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We review the existence of vestibulosympathetic reflexes in humans. While several 
methods to activate the human vestibular apparatus have been used, galvanic vestibular 
stimulation (GVS) is a means of selectively modulating vestibular afferent activity via elec-
trodes over the mastoid processes, causing robust vestibular illusions of side-to-side 
movement. Sinusoidal GVS (sGVS) causes partial entrainment of sympathetic outflow to 
muscle and skin. Modulation of muscle sympathetic nerve activity (MSNA) from vestib-
ular inputs competes with baroreceptor inputs, with stronger temporal coupling to the 
vestibular stimulus being observed at frequencies remote from the cardiac frequency; 
“super entrainment” was observed in some individuals. Low-frequency (<0.2 Hz) sGVS 
revealed two peaks of modulation per cycle, with bilateral recordings of MSNA or skin 
sympathetic nerve activity, providing evidence of lateralization of sympathetic outflow 
during vestibular stimulation. However, it should be noted that GVS influences the firing 
of afferents from the entire vestibular apparatus, including the semicircular canals. To 
identify the specific source of vestibular input responsible for the generation of vestibu-
losympathetic reflexes, we used low-frequency (<0.2 Hz) sinusoidal linear acceleration 
of seated or supine subjects to, respectively, target the utricular or saccular components 
of the otoliths. While others had discounted the semicircular canals, we showed that the 
contributions of the utricle and saccule to the vestibular modulation of MSNA are very 
similar. Moreover, that modulation of MSNA occurs at accelerations well below levels at 
which subjects are able to perceive any motion indicates that, like vestibulospinal control 
of posture, the vestibular system contributes to the control of blood pressure through 
potent reflexes in humans.

Keywords: galvanic vestibular stimulation, linear acceleration, muscle sympathetic nerve activity, skin sympathetic 
nerve activity, vestibular system, vestibulosympathetic reflexes

OveRview OF BLOOD PReSSURe AND THe NeRvOUS SYSTeM

The autonomic nervous system controls most visceral functions of the body automatically, with-
out the requirement for conscious control. The efferent outflow comprises three subdivisions: the 
enteric nervous system, which deals exclusively with gastrointestinal function, and the sympathetic 
(thoracolumbar) and parasympathetic (craniosacral) nervous systems. The latter two subdivisions 
are regularly thought of as operating in parallel and antagonistic (1). While this is true in many 
organs that receive dual innervation, such as the pupil of the eye and the heart, control of blood flow 
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in the systemic circulation is governed exclusively by the sympa-
thetic nervous system (2). Similarly, vestibular-mediated changes 
in peripheral blood flow are brought about via the sympathetic 
nervous system, giving rise to the term “vestibulosympathetic 
reflex” (3). Accordingly, this review is focused on the relationship 
of the vestibular input and its effect on the sympathetic output to 
muscle and skin. Microelectrode recordings from postganglionic 
sympathetic axons in motor fascicles of human peripheral nerves 
have revealed that muscle sympathetic nerve activity (MSNA), 
which occurs as bursts of activity coupled to the cardiac cycle via 
the arterial baroreflex, consists only of vasoconstrictor impulses 
(4). Given that the skeletal muscle vascular beds make up a 
significant proportion of cardiac output, muscle vasoconstrictor 
drive contributes importantly to the control of blood pressure (5). 
Conversely, skin sympathetic nerve activity (SSNA) is primarily 
involved in thermoregulation and emotional expression, supply-
ing cutaneous blood vessels, sweat glands, and hairs (4).

veSTiBULOSYMPATHeTiC ReFLeXeS  
iN HUMANS

In this review, we explore the role of the vestibular system in 
cardiovascular control in humans, with particular reference 
to interactions between the vestibular system and sympathetic 
outflow to muscle and skin. We shall assume that the reader has a 
good knowledge of the anatomy and physiology of the vestibular 
apparatus, and refer the reader to a recent comprehensive review 
of the anatomical and physiological substrates supporting the 
existence of vestibulosympathetic reflexes (3). While studies in 
animals clearly provided overwhelming evidence for the ana-
tomical and physiological pathways describing the influence of 
the vestibular apparatus on the cardiovascular system, its role in 
humans has been more difficult to explore and establish. Much 
like the animal work using different methodologies, research con-
ducted on human participants has employed both physiological 
and electrical stimulation, with the inherent strengths and weak-
nesses associated with these approaches. Throughout this review, 
emphasis will be placed on studies that have directly recorded 
MSNA and SSNA in awake human subjects via intraneural 
microelectrodes (microneurography). Moreover, we shall aim to 
highlight evidence in which differences in vestibular modulation 
of MSNA and SSNA exist.

