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ABSTRACT

There is abundant evidence in medical litera-
ture that Western diet and lifestyle drive the 
cellular and metabolic processes which underlie 
chronic non-communicable diseases. However, 
non-pharmaceutical interventions, which focus 
on nutrition, the microbiome and lifestyle, to 
prevent non-communicable diseases are not 
part of mainstream treatment, for a variety of 
reasons. Lack of progress in stemming the rise 
in chronic non-communicable diseases can be 
attributed to the current ‘downstream’ medical 
paradigm which is focused on treating disease 
and symptoms, rather than preventing disease 
via an ‘upstream’ approach, which looks at cause 

and process. Metabolic abnormalities and obe-
sity have previously been noted as correlated 
with common chronic ophthalmic conditions 
such as age related macular degeneration (AMD), 
glaucoma, ocular inflammation, diabetic retin-
opathy and retinal vascular occlusive disease. 
These are ocular manifestations of an underlying 
common cause. The aim of this paper, using an 
ophthalmic context, is to provide an overview of 
the cellular pathophysiological mechanisms that 
underlie chronic non-communicable diseases, 
including ophthalmic diseases, and to draw the 
links between diet and lifestyle, the microbiome 
and chronic non-communicable diseases.
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Key Summary Points 

In the last 40 years a global epidemic of 
chronic non-communicable diseases has 
emerged, driven predominantly by overcon-
sumption of ultraprocessed foods.

Excessive consumption of ultraprocessed 
foods results in cellular and metabolic pro-
cesses that lead to obesity, mitochondrial 
dysfunction, insulin resistance, inflamma-
tion, vascular endothelial dysfunction and 
dysbiosis.

Obesity, mitochondrial dysfunction, insulin 
resistance, inflammation, vascular endothe-
lial dysfunction and dysbiosis are unify-
ing factors which underlie the majority of 
chronic non-communicable diseases.

Common chronic ophthalmic diseases, such 
as age-related macular degeneration (AMD), 
glaucoma, and diabetic retinopathy, are the 
ophthalmic manifestations within the spec-
trum of chronic non-communicable diseases, 
sharing a common aetiology.

Greater awareness of the science underlying 
chronic non-communicable diseases creates 
an opportunity for improving outcomes in 
ophthalmic and systemic chronic non-com-
municable diseases.

INTRODUCTION

Since the early 1900’s there has been an inexora-
ble rise in chronic non-communicable diseases 
globally. In 1962 the prevalence of obesity in 
the USA was 13% [1, 2]. National Health and 
Nutrition Survey (NHANES) data from 2017–18 
for the USA report a prevalence of overweight 
and obesity of 73.8%, with obesity being 42.8% 
[3]. Prevalence of metabolic syndrome (3 of 
abdominal obesity, hypertension, impaired fast-
ing blood glucose, elevated serum triglycerides, 
low high density lipoprotein) in 2018 was 41.8% 
[4], with 82% of the population having at least 
one feature of metabolic syndrome, and up to 

40% of people with a normal BMI (18–25 kg/m2) 
being metabolically unhealthy [5].

Whereas in the late 1800’s cardiovascular dis-
ease was virtually unrecorded, in 2019, 27% of 
deaths were caused by cardiovascular disease, 
making it the commonest cause of death globally. 
Other chronic diseases which have dramatically 
increased in prevalence, such as diabetes, stroke, 
cancer, neurodegenerative disease, inflammatory 
and autoimmune disease, and mental illness are 
all significant causes of mortality and morbidity. 
In the USA chronic non-communicable diseases 
affect 50% of people, account for 87% of deaths, 
and consume 85% of health budgets [6, 7]. It is 
estimated that 70–90% of these diseases are pre-
ventable by dietary and lifestyle modification [8].

In broad terms, the cellular pathophysiology 
of chronic non-communicable diseases, including 
the aforementioned ophthalmic diseases, can be 
attributed to mitochondrial dysfunction, inflam-
mation, vascular endothelial dysfunction and 
activation of immune responses. These patho-
logical processes are interdependent. There is a 
paucity in literature examining the correlation 
between diet, metabolic dysfunction, the micro-
biome and chronic ophthalmic diseases, and this 
paper provides an overview of the science. Topics 
discussed are:

1. the normal physiology of mitochondria and 
their role in controlling inflammation;

2. the vascular endothelium, with particular 
reference to the blood ocular barrier and the 
photoreceptor-retinal pigment epithelial 
complex;

3. the microbiome, it’s role in regulating 
immune tolerance, and how dysbiosis is 
implicated in inflammation and autoimmun-
ity;

Included will also be a review of the mecha-
nisms by which Western diet and lifestyle disrupt 
mitochondrial function and cellular energetics, 
cause dysbiosis and drive systemic and ocular 
metabolic dysfunction, inflammation and auto-
immune disease.

This article is based on previously conducted 
studies and does not contain any new studies 
with human participants or animals performed 
by the author.
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EVOLUTION OF HUMAN DIET, 
WESTERN DIET, AND DIETARY 
COMPOSITION CHANGES

The evolution of the modern human diet 
began about 3 million years ago. The homi-
nins of the time were scavengers (passive hunt-
ers), obtaining 60–70% of their nutrition from 
animal foods [9, 10]. About 1.5 million years 
ago hominins learned to control fire, allow-
ing cooking of foods, the first example of food 
processing. This allowed more efficient extrac-
tion of nutrients and led to enlargement of the 
brain, and shortening of the gut [11]. Isolated 
indigenous hunter-gatherer societies still exist.

The agricultural revolution originated in 
the Middle East about 12,000 years ago, with 
the growing and processing of grains and 
other plant crops. The Ancient Egyptians ate a 
‘lacto-ovo-vegetarian’ diet which was heavily 
wheat (bread) based. Statuary from the time 
demonstrates abdominal obesity in males 
and females, suggesting metabolic syndrome, 
as well as gynaecomastia in the males, evi-
dence of excessive phytoestrogens contained 
in a plant based diet. Pathological studies of 
mummies from this civilisation reveal a high 
prevalence of extensive arterial atheroma 
at an early age, with early death being com-
mon. Literature from this period contains the 
first known description of the symptoms of 
myocardial infarction [10]. These studies are 
important, because they correlate a diet high 
in refined carbohydrate (bread), with metabolic 
syndrome and cardiovascular disease, in the 
absence of other known modern risk factors for 
these diseases, such as smoking, dietary seed 
oils and excessive added sugar.

