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analyses, the plasma levels of these lipid species allowed 
us to discriminate those subjects with severe OSA with a 
much greater capacity than through the use of the STOP-
Bang screening questionnaire alone.

AD is a neurodegenerative disease whose appearance 
and evolution are associated with a number of factors, 
such as β-amyloid, tau, inflammation, arterial hyperten-
sion and diet [30]. In recent years, certain sleep disorders, 
such as OSA, have been shown to be risk factors that 
favour the accumulation of amyloid [5] and the appear-
ance of the disease [2, 3]. Up to 40% of patients with 
mild–moderate AD present with severe OSA; however, 
the study of this association has not been generalized to 
memory units in the clinical setting [15].

No published data have shown that the presence of 
OSA in the dementia phase of AD indicates a worse 
prognosis at the cognitive level [9]. The underdiagnosis 
of chronic disorders such as OSA represents an addi-
tional cost for health systems compared to the adequate 
diagnosis and treatment of these diseases [31], and in 
the specific case of OSA, we know that it is associated 
with greater difficulties in the control of blood pressure, 
increased insulin resistance, metabolic syndrome or obe-
sity, all factors that worsen the cognitive evolution of 
patients [32, 33]. Consequently, and because of the diffi-
culties in performing PSG both due to its economic cost 
and the relative noncompliance of patients with cognitive 

impairment, together with the limited usefulness of 
screening tests [15] in this population, it is justified to 
explore new peripheral biomarkers that allow the detec-
tion of severe forms of OSA.

The brain is mainly composed of lipids, and alterations 
in lipid composition have been described in AD [34]. 
OSA has been shown to alter lipid composition at the 
systemic level and increase lipoxidation [35, 36]. For this 
reason, we performed an undirected lipidomic analysis 
with liquid chromatography-tandem mass spectrometry 
(LC–MS/MS) to robustly and reliably discover biomark-
ers, as has been done with a great variety of diseases [37, 
38]. In our study, we observed how a signature composed 
of 4 lipid species could serve as a biomarker of severe 
OSA in patients with AD and be of significantly higher 
value than the STOP-Bang questionnaire alone, which, to 
date, has been the most effective screen tool for this pop-
ulation group [15]. These results could allow the identifi-
cation of those subjects with AD with a high probability 
of presenting severe OSA and who therefore could be 
confirmed by PSG. These results would allow the person-
alized management of patients with AD with high suspi-
cion of severe OSA.

Although lipidomics has been used to study different 
aspects of AD, especially those related to the diagnosis 
and differential diagnosis with other types of dementia 
[39–41], this technique has not been used in the search 

Fig. 2  Potential lipid signature for the diagnosis of severe OSA in AD patients. A Lipids included in the final model. Feature selection was based on 
a combination of random forest and automated model selection using the Akaike information criterion. B Receiver operating characteristic curves 
for predicting severe OSA using the lipid signature. The AUC (95% CI) for the model is shown. Definition of abbreviations: PC phosphatidylcholine, 
Cis-8,11,14,17-ETA Cis-8,11,14,17-eicosatetraenoic acid, OxTG oxidized triglyceride
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for biomarkers for the diagnosis of OSA in the AD popu-
lation. In the population without cognitive impairment, 
there are also few studies on nondirected metabolomics/
lipidomics in blood. Ferrarini et  al. [42], in a sample of 
33 subjects, identified 14 metabolites, including platelet-
activating factor and lysophospholipids, together with 
some compounds related to the differential activity of 
the gut microflora (bile pigments and pipecolic acid), 
that distinguished the severity of OSA; however, they did 
not analyse the performance of these metabolites as bio-
markers of OSA. Lebkuchen et al. [43] identified the dif-
ferential plasma levels of 22 lipid species in subjects with 
an AHI> 15 events/hour. Pinilla et al. attempted to over-
come some of the limitations of these studies, such as the 
low reliability due to small sample sizes, the cross-sec-
tional designs and the lack of adjustment for confound-
ing variables [44]. In their study, Pinilla et  al. identified 
a plasma profile composed of 33 metabolites, including 
lipids, in OSA vs. non-OSA patients. In accordance with 
our results, in the latter study, PLs were the most affected 
group of lipids in OSA [45].

To our knowledge, our study is the first attempt to 
investigate the OSA-associated lipid profile in a popula-
tion with a high prevalence of this pathological condition, 
such as patients with AD. Our analysis in an extensive 
cohort of subjects with mild–moderate AD revealed that 
despite adjusting for different covariates to eliminate the 
effect of confounding variables, there were significant 
alterations in plasma lipid levels due to the presence of 
severe OSA. In addition, the majority of differentially 
expressed lipids were also strongly correlated with dif-
ferent PSG measures, especially with variables related to 
hypoxemia and sleep fragmentation (AHI, mean SaO2, 
respiratory arousal index, minimum SaO2 and CT90).