CALORiC STiMULATiON

Caloric stimulation is a technique that delivers cold or warm 
water to the tympanic membrane via the ear canal, producing 
nystagmus (involuntary eye movements) and, hence, indicating 
that vestibulo–ocular reflexes have been activated. In short, 
this method produces a thermal gradient within the semicir-
cular canals (the horizontal canals in particular) that leads to 
increased endolymphatic flow and stimulation of vestibular 
hair cells. Employing this natural stimulation, Costa et  al. (6) 
recorded MSNA to unilateral caloric stimulation using warm 
water irrigation but found no evidence of increased sympathetic 
outflow to the leg (6). On the other hand, Cui and colleagues 

employed bilateral caloric stimulation, using both hot- and 
cold-water irrigation, and concluded that caloric stimulation 
decreases SSNA (7) and transiently increases MSNA and that 
these responses are proportional to the degree of nystagmus (8). 
It is not clear why there is a discrepancy in the findings of these 
two groups, but it is possible that the differences are due to the 
different means by which caloric stimuli were delivered (9). It is 
also worth pointing out that Ray and colleagues (10, 11) found no 
modulation of sympathetic nerve activity to either muscle or skin 
during active horizontal rotations of the head, another method 
that stimulates the horizontal semicircular canals. Finally, it is 
important to note that the aforementioned studies limited the 
stimulations to the horizontal canals, as the vertical canals can-
not be selectively stimulated in human subjects. Of course, while 
this means that there is a possibility that the vertical canals play 
a role in cardiovascular control, studies in animals strongly argue 
against this (12).

HeAD-DOwN NeCK FLeXiON (HDNF)

Another means of stimulating the vestibular apparatus physiolog-
ically in humans is HDNF. The method entails laying the subject 
prone with the head and body aligned and by tilting the head 
downward the maneuver creates an altered gravitational input 
to the otolith organs. As a response to this stimulus, Essandoh, 
Normand, and their colleagues demonstrated decreases in arte-
rial pressure and blood flow to the limbs (13, 14). However, it 
was Shortt and Ray (15) who recorded MSNA and demonstrated 
that the method leads to an increase in burst frequency and heart 
rate—increases that were sustained throughout the 10  min of 
HDNF (15). The same response was not evident during recording 
of SSNA (16), emphasizing the independence of sympathetic out-
flow to muscle and skin. Furthermore, studies outlined that the 
MSNA response is dependent on the magnitude of the stimulus 
(17) and is the same to the upper limbs as it is to the lower limbs 
(18, 19), contrary to what is reported in animal studies (20–22). 
However, in addition to stimulating both the utricle and saccule, 
HDNF activates several non-vestibular inputs capable of increas-
ing sympathetic outflow—in particular, afferents from muscle 
(and other) receptors in the neck (23).

OFF-veRTiCAL AXiS ROTATiON (OvAR)

Another approach to investigate the roles of the otolith organs is 
OVAR—a method well-known to produce motion sickness (24) 
and widely used to study vestibular–ocular reflexes (25–27). The 
technique involves continuous horizontal rotation of the seated 
body at a constant velocity, with—as its name suggests—the axis 
of rotation being tilted (15°) from vertical. Initially, the semi-
circular canals are activated by the angular acceleration, but as 
the fluid in the semicircular canals starts to move at the same 
velocity as the head, the semicircular canals no longer provide a 
signal of rotational motion after ~12 s (28). This rotational steady 
state provides linear acceleration allowing the otolith organs to 
be activated; by keeping the neck aligned with the body axis, 
this eliminates neck movement and, in turn, sustaining constant 
afferent input. Indeed, Yates and Bronstein (29) showed that 
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individual vestibular afferents start to fire as soon as the nose-up 
position is passed during OVAR (29). In humans, Kaufmann 
and colleagues applied OVAR while recording MSNA to study 
the vestibulosympathetic reflex across a wide range of rotational 
velocities and found that in the nose-up position there was an 
increase in MSNA to the lower limbs. The reflexive increase in 
neural traffic occurred within a short latency (0.4 s)—too quick 
to be attributed to the baroreflex that has a minimal latency of 
1.22 s to the lower limbs (30). These data provided evidence of 
a vestibulosympathetic reflex, originating from the otolith, con-
tributing to peripheral blood pressure control. Indeed, a recent 
study that applied centrifugal forces to astronauts pre and post 
spaceflight demonstrated that depression of otolithic function 
following space travel leads to a temporary depression of blood 
pressure control on Earth—a transient dysfunction that reverses 
with the “re-conditioning” of the gravitational accelerometers, 
i.e., the otolithic organs (31). By contrast, OVAR applied in the 
nose-down position caused a decrease in MSNA (32)—results 
conflicting those seen in HDNF (15). The discrepancies shown 
in these studies may be due to the different means of stimulating 
the vestibular apparatus, such as changes in posture and, hence, 
changes in vestibular input with respect to gravity, and the use of 
dynamic stimuli and neck displacements in one study but not in 
the other study. Accordingly, this leads to a need for an experi-
mental design to selectively activate vestibular inputs without 
acting on other non-vestibular inputs.