The inexorable rise in chronic non-commu-
nicable diseases since 1980 is undeniable and 
alarming [12]. Comparison of Burden of dis-
ease data with dietary patterns from 1961–2021 
shows that the biggest changes have occurred in 
the consumption of oils and fats, increased by 
72%, sugar by 11%, cereals and grains by 24%, 
alcohol by 31%, meat by 43%, with other foods 
not significantly changed [12]. There is also evi-
dence that ‘obesogens’ in food packaging and 
the environment contribute to altered energy 

balance signalling and epigenetic expression 
[13].

MITOCHONDRIA, THE 
VASCULAR ENDOTHELIUM, 
AND THE MICROBIOME IN 
THE PATHOPHYSIOLOGY OF 
INFLAMMATION AND CHRONIC 
NON‑COMMUNICABLE DISEASE

Mitochondria

Mitochondria are considered to be bacteria 
which developed an intracellular symbiotic 
relationship with host eukaryotic cells approxi-
mately 1.5 billion years ago. They are motile, 
and dynamic, undergoing fission, fusion and 
multiplication, depending on metabolic stimuli 
(Fig. 1).

The matrix contains the mitochondrial DNA, 
and the enzymes which perform the oxidative 
phosphorylation of fatty acids and glucose, 
reducing nicotinamide adenine dinucleotide 
(NAD) to NADH, releasing electrons which enter 
the electron transfer chain on the inner mem-
brane (complexes I–IV; Fig. 2).

As well as controlling cellular energetics mito-
chondria control regulated cell death (apopto-
sis), and are master controllers of inflammation. 
Mitochondrial dysfunction resulting in inflam-
mation and immune activation is implicated in 
a variety of chronic non-communicable diseases, 
including AMD and glaucoma [14–16].

Mitochondria in Inflammation and 
Immunity

The processes of mitophagy, autophagy, and 
apoptosis are physiologically normal, and essen-
tial, for example, in embryogenesis and cell 
renewal [17, 18]. However, when these mecha-
nisms are overwhelmed or disrupted, a signal-
ling cascade ensues which results in inflamma-
tion and immune activation.

In general terms inflammation is initiated 
by pattern recognition receptors (PRR’s) which 
reside on both immune and non-immune cells. 
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Fig. 1  Mitochondrion. Structurally mitochondria have 
an outer membrane consisting of a phospholipid bilayer 
similar to cell membranes, and an inner membrane rich in 
cardiolipin and omega 6 linoleic acid (LA). Between these 
membranes is the ‘inter membrane space’, and within the 
inner mitochondrial membrane is the ‘matrix’. The outer 

membrane contains many integral proteins, called porins, 
and many enzymes. These components regulate the trans-
port of proteins, nucleotides, ions and nutrients between 
the cell cytosol and the mitochondria. Diagram created 
using Krita software (https:// krita. org/ en/)

Fig. 2  Mitochondrial electron transfer chain. As electrons 
pass down the electron transfer chain, protons are pumped 
into the inter-membrane space, creating potential energy 
in the form of an electrochemical gradient. These protons 
then pass to complex V (ATP synthase), which trans-
ports the protons back into the matrix, producing ATP, 
the energy source for cellular processes. NaDH nicotine 
adenine dinucleotide, FADH flavine adenine dinucleo-

tide, CoQ coenzyme Q (ubiquinone), Cyt, C cytochrome c, 
ATP adenosine triphosphate. Reproduced from National 
Institutes of Health (NIH) (.gov). https:// www. ncbi. nlm. 
gov> books > NBK52 6105; Maria Ahmad; Adam Wolberg; 
Chadi I. Kahwaji; Illustration by Emma Gregory. Creative 
Commons Attribution-NonCommercial-NoDerivatives 
4.0 International (CC BY-NC-ND 4.0) (http:// creat iveco 
mmons. org/ licen ses/ by- nc- nd/4. 0/)

https://krita.org/en/
https://www.ncbi.nlm.nih.gov/books/NBK526105/
https://www.ncbi.nlm.nih.gov/books/NBK526105/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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They can be activated by pathogens, such as 
viruses and bacteria (pathogen associated molec-
ular patterns, PAMP’s), but importantly in this 
context also by endogenous molecules gener-
ated as a result of cellular stress (damage associ-
ated molecular patterns, DAMP’s). Impairment 
of the mitochondrial electron transfer chain, in 
response to aberrant nutrition or toxins, results 
in excessive reactive oxygen species (ROS) pro-
duction, which may lead to increased mitochon-
drial membrane permeability. This can occasion 
cell death, with molecules such as mitochondrial 
DNA, mitochondrial ROS, ATP, cardiolipin, cyto-
sol RNA and nuclear DNA entering the extra cel-
lar space, acting as DAMP’s. This results in acti-
vation of antigen presenting cells, neutrophils, 
dendritic cells and lymphocytes, with release of 
inflammatory cytokines, which may mediate 
vascular endothelial and systemic inflamma-
tion. Additional consequences are complement 
activation and priming of the adaptive immune 
system which are implicated in experimental 
autoimmune and clinical uveitis [14, 16, 19]. 
The activation of PRR’s by PAMP’s and DAMP’s 
is a mechanism by which dysbiosis and leaky 
gut can contribute to systemic inflammation, 
autoimmunity and ocular inflammation, and 
this will be explored in more detail below.

The Vascular Endothelium

The vascular endothelium is critical in main-
taining endothelial cell physiological homeo-
stasis, and a barrier between the circulation 
and the tissues it supplies. It consists of a sin-
gle layer of endothelial cells lined on the lumi-
nal side by the glycocalyx, a gel-like structure 
which resembles a field of grass (Figs. 3, 4).

In fact, all cells have a glycocalyx which 
forms part of the phenotype of the cell. The 
glycocalyx is fundamental to self/non-self rec-
ognition of cells by the immune system. The 
glycocalyx of a normal cell presents self asso-
ciated molecular patterns (SAMP’s), whereas 
a damaged cellular glycocalyx may act as a 
DAMP which can activate immune cells and 
the complement cascade. The cellular glyco-
calyx is also involved in signalling the age of 
a cell, and in the control of the migration of 
lymphocytes. Oxidative stress and inflamma-
tion can result in loss of sialic acid moieties 
of the cellular surface (Figs. 4, 5) glycocalyx 
immune receptors leading to complement-
mediated retinal damage [20–22].