The majority of identified lipid species associated with 
OSA severity were PLs. Pathway enrichment analysis 
revealed that the metabolism of these lipids was signifi-
cantly dysregulated. PLs are major constituents of cel-
lular membranes. They provide an optimal environment 
for the interaction of proteins, their trafficking and their 
function. The regulation of membrane lipid homeosta-
sis is highly important in AD because amyloid precursor 

Fig. 3  Receiver operating characteristic curves for predicting severe OSA in AD patients using the lipid signature (green), STOP-Bang questionnaire 
(red) and the combination of both the lipid signature and the STOP-Bang questionnaire (blue). Analysis was performed in those patients with 
STOP-Bang data. The AUC for each model is shown
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protein is a transmembrane protein, and membrane lipid 
dysregulation may affect the processing of this protein, 
leading to increased Aβ production [46]. OSA has been 
shown to increase oxidative stress [35]. Elevated lipid 
peroxidation is evidenced in both the brain and blood 
of AD patients [17, 18]. Therefore, OSA, by increasing 
lipid peroxidation, may disrupt membrane lipid homeo-
stasis and contribute to AD pathogenesis. Supporting 
this notion, in our study, we found that several signifi-
cantly altered lipid species were oxidized, which may 
have been caused by increased lipid peroxidation due to 
a more severe OSA. In addition, dysregulation regard-
ing PL plasmalogens was also associated with the sever-
ity of OSA in AD. PL plasmalogens are a class of lipids 
enriched in cellular membranes that have been suggested 
to protect other membrane lipids against lipid peroxida-
tion. Furthermore, our data also linked altered plasma 
levels of a cardiolipin (CL (78:2)) to OSA severity. CL is a 
mitochondria-exclusive PL that is essential for mitochon-
drial functionality. Mitochondria are the main producers 
of reactive oxygen species (ROS), and disruption of their 
functionality, which is evidenced in AD, has strongly 
been related to an increase in ROS [47]. Additionally, 

membrane PLs are a major source of lipid mediators that 
have a fundamental role in biological processes such as 
inflammation. Therefore, PL dyshomeostasis may also 
contribute to elevated systemic inflammation, which is 
characteristic of both AD and OSA [48, 49]. Our results 
also linked several TG species to OSA severity in AD 
patients. TGs are neutral lipids reserved in intracellular 
organelles named lipid droplets (LDs). At the systemic 
level, LDs are mainly produced in adipose tissue, but all 
cells can produce these organelles. In the periphery, LDs 
not only serve as a lipid storage and supply but also affect 
physiological processes, such as inflammation, cell signal-
ling and redox homeostasis. For example, LDs in various 
immune cell types contain a large amount of arachidonic 
acid, which can serve as a precursor for eicosanoid syn-
thesis [50]. Interestingly, our data also associated an 
eicosanoid (Cis-8,11,14,17-ETA) with the severity of OSA 
in AD, highlighting the possible role of OSA-derived sys-
temic inflammation as a contributor to AD pathogenesis.

The present study has some limitations. Due to the 
incipient state of this field of research, an exploratory 
approach was carried out with the objective of obtain-
ing new knowledge from which new hypotheses can be 

Fig. 4  Pathway enrichment analysis of annotated features related to OSA severity in AD patients. Scatter plot presenting the enriched lipid 
pathways in which classes representative of all identified lipids are involved. Each circle represents a pathway. The colour gradient indicates the 
significance of the pathway ranked by p value, with yellow indicating lower values and red indicating higher values (y-axis). The size of the circles 
represents the impact score of the pathway based on the number of molecules contained in the pathway (x-axis). Significantly affected pathways 
appear with their name. *Significant after FDR correction (p <0.05)
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generated. Therefore, a targeted methodology is needed 
to determine the validity of our findings in an inde-
pendent sample of individuals, especially in those with 
severe OSA. We included patients with MMSE scores > 
20, so the results should be extrapolated cautiously for 
patients in more advanced stages of the disease. The main 
strength of this study was the use of PSG, which is the 
gold standard test, as the diagnostic method for OSA 
and allowed the performance of correlation analysis with 
different PSG variables related to the severity of OSA. 
Another strong point is that it included a relatively large 
sample of subjects who were recruited consecutively, 
which contributes to the generalization of the data. The 
patients were evaluated according to clinical criteria and 
specific CSF biomarkers of AD, so we can ensure that the 
patients had both clinically and biologically evident AD.

Conclusions
In this study, using undirected lipidomics, we identified 
a lipid profile in the plasma of severe OSA patients with 
mild–moderate AD that was correlated with different 
polysomnographic measures of OSA severity. PLs and 
GLs were the most dysregulated lipids concerning OSA 
severity in AD patients. The presence of several oxidized 
lipid species suggests that OSA may contribute to AD 
pathogenesis by increasing lipid peroxidation. In addi-
tion, we identified a lipidomic signature that allows the 
identification of subjects with AD and severe OSA in a 
population of AD with better accuracy than the STOP-
Bang screening scale, which suggests that they could be 
used as plasma biomarkers for the management of OSA 
or for screening those patients who could subsequently 
benefit from undergoing a PSG in the face of a high sus-
picion of severe OSA.
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