GALvANiC veSTiBULAR STiMULATiON 
(GvS)

Galvanic vestibular stimulation is a means of stimulating afferents 
in the vestibular nerves through weak electrical stimuli applied to 
the mastoid processes, and was initially used to study the con-
tributions of the vestibular system to control of eye movements, 
locomotion, and posture (33, 34) and has since been used by our 
group to study vestibulosympathetic reflexes in humans. It pro-
vides a selective form of stimulation to the vestibular apparatus 
(35–37), though it has been pointed out that GVS is less selective 
than other methods, resulting in an overall stimulation of vestibu-
lar nerves rather than specific components (9). Goldberg et  al. 
(35) made direct recordings from vestibular afferents in primates 
during application of GVS. They showed in the squirrel monkey 
that when cathodal GVS was applied in the perilymphatic space, 
or anodal GVS applied at a more proximal point, both caused 
excitatory responses in vestibular afferents (35). GVS stimulates 
the hair cell axon terminals of the vestibular afferents and alter 
their firing (35). Cathodal currents depolarize and, thus, increase 
the firing rate of vestibular afferents, whereas anodal currents 
hyperpolarize and thereby decrease their firing rate. As noted 
above, a limitation of GVS is that it cannot discriminate between 
the vestibular end organs (semicircular canals or otolith organs). 
However, animal research has shown that the response to GVS 
is predominantly otolithic (38–40), and other evidence strongly 
argues against a contribution from the semicircular canals in 
the vestibular control of sympathetic nerve activity (6, 10, 11). 
Thus, one can assume that any changes in sympathetic outflow 

in humans during GVS can be attributed to activation of the 
otolith organs (9, 38–40). A particular advantage offered by GVS 
is that it is selective to the vestibular system: it does not modulate 
neck afferents (as in HDNF), cause fluid shifts in the body (as in 
OVAR), or influence any other physiological parameter that may 
affect sympathetic outflow—such as heart rate, blood pressure, or 
respiration (9, 33).

Bolton et al. (41) first applied GVS in the form of a 1 s step to 
examine the vestibular contributions to cardiovascular control, 
in particular its effect on sympathetic outflow to muscle vascular 
beds in the lower limbs. The investigators found that the applica-
tion of a 2 mA current across the mastoid processes in a binaural, 
bipolar fashion adequately modified the firing of vestibular 
afferents because subjects reported strong perceptual illusions 
of sway toward the anode. However, despite being delivered at 
different times following the heart beat, with a delay of 0, 200, 400, 
or 600 ms following the R-wave of the ECG, GVS failed to cause a 
net change in MSNA but did cause short-latency bursts of SSNA. 
Therefore, it was concluded that the short duration of electrical 
vestibular stimuli did not interact with the baroreceptors, nor 
did they cause modulation of MSNA, but did excite cutaneous 
vasoconstrictor and sudomotor neurones (41).

Alternatively, Voustianiouk et  al. (42) employed dynamic 
stimuli in the form of brief trains (30 ms) of 10 pulses of GVS and 
found a clear modulation of MSNA. While many animal studies 
demonstrated cardiovascular responses to trains of electrical 
stimuli delivered to the vestibular system (43–45), Voustianiouk 
and colleagues clearly showed that short-latency vestibulosym-
pathetic reflexes do exist in humans. The authors concluded that 
these reflexes might contribute to the control of arterial blood 
pressure, especially during rapid postural changes (42). To 
further investigate, our laboratory used continuous (as opposed 
to intermittent) dynamic GVS to study vestibular modulation 
of muscle sympathetic outflow (46). Vestibular afferents were 
stimulated using continuous sinusoidal (0.5–0.8 Hz) stimulation 
(2 mA) to the mastoid processes (46). Participants experienced 
strong perceptual illusions of “rocking in a boat” or “swinging 
from side to side in a hammock,” at a frequency matching that 
of the stimulation. Interestingly, this study showed that overall 
MSNA increased by 156% and that sinusoidal GVS (sGVS) 
was able to cyclically modulate MSNA (Figure  1). For this 
and subsequent studies using sGVS, we used cross-correlation 
analyses to identify temporal coupling between the occurrence 
of sympathetic nerve activity and the peak of the sinusoidal 
vestibular stimulus (i.e., the peak of the sinusoid) or the peak of 
the ECG (i.e., the R-wave). This approach allows one to quantify 
vestibular or cardiac modulation in terms of the modulation 
index—the magnitude of the temporal coupling of sympathetic 
outflow to a reference event, be it the vestibular stimulus or the 
heart beat.

Furthermore, there was evidence of generation of de novo 
sympathetic bursts to the dynamic GVS: two bursts of MSNA 
could be generated per cardiac interval (46), with one burst 
being temporally coupled to the sinusoidal vestibular input 
and the other to the baroreceptor (cardiac) input (Figure  1). 
This observation showed that the vestibular system exerts a 
significant influence on sympathetic outflow to muscle, and that 
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FiGURe 2 | Experimental records of muscle sympathetic nerve activity (MSNA) from one subject during sinusoidal GVS (sGVS) at 0.8 Hz, showing super 
entrainment of MSNA to the sinusoidal vestibular input. The highlighted section in panel (A) is shown expanded in panel (B). (C) Delivery of sGVS to the shoulders 
(anode on right shoulder, cathode on left). Reproduced with permission from Macefield and James (47).