Most vessels have a continuous endothe-
lial cell layer (including the retinal vessels), 

Fig. 3  Healthy and unhealthy glycocalyx. EC endothelial 
cell. Reproduced from Vasculoprotective properties of the 
endothelial glycocalyx: effects of fluid shear stress; M. Gou-
veneur B. VanDenBerg, M. Nieuwdorp, E. Stores, H. Vink; 

Journal of Internal Medicine/Volume 259, Issue 4/p. 393-
400;  Rightslink® by Copyright Clearance Center licence 
no: 5876391002309
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whereas the choriocapillaris and renal glomer-
uli have fenestrated capillaries. These fenes-
trations are covered by glycocalyx. Glycocalyx 
thickness and constituents vary with anatomi-
cal location.

Endothelial dysfunction is a feature of many 
diseases, including ocular diseases, and is a 
downstream consequence of oxidative stress 
and inflammation, and where aberrant nutri-
tion, hyperglycaemia, and obesity are key 
contributors [24]. Systemic inflammation, 
oxidative stress and inflammatory cytokines 
all contribute to glycocalyx breakdown (‘shed-
ding’) (Fig. 5) [25, 26]

THE MICROBIOME, 
TERMINOLOGY, AND RELEVANCE 
TO NON‑COMMUNICABLE 
DISEASE

Microbiota

The micro-organisms in a specific environ-
ment, for example gut, skin, ocular surface, 
oral cavity and vagina. The gut microbiota con-
sists of approximately  1014 organisms, about 
10 times the number of cells in a human. It 
consists of bacteria, viruses, fungi, protozoans, 

Fig. 4  Healthy glycocalyx. The glycocalyx is composed of 
proteoglycans, glycoproteins, and glycolipids, anchored to 
the endothelial cell membrane by core proteins. The gly-
cocalyx surface is negatively charged and maintains lami-
nar flow in vessels by repelling negatively charged plasma 
proteins, red blood cells and leucocytes. Other important 
functions include anti-inflammation, anti-thrombosis, fil-
tration and permeability control, membrane shape regula-
tion, regulation of growth factors and cytokine signalling 

and shear stress sensing which controls nitric oxide (NO) 
production and vascular tone [23]. CD44: receptor for 
hyaluronic acid; EC: Extracellular. Reproduced from N, 
Baby S and Yuan SY (2021) The Endothelial Glycocalyx 
as a Double-Edged Sword in Microvascular Homeostasis 
and Pathogenesis. Front. Cell Dev. Biol. 9:711003. https:// 
doi. org/ 10. 3389/ fcell. 2021. 711003; Creative Commons 
Public Domain Mark 1.0. Creative Commons Attribution 
License (CC BY)

https://doi.org/10.3389/fcell.2021.711003
https://doi.org/10.3389/fcell.2021.711003
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archaea, and is about the size of the liver. The 
gut microbiota develops and changes over 
the first few years of life, and is influenced by 
maternal microbiota, and the environment, as 
well as diet [28].

Gut Microbiome

The collective genomes of the microbiota 
(> 100 times human); or it may be considered 
to be the sum of the genes and genomes and 
their products and metabolites [29].

Lumen

The microorganisms, their metabolites and gut 
secretions.

Mucous

The mucous layer is secreted by the epithelium 
in response to the enteric nervous system [30]. 
It acts as a physical barrier, and contains antimi-
crobial peptides and IgA [31].

Epithelial Barrier/Tight Junctions

The integrity of the gut epithelial barrier is 
dependent primarily on the intercellular tight 
junctions. Tight junctions are composed of 
structural proteins: claudins, occludins and 
zonula occludens connected to an intracellu-
lar actin/ myosin cytoskeleton which is con-
tractile, and thus energy dependent. Cytokines 
and microbial metabolites such as butyrate and 
indole regulate tight junction integrity [31, 32].

Fig. 5  Glycocalyx ‘shedding’. Glycocalyx ‘shedding’ 
results in loss of barrier function, increased permeability, 
exposure of endothelial surface adhesion molecules (pro-
thrombotic), leucocyte infiltration, and release of glyco-
calyx constituents into the circulation (DAMP’s). Loss of 
laminar flow and ‘rolling’ of platelets, RBC’s, and WBC’s 
can lead to thrombosis and vascular occlusion [27] Repro-

duced from Nuria Villalba, Baby S and Yuan SY (2021) 
The Endothelial Glycocalyx as a Double-Edged Sword in 
Microvascular Homeostasis and Pathogenesis. Front. Cell 
Dev. Biol. 9:711003. https:// doi. org/ 10. 3389/ fcell. 2021. 
711003; Creative Commons Public Domain Mark 1.0. 
Creative Commons Attribution License (CC BY).

https://doi.org/10.3389/fcell.2021.711003
https://doi.org/10.3389/fcell.2021.711003
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Immune System Development and 
Modulation

The gut microbiome plays an important role in 
the development, education, and maturation 
of the immune system in the neonatal period. 
This creates a homeostasis between inflamma-
tory and regulatory signals involving T cell 
subsets (Th17/Treg), cytokines, and short chain 
fatty acids (butyrate, propionate, acetate). Dis-
ruption of this homeostasis is associated with 
childhood diseases such as asthma, food aller-
gies, and colitis, and adult diseases such as 
obesity, type 2 diabetes, inflammatory bowel 
disease and autoimmune diseases [32, 33].

Gut‑Brain Axis

This is a two way communication which is 
both humoral and neural. The microbiome 
secretes neurotransmitters and hormones, and 
along with vagus activity influences hunger 
and satiety, mood, sleep, circadian rhythm, 
and behaviour, with indirect effects on obesity 
and insulin resistance, which are important 
causes of chronic inflammation and vascular 
endothelial damage. Similarly, communication 
from the brain to the gut can cause dysbiosis 
[34]. It is now understood that a gut-retina axis 
exists, unsurprising since the retinal neural tis-
sue is an extension of the brain [35].

Dysbiosis and Leaky Gut

Dysbiosis is a combination of processes result-
ing in:

• disruption of the ‘harmonious’ popula-
tion of microbes in terms of number and 
diversity. This may result in dysregulation 
of metabolites which can then be toxic or 
beneficial to symbiotic microbes and the 
epithelium, and which may evoke inflam-
mation and immunity.

• Loss of mucous layer can be caused by food 
additives such as emulsifiers and by a lack 
of fibre and prebiotics in the diet, as well 

as overgrowth of ‘mucous eating’ microbes 
e.g. Akermansia

• Loss of junction integrity: seed oils (see 
below), production of zonulin in response to 
gliadin (a wheat protein), and cytokines are 
all implicated

Important causes of dysbiosis are ultrap-
rocessed foods, drugs such as antibiotics, proton 
pump inhibitors, and non-steroidal anti-inflam-
matories, nicotine, and sedentary lifestyle [36, 
37]. In the setting of gut barrier breakdown and 
increased gut permeability, food components 
e.g. lectins, microbes, microbial products and 
components (lipopolysaccharides, LPS), beta 
glucan (PAMP’s and DAMP’s) come into contact 
with the gut associated lymphoid tissue (GALT), 
potentially activating both innate and adaptive 
immune systems [33]. Oral pathobionts present 
in oral dysbiosis are also implicated in leaky gut 
syndrome [32].

Mechanisms by Which Gut Permeability 
May Contribute to Auto Immunity and 
Uveitis

It is postulated that there are four mechanisms 
by which dysbiosis may cause autoimmune 
uveitis:

• Antigenic mimicry
• Loss of intestinal immune homeostasis
• Loss of intestinal barrier with increased gut 

permeability
• Alteration of microbial metabolites [38]

Antigenic (molecular) mimicry: cross reac-
tivity of microbiota derived peptides with self 
antigens generates autoreactive T cells [39, 40]. 
This is supported by the rodent model of experi-
mental autoimmune uveitis (EAU) [41] and CNS 
autoimmune diseases, such as Multiple Sclerosis 
[42] and Neuromyelitis Optica [43]. Probiotics 
have been shown to have a beneficial effect on 
both EAU [44] and experimental autoimmune 
encephalitis [45].

Loss of intestinal immune homeostasis: 
loss of balance between inflammatory Th17 
T cells, and modulatory Treg T cells. This is 
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implicated in dysbiosis associated with Behcet’s 
and autoimmune uveitis, [46] and Vogt–Koy-
anagi–Harada disease [47]. Activation of innate 
immune responses, inflammatory T-cell bal-
ance and circulating inflammatory cytokines 
may all have remote inflammatory effects.

Alteration of microbial metabolites: 
Short chain fats acids (SCFA), predominantly 
synthesised by micriobiotal fermentation of 
dietary fibre, are an important energy source 
for intestinal epithelial cells and account for 
about 10% of energy harvest in humans. They 
have an anti-inflammatory effect by increasing 
Treg cells, and reducing transfer of activated T 
cells from the gut to the spleen [38]. Recently, 
research has demonstrated the presence of an 
intraocular microbiome, with possible correla-
tions with ocular diseases such as age related 
macular degeneration, glaucoma [48], and 
diabetic eye disease [49]. The mechanisms by 
which these bacteria pass through the blood 
ocular barrier have not been elucidated, but it 
would be logical to hypothesise that vascular 
endothelial dysfunction as described above, 
could be contributory. What role, if any, these 
intraocular organisms may play in ocular auto-
immune diseases is unclear at this stage.

Interest in the association and importance of 
the microbiome in systemic diseases has grown 
dramatically over the past decade or so, with 
relevance to many diseases such as multiple 
sclerosis, autism, Alzheimer’s, epilepsy, Par-
kinson’s, stroke, obesity, metabolic syndrome, 
cancer, autoimmunity and ocular disease [33]. 
Experimental studies in rodents have shown 
positive outcomes on EAU and EAE, especially 
in germ free rodent models [44, 45], and in 
obesity in humans, by manipulating the micro-
biome with probiotics and prebiotics [50, 51]. 
However, the effects of probiotics on disease 
are complex, and unpredictable, since effects 
are often strain specific not simply phylum 
or species specific [52]. Furthermore probi-
otic supplements do not generally recolonise 
within the microbiota, and may even impair 
natural recolonisation of a disturbed microbi-
ota [53]. Prebiotics, mainly in the form of fibre, 
have been shown to have a beneficial effect on 
microbiota balance and microbiota metabolite 
(e.g. SCFA) production [51].

Faecal Microbial Transplantation (FMT)

FMT is a procedure involving direct transfer of 
microbiota from a healthy animal or patient to 
an unhealthy one. FMT in the rodent model is a 
useful tool in researching the effects of the micro-
biome on metabolic function, inflammatory dis-
eases and behaviour [54–56]. In humans, FMT has 
been shown to have a beneficial effect in Clostrid-
ium Difficile colitis [57], and to a lesser extent in 
ulcerative colitis [58]. In principle, FMT represents 
a promising avenue of research and therapeutics 
for a variety of diseases in humans, although 
methodology, including control of inputs, such 
as diet, need to be standardised [59], and safety 
needs to be assured.

To summarise, the gut microbiome is com-
plex and dynamic. It is required for ‘training’ the 
immune system in infancy and maintaining the 
homeostatic balance between inflammatory and 
regulatory signals that is required for optimal 
health. Changes in inflammatory or metabolic 
state associated with changes in the microbiome 
are therefore most likely related to a change in 
the balance of signals, rather than to a change in 
a single micro-organism or metabolite. The exist-
ing microbiome, and inputs such as nutrition, 
lifestyle, and drugs all influence the effects that 
the microbiome can exert on health and disease.

ABERRANT NUTRITION AND 
MITOCHONDRIAL DYSFUNCTION: 
WHAT IS THE ROLE OF SEED OILS 
AND SUGAR?

Previous sections have introduced the concept 
that the aetiology of many chronic non-com-
municable diseases is founded in mitochondrial 
dysfunction, inflammation, vascular endothelial 
dysfunction, and dysbiosis. A summary of the role 
that diet and lifestyle play in contributing to these 
processes follows.

Obesogens

Obesity itself is an inflammatory state, and cau-
sation is multifactorial incorporating energy 
balance, hyperinsulinaemia, oxidative stress 
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and environmental toxins, with the balance of 
effects at the cellular level, reducing mitochon-
drial efficiency [13]. Environmental toxins may 
be found in plastic food packaging, unfiltered 
water, pesticide residues on fresh foods, and par-
ticles in the air we breathe. The modern ‘West-
ern’ diet, comprised of approximately 65% ultra 
processed foods contains an unhealthy balance 
of energy substrate, lack of nutrients and obeso-
gens in the packaging.