FiGURe 1 | Spontaneous muscle sympathetic nerve activity (MSNA) presented as the filtered neurogram (nerve) and as an RMS-processed signal (RMS nerve), 
shown with ECG at rest (A) and during sinusoidal GVS (sGVS) at 0.5 Hz (B–D). Each panel spans a 4 s period. (B–D) Consecutive sequences obtained during 
sGVS at 0.5 Hz to illustrate the coupling of MSNA to the ECG and to the vestibular input. The rectangles illustrate the relationship between the sympathetic burst 
and the cardiac rhythm (c) and the vestibular rhythm (v). Reproduced with permission from Bent et al. (46).
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this may operate independently of the arterial baroreceptors in 
the control blood pressure (46). Recently, we provided evidence 
of “super entrainment” of MSNA, in which a burst of MSNA 
is very strongly coupled to a phase of sGVS (47). As shown in 
Figure 2, this strong temporal coupling was clearly generated by 

stimulation of the vestibular nerves, as applying the same current 
to the shoulders failed to induce any modulation.

To further explore the effect of sGVS on sympathetic outflow, 
in separate studies, our laboratories exposed participants to 
a wider range of frequencies (0.2–2.0  Hz, 200 cycles, ±2  mA) 
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FiGURe 3 | (A) Cross-correlation histograms of the relationship between muscle sympathetic nerve activity (MSNA) and R-waves of the ECG (white histogram) and 
autocorrelogram of the ECG (black histogram). (B,C) Cross-correlation histograms between ECG and sinusoidal GVS (sGVS) and respiration (inspiratory peaks) and 
sGVS. A 0.5 Hz sine wave has been superimposed on the histogram to illustrate the timing of the galvanic vestibular stimulation; it has been inverted for clarity. 
(D,e) Cross-correlation histograms of MSNA with respect to the vestibular input (GVS), in white, or to a control sine wave (control), in black. Data in panels (A–D) are 
from the same subject represented in Figure 1; data in panel (e) were obtained from another subject. 20 ms bins in all panels. n = the numbers of counts 
comprising the histograms. Reproduced with permission from Bent et al. (46).
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during recordings of both muscle and SSNA (48, 49). Similarly, in 
both of these studies, all of the subjects reported robust vestibular 
illusions, though these were reduced at the higher frequencies. 
Cross-correlation analysis revealed partial phase locking of 
both muscle and skin to the cyclic vestibular input, with the 
vestibular modulation of MSNA found to be greatest at 0.2 Hz 
and lowest at 0.8  Hz—the latter being the frequency closest to 

the cardiac rhythm. Figure 3 shows cross-correlation histograms 
between MSNA and ECG (Figure 3A) and 0.5 Hz sinusoidal GVS 
(Figure 3D). It can be seen that the cardiac modulation of MSNA 
is higher than the vestibular modulation, and that GVS has no 
direct effect on ECG (Figure 3B) or respiration (Figure 3C). The 
cross-correlation histogram between MSNA and GVS, delivered 
at 0.8 Hz, is shown for another subject in Figure 3E. Unlike the 
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FiGURe 4 | Cross-correlation histograms between muscle sympathetic 
nerve activity and sinusoidal GVS in one subject. The thick curve 
superimposed on the histograms is the smoothed polynomial that was fitted 
to the data. The sinusoid above represents the galvanic stimulus, delivered at 
(A) 0.08, (B) 0.13, and (C) 0.18 Hz. Each cross-correlation histogram shows 
a large peak of modulation (primary peak), associated with the positive peak 
of the sinusoid, and a smaller peak (secondary peak). The secondary peak 
was largest at 0.08 Hz and smallest at 0.18 Hz. Reproduced with permission 
from Hammam et al. (51).
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vestibular modulation of MSNA, the vestibular modulation of 
SSNA was high at all frequencies of stimulation. This prompted 
further investigation to better understand the modulation of 
MSNA. In an extension of the latter study, sGVS was delivered at 
the resting heart rate of a given subject and at frequencies (0.1, 0.2, 
0.3, and 0.6 Hz) above and below the central cardiac frequency. 
Results confirmed that vestibular modulation of MSNA was 
significantly reduced when it coincides with the cardiac rhythm, 
confirming the competitive nature of vestibular and barorecep-
tor inputs. This further highlights the dominance of the arterial 
baroreceptors in modulating MSNA (50).

Furthermore, as the highest modulation of sympathetic outflow 
in the study by Grewal et al. (48) occurred at 0.2 Hz, we explored 
whether lower frequencies of stimulation (0.08–0.18 Hz) produce 
higher or lower modulation. These are frequencies specifically 
associated with very slow postural displacements (i.e., such as 
those experienced during tall building sway, evoking motion 
sickness) (51, 52). Analysis of the sympathetic discharge revealed 
that such low-frequency GVS induces two peaks of modulation of 
MSNA per cycle of stimulation—one associated with the positive 
peak and the other with the negative peak (Figure 4) (51). This 
observation also held true when recording sympathetic activity 
to the skin (52).

While very few subjects reported nausea at the high frequen-
cies of sGVS, half of the subjects experienced nausea at frequen-
cies of sGVS < 0.2 Hz. Moreover, those subjects who did report 
nausea displayed a greater vestibular modulation of SSNA, as 
shown in Figure  5 (52). It is interesting that this augmented 
vestibular modulation of sympathetic outflow to skin was not 
generalized to the sympathetic outflow to muscle (53). However, 
perhaps this is not surprising, given that increases in SSNA 
explain two of the features of nausea—pallor and sweating.

In order to explain the two-peak response, it is noteworthy 
that in all experiments we recorded sympathetic nerve activity 
from the left side (51, 52). In addition, the anode was always 
located over the right mastoid process, making it more straight-
forward in interpreting the results. The larger (primary) peak  
(see Figure 4A) was related to the positive phase of the sinusoid 
(i.e., 0 to 2 mA), while the smaller (secondary) peak was related 
to the negative phase. Given that hyperpolarization of the 
vestibular nerves occurs at the anode and depolarization at the 
cathode (37), we can see that the positive phase of stimulation 
corresponds to hyperpolarization on the right side. Naturally, 
because we are applying current bilaterally (across both mastoid 
processes) hyperpolarization on the right side means that the left 
side is being depolarized. As the current slowly shifts toward the 
left side, it causes hyperpolarization on this side but depolariza-
tion on the right. We suggest that this secondary depolarization 
is responsible for the secondary burst of modulation. This pattern 
of modulation—a primary peak corresponding to the positive 
phase of sGVS and a smaller secondary peak corresponding to 
the negative phase—matched the stimulus frequency but was 
never observed at the higher frequencies of stimulation used pre-
viously (46, 48, 49), presumably because at frequencies >0.2 Hz 
there is not enough time for a second peak to be seen.

These series of studies showed that cyclically changing 
vestibular nerve input could generate a marked modulation of 

muscle vasoconstrictor activity (46, 48, 49, 51). This most likely 
acts through the rostral ventrolateral medulla (RVLM), which is 
the primary output nucleus for muscle vasoconstrictor neurones 
(54, 55) and receives direct excitatory inputs from the otoliths 
(56, 57). So, the frequency-dependant modulation of MSNA may 
reflect vestibular inputs arriving from both sides projecting onto 
RVLM. This was later confirmed during experiments involving 
bilateral recordings of MSNA, where cross-correlation analysis 
did indeed reveal a reversal of modulation in the primary and 
secondary peaks recorded from the left and right sides: a 
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FiGURe 5 | Modulation indices of primary peak of skin sympathetic nerve 
activity during sinusoidal GVS at different frequencies as a function of 
whether or not subjects reported nausea. It can be seen that modulation 
indices were higher in those subjects who reported nausea. Reproduced with 
permission from Hammam et al. (52).
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primary peak on the left was associated with a secondary peak 
on the right and a secondary peak on the left was associated with 
a primary peak on the right (Figures 6 and 7). This is probably 
of greater interest physiologically, given that it supports the 
idea that sympathetic control of blood pressure and blood flow 
is lateralized, at least with respect to the vestibulosympathetic 
reflexes studied.

It is generally assumed that sympathetic nerve activity is 
symmetrical: burst rates and burst amplitude distributions of 
MSNA have been shown to be similar on the two sides (59, 60); 
the same has been shown for SSNA (61). However, apart from our 
own observations (58), only one other study has demonstrated 
lateralization of sympathetic outflow. Diedrich et al. (62) found 
differential expression of MSNA on the left and right sides dur-
ing sinusoidal neck suction, abolishing the normally right-sided 
dominance of carotid sinus baroreceptors on MSNA.

As noted above, the otoliths, rather than the semicircular 
canals, are believed to be primarily responsible for vestibulo-
sympathetic reflexes (6, 10). And while GVS affects the firing 
of vestibular afferents originating in all parts of the vestibular 
apparatus (35, 36), recent evidence supports the idea that sGVS 
acts only via the otolith organs (38, 40). However, what we do 
not know is whether it is the utricular or saccular components 
of the otolith organs that are mediating the vestibulosympathetic 
reflexes. This requires a different means of vestibular afferent 
stimulation, one that can eliminate the semicircular canals and 
differentiate between the otolith organs.

LiNeAR ACCeLeRATiON

Linear acceleration is a natural means of activating the vestibular 
apparatus. Yates et al. (63) had demonstrated increases in blood 
pressure and heart rate during linear acceleration (200 mG), and 
that these cardiovascular responses were absent in patients with 
bilateral loss of vestibular function. Jauregui-Renaud et al. (64) 

found similar results, control subjects exhibiting a sustained 
increase in heart rate and transient increase in breathing during 
linear acceleration (260  mG) that were absent in patients with 
vestibular dysfunction. These and other studies (63, 65–68) pro-
vide good evidence supporting the contribution of the otoliths 
to cardiovascular control. Direct recordings of MSNA during 
sinusoidal linear acceleration were first reported by Cui et  al. 
(69), who found that MSNA decreased in subjects exposed to 
five cycles acceleration (100, 150, and 200 mG) in both the anter-
oposterior and medio-lateral directions (69, 70). However, all of 
these studies used fairly high accelerations (100–260 mG), which 
in addition to activating the vestibular organs will also activate 
extra-cranial receptors, such as those responsive to fluid shifts.