Seed Oils

The dramatic rise in dietary ‘oils and fats’ is 
comprised of mainly industrially produced 
seed oils (‘vegetable oils’) rather than saturated 
fats from animal and dairy sources. Seed oils 
are polyunsaturated fats (PUFA) containing a 
high proportion of linoleic acid (LA), as well as 
varying amounts omega 3 alpha linolenic acid 
(ALA) [60]. Both classes of PUFA are ‘essential’ 
in small amounts for important functions such 
as membrane integrity, immune function, neu-
ral development, regulation of inflammation, 
coagulation and cell signalling. In 1865, prior to 
the introduction of seed oils, dietary consump-
tion of LA was approximately 2 g/day. By 2018 
this had reached approximately 80 g/day. This 
dramatic increase has been promoted by use of 
seed oils for cooking, inclusion of seed oils in 
many ultra processed foods, and health policies 
which have encouraged PUFA consumption [60]. 
Unfortunately, excessive LA consumption results 
in a systemic pro inflammatory milieu owing to 
the competitive nature of the delta 5 and delta 
6 desaturase pathways in the metabolism of 
LA and ALA [60]. It also contributes to visceral 
adiposity, which in itself is pro-inflammatory. 
Much of the excess dietary LA is peroxidised (as 
a result of shelf storage, and by high tempera-
ture cooking). Incorporation of peroxidised LA 
into the inner mitochondrial membrane causes 
cardiolipin remodelling [60–62]. This results in 
conformational changes in the inner mitochon-
drial membrane, which reduces the efficiency of 
electron transfer and ATP production, promotes 
de-novo lipogenesis and increases ROS produc-
tion in excess of antioxidant mechanisms. In 
the context of Western diet, the excessive ROS 

production is compounded by excessive dietary 
substrate (in the form of fatty acids (FA) and glu-
cose) supplied to the mitochondrial matrix for 
oxidative phosphorylation [63]. This high level 
of ROS, and the effect it has on calcium sign-
aling, can result in opening of the mitochon-
drial permeability transition pore in the inner 
mitochondrial membrane, resulting in proton 
leakage and diffusion of matrix chemicals into 
the intermembrane space. This can lead to mito-
chondrial disruption, apoptosis and in extreme 
cases, cell necrosis [14].

Sugar

Excessive added sugar in the diet has been cor-
related with the increase in non-communica-
ble diseases. Sugar consumption in the USA 
increased from 2.9 kg/year in 1822 to 49 kg/
year in 1999, a 17 fold increase. This does indeed 
correlate well with non-communicable diseases, 
and especially obesity and diabetes until about 
1999, when sugar and refined carbohydrate 
consumption started to decline, while seed oil 
consumption continued to rise, and obesity 
and diabetes continued to increase [60]. Dietary 
sugar (sucrose and high fructose corn syrup) is 
approximately 50% glucose and 50% fructose. 
Glucose is needed for cellular energy produc-
tion, especially by the brain, but the body’s die-
tary requirement for glucose is low, as the liver 
can produce adequate glucose for metabolic 
functions via gluconeogenesis. Excessive dietary 
glucose can contribute to insulin resistance, 
dyslipidaemia and de-novo lipogenesis (DNL). 
The fructose in added sugar is far more meta-
bolically harmful. When metabolised, it down-
regulates mitochondrial energy production, 
produces 100 × the oxygen radicals (oxidative 
stress) that glucose does, and drives protein gly-
cation 5 × faster than glucose [64]. Furthermore, 
uric acid, and methylglyoxal, end products of 
fructose metabolism, promote production of pro 
inflammatory cytokines, stimulate renal inflam-
mation causing hypertension, enhance insulin 
resistance and DNL, reduce vascular endothe-
lial nitric oxide (NO) production and inhibit 
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autophagy by reducing intracellular AMPk pro-
duction [64].

Any factor which adversely affects vascular 
endothelial glycocalyx and vascular endothe-
lial function (e.g. inflammation, hypertension, 
hyperglycaemia, hyperinsulinaemia, impaired 
NO production) can act as a prerequisite for 
vascular inflammation, vascular occlusion, 
increased vascular permeability, and blood-ocu-
lar barrier breakdown, all of which are relevant 
to ocular conditions such as diabetic retinopa-
thy, retinal vasculitis, retinal vascular occlusion, 
macular oedema and uveitis.

In summary it is now apparent that the 
Western dietary excess of seed oils, sugar and 
obesogens commonly contained in ultra pro-
cessed foods contribute to non-communicable 
diseases by downregulating cellular energy pro-
duction, increasing oxidative stress, and pro-
moting inflammation and vascular endothelial 
dysfunction.

THE LIFESTYLE CONNECTION

There is evidence of the interconnected effects 
of lifestyle, namely, exercise, sleep, stress man-
agement and sunlight exposure on metabolic 
health, and therefore by extension chronic non-
communicable systemic and ophthalmic disease.

Exercise

Exercise in itself is medicine, a concept that is 
not new [65]. There is ample evidence in the 
literature that exercise has beneficial effects for 
all cause mortality [66–68], metabolic health, 
insulin resistance, glucose and lipid metabolism 
[69–72], mental health [73], sleep [74] and the 
gut microbiome [75, 76]. Not surprisingly, many 
of the benefits of exercise on health are medi-
ated by improvements in mitochondrial func-
tion and signalling [77–81].

Sleep [82]

Normal, healthy sleep duration is 7–9 h. Short 
sleep duration and long sleep duration are both 
associated with increased all cause mortality [83, 

84]. In the case of short sleep this can be causally 
associated with effects on metabolism [85]. In 
the case of long sleep it may be associated with 
underlying comorbidities, particularly those 
related to mental health. Better sleep is associ-
ated with better mental health [86] and this in 
turn leads to healthier diet and behaviour. Short 
sleep is potentially causally linked to Alzheimer’s 
disease [87], and sleep disturbance is a feature 
of Alzheimer’s [88]. Metabolic dysfunction and 
impaired bioenergetics are increasingly recog-
nised in the aetiology of Alzheimer’s [89, 90], 
and it is plausible that the same mechanisms 
could play a role in ophthalmic diseases. Other 
associations between sleep and eye diseases 
such as ‘floppy eyelid syndrome’ and anterior 
ischaemic optic neuropathy have been noted 
[91]. Sleep also affects immune function [92], 
and from first principles it would be reasonable 
to infer that systemic and ocular immunity may 
be affected.