To circumvent this problem, we recently undertook a series 
of experiments that used low-amplitude (4 mG), low-frequency 
(0.08  Hz), sinusoidal linear acceleration of the body, seated 
on a motorized platform. By positioning the head vertically 
linear acceleration in the horizontal plane targets the utricular 
component of the vestibular apparatus (71, 72). These studies 
demonstrated a robust modulation of MSNA (32  ±  3 and 
29 ± 3% for the X and Y axes), which was even higher for SSNA 
(97  ±  3 and 91  ±  5%, for the X and Y axes). Although there 
were no significant differences in amplitude of the modulation 
when delivered in the X or Y axes, the magnitude of modulation 
was markedly different between the two systems of sympathetic 
outflow. This can be simply due to the fact that the predomi-
nant influence on muscle vasoconstrictor drive is the arterial 
baroreceptors—cardiac modulation of MSNA is much greater 
than vestibular modulation of MSNA. Cardiac modulation is 
also higher than respiratory modulation of MSNA, which is of 
comparable amplitude to the respiratory and cardiac modulation 
of SSNA (73). In addition, while individual utricular afferents 
exhibit directional sensitivity, as a population there is no direc-
tional preference for evoking vestibulosympathetic reflexes.  
A noteworthy observation from these studies is that while 
the mean modulation indices produced by sinusoidal linear 
acceleration in the X and Y axes showed similar distributions 
across subjects, individual subjects could exhibit larger changes 
in sympathetic modulation in one axis than another. Indeed, it 
has been suggested that individual experiences may modulate 
the responses of vestibular hair cells responses and, hence, the 
magnitude of vestibulosympathetic responses (63).

In another series of experiments, subjects were supine with the 
neck aligned with the spine: sinusoidal linear acceleration, at the 
same amplitude and frequency, in the rostro-caudal (X) direc-
tion (longitudinal axis of the body) excites the saccular hair cells 
(although not exclusively). Cross-correlation analysis revealed 
modulation of MSNA (29% in the X-axis) that was no different 
to that produced by selective stimulation of the utricle (32% in the 
X-axis, 29% in the Y-axis), nor was it significantly different from 
that produced by acceleration of the supine body in the medio-
lateral (Y) axis (32%), in which both the saccule and utricule are 
involved (72). This shows that both saccular and utricular organs 
contribute to the generation of vestibulosympathetic reflexes. 
This is also evident in the results from the composite sequences, 
reported by Grewal and colleagues, in which sinusoidal displace-
ments of seated subjects were delivered in the X and Y axes (71).
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FiGURe 6 | Bilateral recordings of muscle sympathetic nerve activity, together with ECG, blood pressure, and respiration, during sinusoidal GVS (galvanic vestibular 
stimulation) at 0.08 Hz in one subject. Overall, sympathetic outflow was similar between the two sides, but close inspection revealed subtle differences. In the 
expanded sections, the sympathetic bursts have been shifted back 1.25 s in time to account for peripheral conduction delays, allowing those bursts aligned with  
the cardiac cycle (“c”) or vestibular stimulus (“v”) to be identified. Reproduced with permission from El Sayed et al. (58).
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Importantly, most subjects noted that they could not feel any 
motion, and if they did they could not tell in which direction 
they were moving (71, 72). To further quantify the capacity for 
subjects to perceive motion and accurately detect the direction of 
displacement during sinusoidal linear acceleration, we exposed 
participants to a range of acceleration amplitudes, extending 
from 1.25 to 30 mG at 0.2 Hz. As illustrated in Figure 8, the 
average threshold required to be able to detect the motion is 

6.5 mG, while the acceleration required to accurately determine 
the direction of motion is 10.2 mG (74). Despite the fact that 
subjects could not perceive motion <6 mG, vestibular modu-
lation of MSNA was apparent even at the lowest acceleration 
tested—1.25  mG (74). Modulation of MSNA at 1.25  mG and 
30 mG is shown for one subject in Figure 9.

Figure  10 shows mean data from all subjects: there was a 
positive slope of the magnitude of modulation as a function of 
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FiGURe 7 | Mean ± SE modulation indices for the primary (dark gray) and 
secondary (light gray) peaks of modulation of muscle sympathetic nerve 
activity. Data obtained from 10 subjects. Reproduced with permission from 
El Sayed et al. (58).