Stress

While there is no obvious direct link between 
‘stress’ and ocular disease, stress is very much 
correlated with hypothalamic–pituitary–adre-
nal axis (HPA) dysregulation [93, 94], and HPA 
axis dysregulation has marked effects on meta-
bolic function and its associated diseases [95]. 
Increased cortisol secretion as part of the stress 
response results in increased intracellular cera-
mide production, which leads to mitochondrial 
dysfunction, insulin resistance and inflamma-
tion [96]. Via these mechanisms there is an indi-
rect effect on ophthalmic disease.

Sunlight

From an evolutionary perspective, humans 
evolved to live in harmony with the day-night 
cycle. This has resulted in the ‘circadian rhythm’ 
of metabolic and endocrine changes that occur 
in response to light exposure and darkness [97]. 
The most commonly known is the synthesis 
of cholecalciferol (vitamin D3) in the skin in 
response to the UV-B in sunlight (300 nm wave-
length). Vitamin D increases intestinal absorp-
tion of calcium, phosphate and magnesium 
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and is essential for bone health. However, vita-
min D is also involved in immunomodulation, 
regulation of cell proliferation, blood pressure 
regulation, and insulin production [98]. UV-B 
also stimulates pineal melatonin production, 
important in sleep and circadian regulation. Less 
well known is the important effect of the red/ 
near infra-red (R/IR) (670–850 nm) wavelengths 
in sunlight. These wavelengths penetrate deep 
into tissues, including into the brain, uprate 
mitochondrial energy production and stimulate 
cellular mitochondrial melatonin production. 
Melatonin is a potent antioxidant, and is inte-
gral to metabolic health [99–101]. It is notable 
that modern office lighting lacks R/IR spectrum, 
and this may be contributory in the epidemic of 
chronic non-communicable diseases.

RELATIONSHIPS TO COMMON EYE 
DISEASES

Age Related Macular Degeneration (AMD)

The increasing prevalence AMD correlates well 
with the increase in chronic non-communica-
ble diseases generally. In the early 1900’s AMD 
was almost unknown. In the 1930 there were 
approximately 50 cases in the world literature. 
In 1940, Duke-Elder described it as ‘common’ 
in his textbook, and by 2014 it had become the 
commonest cause of blindness in people over 
the age of 65 [60, 102]. Recognised associations, 
often misnamed as ‘risk factors’, include age, 
smoking, cardiovascular disease, sedentary life-
style, obesity, diet high in ultra processed foods 
and hypertension [1]. It is important to note 

Fig. 6  Schematic of RPE dysfunction in AMD. M mito-
chondrion, N nucleus, Ly lysosome, D druse, G glucose, 
G1 Glut 1 glucose transporter, ROS reactive oxygen spe-
cies, Lac lactate, Lip lipid, pLA peroxidated linoleic acid. 
In a healthy situation (green) glucose is transported from 
the choriocapillaris across the RPE cell to the photorecep-
tor outer segment for energy production by glycolysis. The 
lactate produced is passed back to the mitochondria to 
enter the Krebs cycle. The mitochondria also obtain energy 
substrate from photoreceptor outer segments being recy-
cled. In obesity and aberrant nutrition (red) inflammatory 
cytokines (TNFα, IL6, TGFβ2, IL-1β) and peroxidated 

linoleic acid impair mitochondrial function, increasing 
ROS production. This results in inhibition of lactate return 
to the mitochondria, and diversion of glucose intake to 
the mitochondria, reducing energy substrate to the pho-
toreceptor outer segments. The increased ROS also affect 
synthesis of electron transfer chain production mediated 
by mitochondrial DNA, and disrupt nuclear function. 
In addition, the autophagy/phagocytosis pathway is dis-
rupted, resulting in accumulation of intracellular debris, 
drusen formation, choriocapillaris atrophy, further inflam-
mation and neovascularisation.
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that age and cumulative exposure to environ-
mental factors usually co-exist as risk factors in 
the aetiology of these diseases, including AMD. 
A recent study of a biomarker known as Meta-
bolic Vulnerability Index (MVX) found that age 
was not an independent predictor of all cause 
mortality [103]. It may be that ‘exposure’, com-
bined with genetic factors is more important 
than age in the development of age related 
macular degeneration.

AMD involves pathological changes in the 
choriocapillaris-RPE-photoreceptor complex, 
which is a highly metabolically active area. 
The RPE exhibits trophic effects on both the 
choriocapillaris and the photoreceptors, and 
the photoreceptors in turn exhibit trophic 
effects on the RPE [104]. Energy production 
in the photoreceptor outer segments is pre-
dominantly by aerobic glycolysis, with the RPE 
transporting glucose from the choriocapillaris 
to the photoreceptors via non-insulin depend-
ent GLUT-1 transporters. The photoreceptor 
inner segments have abundant mitochondria. 
The RPE cells themselves metabolise hardly 
any glucose, and obtain their energy from oxi-
dation of lactate (resulting from photorecep-
tor outer segment glycolysis), fatty acids and 
ketone bodies endogenously synthesised in the 
mitochondria, the substrate for which comes 
from the phagocytosis and breakdown of pho-
toreceptor outer segments (about 10% per day) 
which occurs as part of the visual cycle [104]. 
While genetic associations with AMD suscepti-
bility are well known, mitochondrial dysfunc-
tion in the RPE plays an important role in the 
cellular and pathological features of AMD.

Impairment of RPE mitochondrial energy 
production by environmental and dietary dis-
ruptors results in oxidative stress from ROS 
production which exceeds the anti oxidative 
mechanisms in the mitochondria. ROS oxidise 
proteins, lipids, nucleic acids and lipoproteins. 
Damage to the mitochondrial DNA, particu-
larly the areas which encode the electron trans-
fer chain proteins, compounds the impaired 
energy production. Proteostasis, which is the 
coordinated regulation of protein synthesis, 
folding and degradation is disrupted, as are the 
lysosomal and autophagy pathways. Accumula-
tion of lipofuscin and cytoplasmic aggregates 

ensues, leading to inflammation, which exac-
erbates RPE dysfunction [105] and chronic 
activation of innate and adaptive immunity 
[106]. Drusen, which are deposited between 
the basement membrane of the RPE and inner 
collagenous layer of Bruch’s membrane poten-
tiate inflammation, and can impair transport 
of nutrients and oxygen across the RPE cells, 
with the consequent downstream effects of 
photoreceptor degeneration, RPE and chorio-
capillaris atrophy and neovascularisation [107, 
108] (Fig. 6).

Primary Open Angle Glaucoma (POAG)

The prevalence of POAG in 2006 has been esti-
mated at 4.2% in Black populations, 2.1% in 
white populations and 1.4% in Asian popu-
lations. In white populations the prevalence 
rises from 1.8% in the 30–39 years age group, 
to 16.9% in the 80–89 years age group [109]. 
Primary open angle glaucoma is an optic neu-
ropathy characterised by retinal ganglion cell 
(RGC) apoptosis. Intrinsic apoptosis is con-
trolled primarily by the mitochondria [110]. 
In the light of our knowledge of the role of 
mitochondrial in bioenergetics and inflamma-
tion, it is logical to hypothesise that impaired 
bioenergetics, insulin resistance, and neuro-
inflammation play an important part in RGC 
dysfunction and death [16, 111, 112] (Fig. 7).

In many, but not all cases, RGC loss in glau-
coma is associated with elevated intraocular 
pressure, and elevated intraocular pressure 
in itself increases oxidative stress in the optic 
nerve head. ‘Low tension glaucoma’ is a well 
recognised phenomenon, and has many of the 
associations that exist with other chronic non-
communicable diseases, namely age, systemic 
hypertension, nocturnal hypotension, migraine, 
Raynaud phenomenon, dementia, obstructive 
sleep apnoea, smoking and steroid use. Corre-
lation between features of metabolic syndrome 
and POAG has been reported [113]. Family 
history is an important ‘risk factor’ for POAG 
and normal tension glaucoma (NTG), although 
genetic mutations play only a small role in 
the aetiology. This raises the possibility that 
epigenetic changes recognised to be induced 
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by environmental factors including diet, life-
style and environmental toxins, and which are 
known to be intergenerationally transferable, 
may be involved.

In the context of a bioenergetic and neuro-
inflammatory hypothesis of RGC apoptosis in 
glaucoma, research in psychiatric and neurode-
generative conditions is instructive. Ketogenic 
diet has been used effectively in the treatment 
of epilepsy for over a hundred years [114]. Pre-
clinical studies have also demonstrated the effi-
cacy of the ketogenic diet in Alzheimer’s disease 
[115]. It has been widely thought that neural 
tissues are obligate in their use of glucose as 
metabolic fuel. In fact neural tissues are capable 
of using ketones for up to 60% of their energy 
needs. Ketones produce less oxidative stress 
when metabolised, and are anti-inflammatory 
[116]. It is now understood that in Alzheimer’s 
dementia, intraneuronal energy starvation 
and neuroinflammation, both caused by sys-
temic metabolic dysfunction including insulin 
resistance are implicated [15, 89, 117]. Dietary 

interventions have proven effective in treating 
neurodegenerative and psychiatric conditions 
[115], and Nutritional Psychiatry is a rapidly 
evolving sub-specialty [118, 119]. While a bio-
energetic and neuroinflammatory hypothesis for 
RGC apoptosis in glaucoma is scientifically plau-
sible and logical, studies of dietary interventions 
which address systemic metabolic health for the 
treatment of POAG are lacking.

If it is possible that impaired bioenergetics 
plays a part in RGC apoptosis in glaucoma, 
could it also be involved in dysregulation of 
aqueous outflow at the trabecular meshwork? 
The trabecular meshwork in the iridocorneal 
angle is formed by connective tissue beams 
and lamellae covered by trabeculocytes. There 
are three regions of the trabecular meshwork: 
uveal, corneo-scleral and juxtacanalicular. The 
latter abuts the endothelium of Schlemm’s 
canal, and controls the permeability of the 
endothelial cells. Resistance to outflow is at 
the level of the juxtacanalicular meshwork 
[120] and is dependent on the regulation and 

Fig. 7  Schematic of retinal ganglion cell showing effects 
of systemic inflammation and insulin resistance. IR insu-
lin receptor, M mitochondria, N nucleus, G1 Glut1 glu-
cose transporter, G4 Glut 4 (insulin dependent) glucose 
transporter, ER endoplasmic reticulum, ROS reactive 
oxygen species, MD mitochondrial dysfunction, UPR 
unfolded protein response, mTORC1/2 mammalian tar-
get of rapamycin complex, PI3K/Akt phosphoinositide-3 
kinase, protein kinase B, BAD bcl-2 agonist of cell death, 
GSK3β glycogen synthase kinase 3-β, TauHP Tau protein 

hyperphosphorylation. Systemic inflammatory cytokines 
and endoplasmic reticulum stress cause insulin resistance 
in the RGC. While the insulin resistance may reduce glu-
cose entry to the RGC via the Glut4 transporter, reduc-
ing energy substrate, glucose is also transported via Glut1. 
More importantly the anabolic and cell maintenance 
effects of insulin are impaired, resulting in mitochondrial 
dysfunction, excessive ROS production and apoptotic sig-
nalling



1443Ophthalmol Ther (2025) 14:1429–1452 

turnover of extracellular matrix proteins at 
this level. This is an energy dependent, and 
thus mitochondrially dependent process. 
Mitochondrial dysfunction in the trabecular 
meshwork might therefore be expected to 
result in increased outflow resistance and ele-
vated IOP, and mitochondrial dysfunction in 
trabeculocytes has indeed been demonstrated 
in POAG [121, 122]. There is also evidence 
that trabecular extracellular matrix (ECM) 
alterations in response to pro-inflammatory 
DAMP’s may be implicated in increased out-
flow resistance [16].

In summary, it is plausible, and likely, based 
on published science that RGC apoptosis in 
POAG and LTG is a result of impaired cellular 
energetics and neuroinflammation secondary to 
mitochondrial dysfunction. Similarly, it is likely 
that dysregulation of IOP control in the trabecu-
lar meshwork is also secondary to mitochondrial 
dysfunction.