FiGURe 8 | Percentage correct (mean ± SE) detection of motion, and correct detection of the direction of motion, for 16 subjects exposed to sinusoidal linear 
acceleration at a constant rate of 0.2 Hz but at accelerations ranging from 1.25 to 30 mG. Semi-logarithmic plot of data from 2.5 to 30 mG, with fitted sigmoidal 
curves shown superimposed. Reproduced with permission from Hammam et al. (74).
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acceleration amplitude. Based on studies in the monkey higher 
acceleration amplitudes would be expected to generate a greater 
vestibular input and thereby a greater modulation of sympathetic 
nerve activity Fernández and Goldberg (75). These authors used 
accelerations up to 5 G—two orders of magnitude higher than that 
discussed here. The outcome of this study highlights that the ves-
tibular afferents certainly do respond to the higher accelerations 
(30 mG), but more importantly, they also respond during accelera-
tion of the lowest magnitude (1.25 mG). That we observed robust 
modulation of MSNA during very low amplitude, sub-perceptual 
sinusoidal motion, indicates that the modulation of MSNA was 
not due to any conscious awareness or arousal-related component 
and purely reflects the expression of a vestibulosympathetic reflex. 
Indeed, detection of motion did not occur until accelerations of 
~6.5 mG, with knowledge of the direction of movement not being 
apparent until ~10 mG. However, while these reflexes are robust, 
it is worth pointing out that they are certainly smaller than the 
baroreceptor-mediated reflexes: as seen in Figure  10, cardiac 
modulation was much higher than the vestibular modulation and 
was not affected by the amplitude of acceleration. Overall, this 
highlights the exquisitely rapid detection of acceleration by the 
vestibular hair cells; however, this seems to only be of importance 
at larger postural changes when immediate blood pooling is com-
promised, until the relatively slower unmyelinated baroreceptor 
fibers unload (76–78).

CONTRiBUTiONS OF NeCK AFFeReNTS

Interestingly, there are some circumstances when the head 
moves (and, hence, the vestibular system is engaged) but the 
body does not move—such as lifting the head while lying supine. 
In these circumstances, there is no need to increase vasomo-
tor tone to the lower limbs. So the question arises, how does 
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FiGURe 10 | Mean vestibular (A) and cardiac (B) modulation indices of 
muscle sympathetic nerve activity as a function of acceleration amplitude; 
0 mG = static condition (vestibular modulation = 0 in the absence of a 
sinusoidal vestibular input). Mean ± SE data from 13 subjects. Reproduced 
with permission from Hammam et al. (74).

FiGURe 9 | Cross-correlation histogram between muscle sympathetic nerve 
activity and acceleration in the anteroposterior direction for one subject 
exposed to accelerations of 1.25 mG (A) and 30 mG (B). The histograms 
have been fitted with a smoothed polynomial. The superimposed sinusoid 
schematically represents the acceleration profile of the platform: motion in the 
forward direction is indicated by the positive phase of the sinusoid, which 
includes the period of acceleration before the peak and deceleration after the 
peak. Reproduced with permission from Hammam et al. (74).

10

Hammam and Macefield Human Vestibulosympathetic Reflexes

Frontiers in Neurology | www.frontiersin.org July 2017 | Volume 8 | Article 334

the brain know when it is appropriate to modulate vasomotor 
tone to the lower limbs of the habitually upright human? We 
recently examined the influence of neck afferents on MSNA 
by employing sinusoidal displacement of the body about the 
neck—and reported two new findings. First, neck propriocep-
tors can modulate MSNA in the lower limbs of awake humans 
and, second, the cardiac modulation of MSNA is reduced in the 
presence of neck modulation of MSNA [Figure 11 (79)]. While a 
previous study had examined the influence of neck afferent input 
on MSNA, they found that neck afferents did not modulate lower 
limb MSNA (80). However, a significant difference is that the 
Ray and Hume studies analyzed the MSNA of subjects during 
static flexion or extension of the head and neck while subjects 
were in the lateral decubitus or supine position, respectively. 
By contrast, Bolton et al. (79) recorded MSNA during dynamic 
stretching of the neck. That the stimulus may need to be dynamic 
in order to have an effect on MSNA has been observed with 

respect to vestibular modulation of MSNA in humans. Dynamic 
(sinusoidal or trains of pulses) GVS modulates MSNA in the 
human (46, 81) but static (1 s step) stimuli fail to do so (41). This 
makes teleological sense since dynamic changes in posture (body 
position) are more likely to require modulation of vascular tone 
than during static states. However, further research is required 
to determine if the magnitude of neck modulation of MSNA in 
postures that are likely to induce an orthostatic challenge is suf-
ficient to increase vasomotor tone in the lower limbs and thereby 
reduce the likelihood of orthostatic hypotension.