Diabetic Retinopathy

Diabetic retinopathy is characterised by 
increased retinal capillary permeability, pericyte 
loss, microaneurysm formation, retinal ischae-
mia, and retinal neovascularisation. Retinopa-
thy is recognised in the setting of overt hyper-
glycaemia. In reality, hyperglycaemia in type 
2 diabetes is a late stage in usually decades of 
underlying metabolic syndrome and hyperin-
sulinaemia. The result is chronic inflammation 
and vascular endothelial damage. The underly-
ing mechanisms can be easily inferred from the 
sections above: glycocalyx shedding, increased 
endothelial cell adhesion molecule expression, 
loss of endothelial barrier function and inflam-
mation and oxidative stress.

This is comprehensively reviewed by For-
rester et al. [123]. Retinal function as measured 
by electroretinography is measurably decreased 
prior to the development of retinopathy [124].

Ischaemia, mitochondrial dysfunction or 
impaired endogenous insulin signalling in the 
RPE and photoreceptors, which precede retin-
opathy may all be implicated [125, 126]. On the 
same principles that a gut-brain axis has been 
established, a gut-retina axis has been proposed, 

and is eminently plausible [35]. Whereas con-
siderable resources have been devoted to the 
treatment of diabetic complications, insuffi-
cient attention has been paid to prevention by 
addressing the underlying cause and process, 
namely insulin resistance and metabolic dys-
function resulting from inappropriate diet and 
lifestyle.

ROLE OF THE OPHTHALMOLOGIST

The primary role of the ophthalmologist is to 
treat ocular disease and mitigate the harmful 
effects of ocular disease on ocular and systemic 
health. However, there is an argument that in 
Ophthalmology, as in many subspecialties, the 
modern medical paradigm has moved too far 
towards managing disease, to the exclusion of 
managing the causes of disease.

In this context there is a place for greater 
awareness of the scientific principles of disease 
in clinical practice, and for them to be given 
more prominence in undergraduate and post-
graduate medical curricula. This is important if 
it is accepted that chronic ophthalmic diseases 
are part of the spectrum of chronic non-commu-
nicable diseases, with a shared common aetiol-
ogy. There are significant implications for future 
morbidity from metabolic syndrome, type 2 dia-
betes and early all cause mortality [127–129].

Many patient presentations to Ophthalmol-
ogy clinics relate to as yet undiagnosed under-
lying systemic diseases, especially metabolic 
dysfunction, many of which are nutrition and 
lifestyle related. While it is not the role of the 
Ophthalmologist to provide detailed nutrition 
and lifestyle advice, as clinicians, we all have a 
‘duty of care’, and there is a role for Ophthal-
mologists in recognising underlying systemic 
disease. Simple routine clinical and labora-
tory investigations can be performed facilitat-
ing a more informed liaison with other health 
practitioners involved in managing the sys-
temic health of the patient. Adding nutritional 
and lifestyle interventions to existing treat-
ment regimes may improve health and dis-
ease outcomes, and in many cases can reduce 
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or eliminate pharmaceutical dependence. This 
would of course require adequate resources for 
dietary and lifestyle counselling and behavioural 
support [130].

RESEARCH IMPLICATIONS

Chronic ocular diseases typically constitute a 
significant proportion of an Ophthalmologist’s 
workload. Ophthalmologists are therefore well 
placed to carry out research to investigate and 
elucidate the associations between metabolic 
health (a proxy for nutrition and lifestyle) and 
chronic Ophthalmic (and systemic) disease. 
While food questionnaires are notoriously unre-
liable, metabolic, inflammatory, and vascular 
health is readily objectively assessed using a vari-
ety of laboratory and imaging investigations [24, 
127–133].

Routinely used, and newer Ophthalmic imag-
ing techniques allow quantification of Ophthal-
mic diseases such as age related macular degen-
eration and glaucoma [134–139]. Integrating 
these approaches with metabolic and microbi-
ome research would represent an opportunity to 
inform all these fields, with enormous potential 
to improve health and mitigate disease.

CONCLUSIONS

Current medical practice involves a predomi-
nantly downstream treatment approach which 
is focussed on disease. While this does mitigate 
morbidity, and improves lifespan, it does not 
positively influence healthspan to the same 
degree. In some cases, for example in Alzhei-
mer’s, this approach is ineffective. There is a 
strong argument for ‘looking backwards’, in 
other words taking an upstream approach to dis-
ease, by addressing the cellular processes which 
cause disease. This applies to systemic and oph-
thalmic disease, and has been shown to be effec-
tive for example in nutritional psychiatry and 
type 2 diabetes.

By continuing to ask ‘why’ diseases occur, 
and following the underlying science it is 

apparent that the majority of non-commu-
nicable diseases share common cellular and 
pathophysiological characteristics. These are 
impaired cellular energetics, inflammation, 
and vascular endothelial dysfunction. They are 
inextricably interconnected and governed by 
environmental inputs: diet, exercise, sleep and 
stress, all of which are modifiable by behaviour 
change.

Mitochondrial function, and the gut micro-
biome are the key influencers of metabolic 
function and inflammatory state. Dietary sub-
strate, as well as providing fuel for energy pro-
duction and cellular maintenance, also influ-
ences the immunomodulatory and hormonal 
signalling functions of the microbiome. Mito-
chondria are the controllers of fuel utilisation 
for energy balance and proteostasis. They are 
also master controllers of inflammation and 
apoptosis. The Western diet, which contains 
excessive PUFA and fructose has a profound 
effect on mitochondrial function. It results 
in downregulation of energy production and 
autophagy, stimulation of de-novo lipogenesis, 
excessive ROS production, disruption of prote-
ostasis, induction of insulin resistance, produc-
tion of inflammatory mediators and apoptosis.

The inflammatory milieu induced by mito-
chondrial dysfunction, gut dysbiosis and adi-
pose inflammation adversely affects vascular 
glycocalyx and endothelial function, which 
underlies the role in autoimmunity, vascular 
inflammation, vascular occlusion and vascular 
endothelial barrier function.

The intention of this review has been to pro-
vide a balance between detail, and the overall 
picture. The references are designed to pro-
vide resources for readers who wish to pursue 
any of the topics in more detail, for personal 
interest or for informing research projects. To 
finish with a favourite quote, by Don Camp-
bell, Canadian rancher speaking on the sub-
ject of regenerative farming: it applies to our 
paradigm of medical practice, which needs to 
change. ‘If you want to make small changes, 
do things differently. If you want to make big 
changes, see things differently’.
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