Moreover, cardiac modulation of MSNA was reduced in the 
presence of dynamic neck stretch. Animal studies suggest that 
the vestibular nuclei and regions of the brainstem are involved in 
integrating information from both somatic and visceral sources 
and higher centers in order to regulate blood pressure in different 
body positions and contexts (82–84). The cross-correlation analy-
sis in Bolton et al. (79) showed cyclical modulation of MSNA in 
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FiGURe 11 | Mean modulation indices (see Methods) calculated from the 
cross-correlation histograms between muscle sympathetic nerve activity 
(MSNA) and ECG at rest (cardiac), MSNA and neck angle during sinusoidal 
neck displacement (neck) and between MSNA and ECG during sinusoidal 
neck displacement (cardiac + neck). Neck modulation of MSNA was 
significantly lower than cardiac modulation at rest and cardiac modulation 
was significantly lower during neck stimulation. *P < 0.05; ***P < 0.001. 
Reproduced with permission from Bolton et al. (79).
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all subjects during neck muscle stretching induced by sinusoidal 
body displacement about the fixed head. This most likely involved 
the pathways that mediate vestibulosympathetic reflexes (85). 
Experimental evidence from animal studies have shown that neck 
muscle spindle afferents, which are exquisitely sensitive length 
sensors (86), project to the medial and descending vestibular 
nuclei and can modulate vestibular neuronal activity (87, 88). 
Electrical stimulation of nerves innervating muscles of the neck 
at currents just sufficient to stimulate muscle spindle (and Golgi 
tendon organ) afferents has been shown to change activity in 
respiratory and sympathetic nerves in the cat (89). Moreover, it 
has been shown that the presence of intact neck afferents inhibits 
the influence of the vestibular system on sympathetic outflow 
during natural stimulation of the labyrinths (89).

It should be pointed out, however, that sinusoidal displacement 
of the body about the neck might change transmural pressures at 
the carotid sinus and, hence, change the input from the arterial 
baroreceptors. Not withstanding the fact that the phasic cardiac 
modulation of MSNA was much greater than that produced by 
sinusoidal neck movements in the study by Bolton et al. (79), or 
by electrical or physiological activation of the otolithic organs 
in previous studies, Shortt and Ray (15) discounted changes in 
carotid baroreceptor input in their experiments by arguing that 
there were no changes in blood pressure and, because there were 
no changes in thoracic volume, discounted any contribution from 
the low-pressure baroreceptors.

CLiNiCAL CONSiDeRATiONS

The physiological adjustments to a hydrostatic challenge 
imposed during postural changes is predominantly a function 
of the baroreflex mechanism, with afferent contributions from 
the vestibular system (defining head acceleration) and the neck 
afferents (defining the position of the body in space). Clinical 

studies are limited, and while a lot of work has been conducted 
in quadrupedal mammals, its translation to bipedal humans is 
somewhat limited.

Nevertheless, we know that acute vestibular lesions produce 
distressing symptoms of nausea, vomiting, tachycardia, and pal-
pitations—all of which are autonomic markers (29). A study that 
examined patients with acute vertigo due to unilateral vestibular 
neuritis (48 h from onset) showed a depression in sympathetic 
reactivity to orthostatic challenges—a dysfunction that resolved 
in 2 weeks (65). Similarly, patients with bilateral loss of vestibular 
function, when exposed to linear motorized accelerations, exhibit 
an inadequacy in cardiovascular control when compared with 
healthy controls (64). Moreover, on their return from space, 
astronauts face the challenge of deconditioned gravitational 
accelerometers—the otolith organs—resulting in orthostatic 
intolerance, though resolving 10 days after return (31). The short-
lasting dysfunction is echoed and well described in the animal 
literature, but little is known about the replacement or recovery 
mechanism following vestibular damage in humans (3).

However, aging-related orthostatic hypotension is a chronic 
condition and is commonly found in the elderly (90). It is 
derived from multiple etiologies, including sympatholytic drugs 
associated with comorbidities, but it has been documented that 
vestibulosympathetic reflexes depresses with increase in aging 
(18, 19), suggesting a co-contribution to the debilitating effects of 
orthostatic intolerance in the elderly. It is, however, an understud-
ied area and requires further investigations to establish a better 
understanding of the relationship of vestibulospinal reflexes and 
aging-related orthostatic intolerance.

CONCLUSiON

It is now abundantly clear that the vestibular system can modulate 
sympathetic outflow to both muscle and skin. While our use of 
low-frequency sGVS has shown that sympathetic outflow can 
be strongly entrained to vestibular inputs, it is our use of low-
frequency sinusoidal linear acceleration that has revealed that 
both the utricular and saccular components of the vestibular 
apparatus are responsible for the generation of vestibulosympa-
thetic reflexes. Given that the otolithic organs encode both static 
position and linear acceleration of the head in space, these findings 
emphasize that the vestibular apparatus contributes to the control 
not just of motoneurones involved in posture and locomotion but 
also sympathetic neurones involved in the control of blood pres-
sure. However, why it should also influence sympathetic outflow 
to the skin is more difficult to understand. It may well be that 
vestibular modulation of SSNA has no physiological significance, 
and may simply reflect coupling of control mechanisms between 
thermoregulation and blood pressure regulation. Indeed, given 
that vestibular modulation of muscle sympathetic outflow clearly 
does play a role in the regulation of blood pressure, and that the 
distribution of cardiac output to skeletal muscle and skin needs 
to be controlled with the opposing regulatory demands of blood 
pressure and body temperature, it makes physiological sense for 
there to be some common mechanisms for controlling blood flow 
in muscle and skin when these two demands compete, such as in 
exercise.
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